
PHYSICAL REVIE% 8 .VOLUME 19, NUMBER 12 15 JUNE 1979

Nuclear spin-lattice relaxation in thallium-containing chalcogenide glasses
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NMR spin-lattice relaxation time {T,) measurements for the two naturally abundant isotopes of thallium

have been performed in two thallium-containing chalcogenide glasses as a function of temperature and

frequency. The results for T, indicate that there are three regions of temperature dependence from 77 K to
the glass-transition temperature. The relaxation in the high-temperature region is due to thallium-electron-

thallium exchange. In the middle-temperature region, the relaxation is due to localized states, most likely

the localized electronic states in the forbidden gap of amorphous semiconductors. The process responsible for
the relaxation at low temperatures is probably the interaction of the thallium nuclei with disorder modes

characteristic of amorphous materials.

I. INTRODUCTION

The existence of localized electronic states in
the forbidden gap of amorphous semiconductors
has been inferred from a variety of experimental
studies of the optical and electronic properties of
these materials. ' ' In addition, several phenomen-
ological models have been proposed to explain the
physical origin and energy distribution of these
states. ' ' While the broad classification of amor-
phous or noncrystalline semiconducting solids is
often employed, it is more appropriate to group
these materials into several distinctly different
categories on the basis, primarily, of their chem-
ical bonding. Perhaps the most familiar categories
are the tetrahedrally bonded amorphous group-XV
semiconductors which can only be prepared by
thin-film deposition, and the semiconducting
chalcogenide glasses based on the group-VI ele-
ments. The experimental evidence concerning the
localized electronic states in these two classes of
noncrystalline semiconductors is sharply con-
trasted: unannealed evaporated films of amorphous
Qe and Si exhibit substantial optical absorption
within the forbidden gap and strong electron-spin-
resonance (ESR) signals attributable to the pres-
ence of as many as 102' cm localized states'";
on the other hand, pure chalcogenide glasses in
bulk form usually exhibit no ESR under equilib-
rium (unilluminated) conditions, and only weak
tails in the fundamental absorption edge, probably
attributable to impurities, are observed. ' ' In
the case of the chalcogenide glasses, one must
rely primarily on luminescence, transport, and
optically induced ESR experiments to provide
evidence for the existence of localized gap states.

In this paper we describe the application of nu-
clear-magnetic-resonance (NMR) techniques to
the study of localized gap states in some chal-
cogenide glasses. Previous NMR studies of solid
chalcogenide glasses" ' have dealt primarily

with their structural properties and employed the
wide-line NMR technique. The present study em-
phasizes pulsed NMR measurements of the tem-
perature-dependent nuclear spin-lattice relaxation
time which can be interpreted in terms of relax-
ation by localized electronic-gap states. Pulsed
NMR measurements have previously been demon-
strated to offer a powerful technique for the study
of carrier localization in degenerate "liquid semi-
conductors. '"' " In metals and highly' conducting
degenerate semiconductors the dominant magnetic
relaxation process is usually the Korringa process
in which nuclei couple to the spins of s-like con-
duction electrons through the Fermi contact or
hyperfine interaction. However, in liquid semi-
conductors the magnetic spin-lattice relaxation
rate is enhanced relative to the Korringa rate.
This enhancement is a manifestation of the fact
that the electron scattering becomes so strong
that the electrons effectively remain longer near
a given atom, i.e. , they experience some degree
of localization. "" One would not expect the anal-
ysis of the relaxation process developed for liquid
semiconductors in Refs. 15 and 16 to be applicable
in solid amorphous semiconductors such as chal-
cogenide glasses, since the electrical conductivity
is much lower and many of the carriers are highly
localized. Two fundamentally important features
of the NMR data reported here verify that the re-
laxation process in chalcogenide glasses cannot be
characterized as the enhanced Korringa process
observed in liquid semiconductors: (a) there ex-
ists a temperature range in w'hich the spin-lattice
relaxation time T, exhibits an exponential depen-
dence upon reciprocal temperature with activa-
tion energy substantially less than ~ E, and (b)
in this temperature range the relaxation process
relies upon spin diffusion. The observed spin-
diffusion process reveals that the relaxation
mechanism is provided by localized centers,
while the exponential temperature dependence, the
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relatively small activation energy, and the mag-
nitude of T„strongly indicate that these centers
are thermally occupied localized electronic states.
It should be emphasized that spin-lattice relaxation
by such highly localized electronic states through
the Fermi-contact interaction is a novel phenom-
enon which may be unique to amorphous semi-
conductors. Furthermore, it can be shown that
under conditions where these thermally occupied
localized states provide the dominant nuclear
spin-lattice relaxation mechanism in an amorphous
semiconductor, pulsed NMR techniques can be
used to estimate the density of these localized gap
states.

This paper is an extension of the work presented
in Ref. 17, which reported in brief form the first
observation of spin-lattice relaxation by localized
gap states in a chalcogenide glass. Another glass
[Tl,Se(2As, Se,)] is studied, and the other two re-
gions of temperature dependence not treated in
Ref. 17 are considered. In particular, it will be
shown that the high-temperature nuclear relaxa-
tion is due to an exchange effect, while the relax-
ation in the low-temperature region is probably
due to the interaction with low-lying disorder
modes present in the glass. In addition, the de-
tails of the model calculation and the diffusion-
constant calculation for the relaxation in the mid-
dle-temperature range are presented. Section II
will present the relevant NMR theory, Sec. III
will treat the spin-diffusion mechanism in these
glasses, while the experimental details will be in-
cluded in Sec. IV. The results will be presented in
Sec.V, analyzed in Sec. VI, and discussed in Sec.
VII. Section VIII is a summary of the paper.

II. RELEVANT NMR THEORY

Excellent texts exist on basic NMR theory (see
Refs. 18-20), so only the necessary parts of the
theory will be discussed briefly here. In particu-
lar, it will be assumed that the nuclear spin I =

&

(both thallium isotopes have I= —,').
In addition to the normal Zeeman coupling of the

nuclear dipole moment to the applied magnetic
field, we will consider nuclear dipole-dipole and
electron-nuclear magnetic coupling. These ad-
ditional interactions contribute to NMR line broad-
ening and in certain circumstances to nuclear
spin-lattice and spin-spin relaxation. The spin-
lattice relaxation time T, is a measure of the rate
at which the nuclear spin system transfers energy
to the lattice, while the spin-spin relaxation time
T, is a measure of the rate at which the spin sys-
tem loses phase coherence. If more than one re-
laxation process is effective at a particular tem-

perature over the entire sample, the relaxation
rates are additive, i.e. ,

]/Z tot —1/Z I + ]/yII + ]/ZIII +.. .

H = I ~ A~' H, , (8)

where A is the chemical-shift tensor. This in-
teraction can be divided into two parts: a diamag-
netic part" and a, paramagnetic part. " The chem-
ical-shift interaction will broaden the resonance
absorption (the anisotropic part) and shift the
resonant field with respect to the "bare" nucleus
(the isotropic part); the size of the paramagnetic
part (which results in a negative shift in field) is
often correlated with the amount of covalency of
interatomic bonding. "

The Fermi-contact hyperfine interaction results
from a coupling between the s-like conduction
electrons and the nuclei; its Hamiltonian can be
expressed as" ""

Hr, =—,'vy„y, h'I ~ L5(r), (4)

where y, (y„) is the electronic (nuclear) gyro
magnetic ratio, 5 (I) is the electron (nuclear) spin
vector, r is the vector between the nucleus and
electron and 5 is the Dirac delta function. Note
that the interaction vanishes except at the nuclear
site; therefore, only electrons that have a nonzero
probability of being at the nuclear site may con-
tr ibute to this interaction.

The nucleus-electron-nucleus indirect interac-

The dipole-dipole interaction, which results from
the magnetic coupling between nuclei, can be ex-
pressed as

H~„= (y, y, h'/r~») (A +B+C+D+ E+F), (2)

where y„y, are the gyromagnetic ratios of the two
interacting nuclei, and x» is the vector between
these two nuclei. The quantities A -E are depend-
ent upon 8, the angle between r» and H, (the ap-
plied magnetic field), and upon various spin oper-
ators (see Ref. 19). The term A is completely
diagonal, while term B mixes ~-,', --,') with (--,',
—,') states (this is often called the mutual spin-flip
operator).

The electron-nucleus magnetic interactions of
interest can be subdivided into three categories:
the chemical shift interaction, Fermi contact hy-
perfine interaction, and the nucleus-electron-
nucleus indirect interaction. All three interactions
can create line shape changes and nuclear relax-
ation.

The chemical shift is a tensorial interaction re-
sulting from the magnetic coupling of electrons and
the applied field; its Hamiltonian can be written
phenomenologically as
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tion occurs through an admixture of the excited
electronic states into the ground state, and its
Hamiltonian can be written phenomenologically as

(6)
s

Generally, this Hamiltonian can be divided into a
diagonal part (called the exchange or scalar term),
written"

H22 AnIi I2= Ai2[Ix2I22+ 2 (IiI 2+IjI2)], (6)

and a traceless part, which is termed the pseudo-
dipolar term, often approximated as"

H ~=8»(A +8 + C+ 8 + E+F), (7)

where the terms A-E are the same as in Eq. (2).
It is found that the exchange interaction between
unlike nuclei increases the second moment of the
resonance line, whereas the exchange interaction
between like nuclei does not. "

and pseudodipolar interaction [Eq. (V)], respec-
tively.

The above clearly represents an oversimplifica-
tion, since we have only treated two spins, while
the sample will have 10" spins/cm'. The other
spins can be introduced by supposing that their ef-
fect is to give a certain width to the two levels,
~-„——,) and

~

--„-,&, of the pair considered. Using
this assumption and Fermi's golden rule, we can
get an approximate value of W, the probability per
unit time for mutual spin flip, "

W= 2v m (u', (n(u2& '~2,

where (n&2& is the second moment of the NMR ab-
sorption. It has been shown that this process obeys
a diffusion equation, within certain limits, where
the spin-diffusion constant D is given by"

D = R'a'

III. SPIN DIFFUSION

0 = (I/~2) (
~
2, —~2&+

~

—2, 2&) (t»pi«) .
The energy difference between the singlet and
triplet states is given by

i
e'& -( '

i i
'& (

where

Zeeman dd gncj & (9b)

All of the interactions introduced in Sec. II can
result in homogeneous relaxation over the entire
sample. If, however, a small fraction of the
sample volume relaxes with localized centers, the
rest of the sample can relax by communicating
with the nuclei in direct contact with a localized
center via spin diffusion.

Spin diffusion occurs through the mutual spin
flip of neighboring like nuclei. "" The geeman
Hamiltonian commutes with terms like J„I„but
does not commute with terms like (I;I,+ I,I;).
Therefore, there will be a, mixing of

~

—,', ——,') with

~

——,', —,'), and the proper eigenfunctions are

= (I/M2) (~-'„—-',
&

—
~

—-'„-,'&) ( i gl t), (8)

a being the distance between nearest interacting
nuclei, where the anisotropy of R' has been ne-
glected.

Note that Eq. (9c) includes contributions from
, the indirect interaction. Normally this is ignored,
but, for the case of thallium which has 81 elec-
trons/atom, it cannot be ignored, since its mag-
nitude is about 15 times the dipolar interaction"
and will tend to dominate. Therefore, spin
diffusion will be dominated by the indirect inter-
action in thallium-containing materials, and D
should be much larger in thallium-containing ma-
terials (for the thallium nuclei) than in solids
which contain other much lighter nuclei.

In Ref. 25, it was shown that A» decreases as
1/x2» for a metal, and exponentially with 2» for
an insulator. From Eqs. (9)-(ll), it follows that
D will decrease as a is increased. Note that spin
diffusion is an energy-conserving interaction, and
therefore can occur only between like nuclei
('"Tl-"'Tl pairs cannot contribute to spin diffu-
sion). The average distance between two "'Tl
nuclei will be less than the distance between two

Tl nuclei, since the natural abundance of "'Tl
is greater than the natural abundance of '"Tl.
Therefore

which yields D ("'Tl) &0("'Tl) (12)

(9c)

come from the dipole-dipole interaction [Eq. (2)]

A„( y*K 2„1— Ssos'S)

The contribution A» comes from the exchange in-
teraction [Eq. (6)], while the contributions

y 5 ~t 1 —3cos'6) 1 —3 cos28
Ik 2

and B„

This fact will help us later determine if a relaxa-
tion mechanism is dependent on spin diffusion,
since T,("'Tl) &T,('"Tl) if spin diffusion is a
limiting factor in spin-lattice relaxation. (All
other possible factors, such as spin, gyromag-
netic ratio, and chemical bonding are nearly iden-
tical for the two isotopes of thallium. )

The determination of D is a very difficult propo-
sition, even in cubic crystals; in amorphous ma-
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terials, an accurate value of D is impossible to
obtain. However, if it is assumed that the Tl
atoms are 4 A apart, that A»/8 = 20 kHz, and
(«o')' ' = 2v(«o')' ' = 91 kHz (see Sec. VI A for a
discussion concerning the calculation of A» and
(~p2 )1/2

D = 1.'l a 0.8 x 10 "cm'/sec,

where exchange effects have been taken into ac-
count. Note that this number is 10'-10' higher
than normal spin-diffusion coefficients encoun-
tered in solids —this is due to the inclusion of ex-
change effects in the calculation of D, which are
much more important for thallium nuclei than
other nuclei normally encountered in NMR studies,

Tl&Se As2Te& Glass

Hz

IV. EXPERIMENTAL

Elemental thallium consists of two naturally
abundant isotopes, both of which possess a spin
I = —,', and nearly equal gyromagnetic ratios
[y(2"Tl) = 24.57 MHz/T, y("'Tl) = 24. 88 MHz/T].
The primary difference between the two isotopes
is in their respective natural abundances, "'Tl
being V0. 5% abundant, while '"Tl is 29.5'% abun-
dant; this has already been shown to be important
in its effect upon spin diffusion.

Wide-line measurements were made using a
nuclear induction continuous wave spectrometer
at 18.57 MHz and at room temperature. An ex-
ample of the resulting absorption spectrum is
shown in I ig. 1.

Relaxation time measurements were made using
a MATEC model 515 gated amplifier, a MATEC
model 615 broadband receiver, and appropriate
auxiliary equipment, arranged in a single-coil,
phase-detection system. Temperature regulation
was performed by an N, gas flow system, flowing

FIG. 1. NMR derivative of the absorption (a) and in-
tegrated derivative of the absorption (b) for T128eAs2Te3
glass at 18.57 MHz and 297 K.

gaseous N, through liquid N, to obtain tempera-
tures below room temperature, and through a heat
torch for temperatures above room temperature.
The temperature measurements were made from
a copper-Constantan thermocouple imbedded in the
glass which enabled the temperature of the sample
to be determined within +2 K.

Spin-lattice relaxation times T, were measured
by two methods: (a) inversion recovery" (T, ~ 65
msec), and (b) progressive saturation" (T, ~ 65
msec), while spin-spin relaxation times T, were
measured by the spin-echo technique. " The in-
version recovery technique for measuring T, uses
a 180' pulse to invert the nuclear magnetization,
and a 90' pulse (which places the magnetization
perpendicular to the applied magnetic field) at a
time 7 later to sample the magnetization at time

For exponential relaxation, the resulting mag-

3.0

8
0.3X

FIG. 2. Resultant mag-
netization curve, plotted
semilogarithmically, for
the inversion recovery
technique.

8 10

7 (msec)

12 l4 l6 18 20
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netization after the 90 pulse is given by

M(~) = M(~)(l —2e '
&) .

The progressive saturation technique for the
measurement of T, uses a 90'-~-90-v . . .
pulse sequence, and results in a magnetization
after a 90' pulse given by

M(r) = M(~)(l —e '~ r~) .
The spin-echo technique for measuring T, uses a
90 -7.-180'-7-echo pulse sequence, the echo height
being given by

An example of the data obtained from the inversion
recovery technique is shown in Fig. 2. Since the
plot of ln [M(7') —M(~)] vs 7' is a straight line, the
relaxation is exponential within experimental er-
ror; this was true for all T, 's and T, 's measured.
In all cases T, and T, were determined using a
weighted linear least-square fit of ln [M(~) —M(v)]
vs 7. The actual error will be greater than indi-
cated in Fig. 2, due to effects mentioned below.

Various errors can come into the T, measure-
ment if certain precautions are not taken. In all
cases, there is a certain amount of rf leakage that
comes directly from the gated amplifier into the
receiver. This is only important for v &1 msec,
and can be corrected by subtracting off the purely
instrumental effects. The improper setting of the
pulse widths will also create an error, "though the
effect is much more pronounced in the progressive
saturation technique than in the inversion recovery
technique. For this reason, the inversion recovery
method is preferred; however, equipment limita-
tions required that the progressive saturation
method be used above T, = 65 msec. At tempera-

TABI E I. Wide-line NMH characteristics of
Tl2SeAs2Te3 and T12Se(2As2Se3 glasses).

tures where both techniques could be employed,
the two methods yielded the same values of T„
within experimental error. The confidence limits
for T, were found to be 10% using the inversion
recovery techniciue (for T, 's below 65 msec), and
15% using the progressive saturation technique
(for T, 's above 65 msec), while the confidence
limits for T, were found to be 10%.

300 200 150
IOP = I

IOO

IO=

T,
(sec)—

O. l -.

V. RESULTS

A wide line NMR spectrum of ' Tl and '"Tl in
Tl, SeAs, Te, glass is shown in Fig. 1, where Fig.
1(a) is the derivative of the absorption and Fig.
1(b) is the integral of Fig. 1(a), displaced slightly
to the high-field side in order to get the entire
spectrum on the figure. The second moments of
the "Tl and the ' 'Tl spectra were calculated re-
sulting in (&v('"Tl)')'~' = 18.2 kHz and
(6v('"Tl)')' ' = 14.4 kHz. Other wide line NMR
measurements were performed on Tl,SeAS,Te3
and Tl, Se(2As, Se,) glasses by Bishop, Taylor, and
Mitchell""; the significant results are summar-
ized in Table I.

The T, date for Tl, SeAs, Te, glass plotted versus
reciprocal temperature are shown in Fig. 3 for the
entire temperature range considered (77 K-425 K),

T12SeAs2 Tee T12Se(As2Seg)

Isotropic chemical shift
(&II/a)

203 linewidth at 18.57 MHz

g p(203Tl)]

205 linewidth at 18.57 MHz
p(205TO ]

Q p(203TO Qp(205Ti)

»('O'Ti)

-0.25%

34.2 kHz

22.8 kHz

0.50

-0.16 /p
b

33.9 kHz

23,1 kHz

0.47

0 OI.

O.0OI:(

$m

O.OOOI

4 6 8 IO I2

205 linewidth extrapolated
to 0 frequency &~t( Tl)

T2

' Reference 11.
Reference 13.

9.8 kHz

37 LLtsec

12.3 kHz

70 psec

IOOO/ T {K

FIG. 3. Spin-lattice relaxation time (T&) plotted semi-
logarithmically vs reciprocal temperature for
T12SeAs2Te3 glass, showing all three regions of tem-
perature dependence.
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where the highest temperature is well above the
glass transition temperature. Clearly, the tem-
perature dependence can be divided into three
temperature regions. The low temperature region
(region I) is not well characterized, but the data
for this region can be fitted to the equation

T12SeAs2 Te3. T12Se(2As2Se3)

g, (sec 'T ") 0.000 45 0.0020

TABLE II. Constants obtained for Eqs. (21), (22a)-
(22c), and (23) by fitting the NMH data to these equations.

1/T = Ki T",

where the quantities Ez and n are given in Table
II. Region II (the intermediate temperature re-
gion) is characterized by an Arrhenius tempera-
ture dependence of T, and an isotope dependence of
the prefactor. The data can be fit to the equation

1/T,"= E„exp( nZ-„/kT),

K&& ( Te) (sec )

(205Te) (sec-1)

&Z„(eV)

Z„, (sec-')

&Z„, (eV)

(eV)

1.15 x 1'0

2.7 x104

0.125

] 0 x]029

0.70

0.70

1.15 x10

3.7 x10

0.36

2.7 x10"
1.7
1.5

where &E» is taken from the slope of the-data
(when plotted as log T, vs 1/T, as is done in Fig.
3), and K«, which is dependent upon the isotope,
is the intercept at infinite temperature; values of
++zz and +zz calculated from the data are given in
Table II. The high-temperature region (region III)
is shown in Fig. 3 and in more detail in Fig. 4; in
this region, T, is characterized by an Arrhenius

' Reference 30.
Reference 31.

1/T,"' = (K„,/(u') exp(- &E„,/kT), (15)

temperature dependence, no isotope dependence,
and an operating-frequency (or, equivalently,
applied-field) dependence that goes as v', ( roH').
The data can be fit to the equation

400
I 0.0

350
r

300

where Ezzz and &Ezzz are given in Table II, and
4) = 2FVO.

Similar results are obtained for Tl, Se(2As, Se,)
glass. Figure 5 shows the temperature dependence
of T, in region II. Again, the temperature depen-

IOO- 400 350
I I

T (K)

300 250

TI
{rnse c)

IO»

I.O

T)
(sec)

I.O-

.OI-

I
I

"I
l
I

I
O. I 3.0 3.5

.00l-

I 000 (I-I )
T

FIG. 4. Spin-lattice relaxation time (T~) plotted semi-
logarithmically vs reciprocal temperature for
'H2SeAs2Te3 glass at high temperatures (region III) for
three different operating frequencies.

.000I 2.5
I I

3.0 3.5
I 000 ( K-')

T

4.0

FIG. . 5. T~ plotted vs reciprocal temperature for
T128e(2As2Se3) glass for medium temperatures.

45
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450
I 00

425 400
I

375
I

dence of T, is Arrhenius, while T. ,('"Tl) = T, ('"Tl)
/3. 2; T, follows Eq. (15) in this region, where
the values of A» and &E„are given in Table II.
Figure 6 shows an expanded plot of log T, vs 1/T
for region III; aga, in Eq. (15) is obeyed where the
values of Eire a d +Erii are given in Table II. The
data for region I are much more extensive for
this glass than for the TI,SeAs, Te, glass. Figure
7 shows a plot of log T, vs log T for region I; as
can be seen, Eq. (13) is appropriate for this re-
gion, since the points fall, within experimental
error, on a straight line. The resulting values
of A; and n are given in Table II.

The curved lines in Figs. 3-6, as well as the
numbers quoted in Table II result from a X-
squared fit of the data to Eq. (7) for three regions
of temperature dependence, where 1/T,', 1/T,",
and 1/T,"' are given by Eqs. (13)-(15), respec-
tively, and where the quantities K~, +r„Krrr,
&F», .and &„,were varied. In this way, the data
between two different regions of temperature de-
pendence can be taken into account. As can be
seen, the fit is excellent.

The resulting values of T, were found to be in-
dependent of temperature, isotope, and operating
frequency over the temperature region considered.
The value of 7', for Tl, SeAs, Te, glass is 37 p, sec,
while T, for Tl, Se(2As, Se,) glass is 70 p. sec.

VI. ANALYSIS

A. Wide-line NMR measurements

Four conclusions can be drawn from the wide-
line data of Bishop, Taylor, and Mitchell" "and
the data presented here.

(a) The isotropic part of the chemical shift
(r H/H) is large and negative for both glasses;
this indicates that the paramagnetic part of the
chemical shift dominates and the thallium atoms
are covalently bonded. "

(b) The linewidth of the '"Tl isotope [&v('"Tl)]
is considerably larger than the linewidth for the
"'Tl isotope. This indicates that the exchange
interaction is an extremely effective broadening
mechanism. Since exchange between like nuclei
does not broaden, while exchange between unlike
nuclei does, and since '"Tl will have fewer unlike
neighbors (due to its larger natural abundance)
than '"Tl, the exchange interaction will broaden
the '"Tl resonance more than the "'Tl resonance.
Therefore, the bonding electrons of nearest-
neighbor thallium atoms overlap one another as is
required for the exchange interaction to be effec-
tive (i.e. , there are either Tl-Tl pairs in the
glass, or next-nearest-neighbor thallium bonding
such as Tl-Se-Tl, w'ithin the glass network; this
sort of behavior is seen also in thallium-contain-
ing oxide glasses" ).

(c) The field dependence of the linewidth indi-
cates that the anisotropic part of the chemical
shift is large (-0.12% for Tl, SeAs, Te, glass). "
This indicates that the electron cloud about the
thallium atoms is far from spherical, which is
consistent with the covalent nature of the thallium
bonding.

lo-

T,
(m sec)

I.5-

80 IOO

(K)

I20 I40 I60 I80
I I I

—35

I.O—

10g Tf

I.4-

l.3-
TI2 e (2 Asp Se~)

Glas s

—25

—20

T~ (sec)

O. l

2.2
I I

24 2.6
I 0 00 (K-')

.T

2.8
1.2-

I

1.9
l

2.0
log T

I

2.I

I

2.2

l5

FIG. 6. T& plotted semilogarithmically vs reciprocal
temperature for Y12Se(2As2Se3) glass at high tempera-
tures (region III) for two different operating frequencies.

FIG. 7. Log TI vs log T for 712Se (2As2Se3) glass at low
temperatures (region. I).



19 N UCLEAR SPIN-LATTICE RELAXATION IN. . . 6425

1 S(S+ 1)~( ")"=3+ a' ij '
(17)

where N is the total number of thallium atoms in

(d) The temperature dependence of the wide-line
spectra for the Tl,SeAs, Te, glass indicates that
the linewidth is independent of temperature up to
T = 395 K, which is well above the glass transi-
tion temperature (T, = 360 K for this glass);
therefore motional narrowing is not observed,
even at 395 K, which is 35 K above T,.

From the wide-line results presented here, and
from other thallium NMR studies, it can be con-
cluded that the exchange interaction is a primary
broadening mechanism. The accurate determina-
tion of A. , the exchange coupling constant, is very
difficult, even in crystalline materials where the
crystalline structure is known. In amorphous
materials, the problem is even greater, since the
precise positions of the atoms are not known.
However, if certain approximations are made, a
value of A can be obtained from the second mo-
ment values presented in Sec. V. The second mo-
ment of the resonance line is given by"

(&v') = (&v') + (&v').,+ (&v')«

where (&v') is the contribution from the aniso-
tropic chemical shift (this will be proportional to
the square of the applied magnetic field), (&v'),„
is the contribution from the exchange interaction,
and (&v')« is the contribution from the dipolar and
pseudodipolar interactions (the latter two are
grouped, since to a first approximation, it is im-
possible to separate them). The contribution to
Eq. (16) from the chemical shift can be eliminated
by extrapolating the results to zero field. Note
that the results in Table I are quoted in terms of
linewidth, not second moments. To convert line-
width to second moments, the ratio of the second
moment to the linewidth was taken: v'(&v'("'Tl))
/&v(20'Tl) = 0.63; therefore v'(&v'("'Tl)) = 6.2 kHz
and v'(av'('O3Tl)) = 17.1 kHz (note that the chemical
shift will be the same for both isotopes). This
process of taking the ratio for the determination
of the zero-field second moment is not very ac-
curate, as the ratio will depend on the character
of the resonance line shape (for example, the
ratio will be 0.5 for a Gaussian line shape, and
~ for a Lorentzian); if the line shape changes as
a function of applied field, the above analysis will
be in error. Since exchange broadening is more
important for the '"Tl isotope than for the "'Tl
isotope, the chemical shift broadening will be
correspondingly less important. Therefore, a
more accurate value of A. will be obtained from
the '"Tl data. The second moment for the ex-
change interaction is given by"

the sample, the primed subscripts indicate '"Tl
nuclei, and the unprimed subscripts indicate
"'Tl nuclei. If it is now assumed that only nearest
neighbors contribute, and that the exchange coupl-
ing constant is the same for all pairs of unlike
nuclei, then (A,.~ = A,„),

(~v'),„=[z(1-I)/4I']&2,„, (18)

B. Low-temperature T& measurements (region I)

The temperature dependence of T, in region I
is characterized by

1/Tz = A T» (13)

where n-1-1.1. Furthermore, T', is frequency and
isotope independent.

A possible relaxation mechanism that could re-
sult in the above temperature dependence is the
Raman-like excitation and deexcitation of disorder
modes" '4 known to exist in amorphous materials.
The transition rate T,', to the lowest order in
perturbation theory, is given by"

IIf, I'p;5')
1+ cosh (E/ksT)

where H, is the matrix element connecting a dis-
order mode to the nucleus, p~(E) = p~,E"~' is the
density of disorder modes, yg being positive and
much less than unity, E is their energy splitting,
and E is the maximum energy difference between
two disorder modes. In Refs. 33 and 34, H, was
taken to be the quadrupole interaction, the nuclei
being coupled to the lattice via the fluctuations of
the electric field gradient at the site of the nucleus.
This mechanism is not possible in the present

where f is the natural abundance and z is the num-
ber of nearest neighbors. The fact that the 1.ine-
width of '"Tl is much greater than the linewidth of
"'Tl indicates that the exchange character of the
indirect interaction is much greater than the
pseudodipolar character, and that the contribution
to the second moment from the pseudodipolar (as
well as the purely dipolar) interaction can be ig-
nored. If it is assumed that z = 4, the quantity
A,„can be determined from Eg. (18) and from the
second moment of the '"Tl isotope:

I/I = v,„=20kHz.
A similar value is obtained for the Tl,Se(2As, Se,)
glass. This value compares favorably with values
of A,„obtained in other thallium-containing com-
pounds (e.g. , v,„=17.6 kHz in thallium metal, and
v,„=12 kHz in Tl,o,)."
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case, since neither thallium isotope possesses an
electric quadrupole moment, and hence does not
interact with the electric field gradient. However,
H, can be magnetic in origin, the nucleus being
coupled to the lattice via fluctuating dipole coup-
ling, fluctuating chemical shifts, or exchange
coupling. If it is assumed that the matrix element
of the coupling, H„ is independent of the energy
separating the two interacting disorder modes,
then the temperature dependence of T,' is given
by Eq. (13), where n = I+&, where rj is small.
Clearly, this relaxation mechanism gives the
same temperature dependence as the relaxation
in region I. The rate of relaxation via disorder
modes, however, is determined by the matrix
element H„as well as p», the determination of
these quantities relies upon detailed information
of the disorder modqs and their coupling to the
resonant nucleus, which is not presently available.
Therefore a detailed analysis of the prefactor K,
is not yet possible.

C. Intermediate-temperature T& measurements (region II)

The temperature dependence of region II can be
expressed as

1/T,"= K„exp(- &E„/kT), (14)

(20)

where D is the diffusion constant and m is the lo-

where E» is isotope dependent and frequency in-
dependent. This region has been treated briefly
in Ref. 1V for Tl,SeAs, Te, glass.

The dependence of E» on the isotope of thallium
means that the relaxation process in region II
relies on spin diffusion (see Sec. III). This indi-
cates that the sample must be inhomogeneous with
respect to the nuclear magnetic relaxation pro-
cess: there must be at least two different types of
regions in the sample, (a) regions of type 1, where
the nuclei relax directly with the lattice, and (b)
regions of type 2, where the nuclei relax indirect-
ly, communicating with the nuclei in regions of
type 1 via spin diffusion.

A model for' nuclear relaxation via spin diffusion
can now be constructed on the basis of the two
types of regions mentioned above. Several assump-
tions must be made.

(a) Relaxation in the regions of type 1 is much
faster than in regions of type 2 (if this were not
the case, T, would be independent of D, and there-
fore of isotope).

(b) Spin diffusion follows the simple diffusion
equation:

cal nuclear magnetization (or spin temperature).
This assumption is nontrivial in the sense that ap-
plying the simple diffusion equation above to the
case of spin diffusion" requires that the sample
possess a periodic lattice. Since the sample is
a glass, there is a distribution of all local struc-
tural parameters, i.e. , there is no long-range
structural order. Additionally, the sample is
placed in a magnetic field, which makes diffusion
along the magnetic field about four times more ef-
ficient than diffusion perpendicular to the magnetic
field. ' '

(c) States in regions of type 1 are stable for a
time on the order of the duration of the experiment
(-3T,). Evidence supporting this assumption will
be presented later.

(d) The regions of type 1 are of uniform size and
evenly distributed throughout the glass.

(e) If the localized state is paramagnetic, there
will be a region about the localized state (defined
by a radius b, ) within which the resonance line is
broadened beyond obserability and another region
(defined by radius 5,) within which the spin diffu-
sion process is no longer effective (see Refs. 35-
37). These additional complications are ignored
in the present treatment. Since the localized
state is diffuse, and since the exchange interaction
is responsible for line broadening as well as the
spin diffusion process, the two radii, b, and b,
will be nearly equal to the radius of the localized
state (x,), and the two effects can be ignored.

Two cases can be treated mathematically for the
model presented above. The two are distinguish-
able on the basis of the relative sizes of the sepa-
ration of the localized states (regions of type 1),
A, and the diffusion length, L(=v'DT, ): case 1,
I »R; case 2, I sB.

Case 1 (L»A) treats the situation where the
local magnetization can diffuse into the vicinity
of several regions of type 1 before actually being
relaxed. This is similar to the case treated by
Abragam, in which he obtained

(21)

where x, is a scattering length and N is the density
of localized states. Equation (21) was derived in
Ref. 18 for the case where the localized states
were paramagnetic impurities, but the assump-
tions made were such that the present problem is
also described by Eq. (21), if the quantity x, is
now taken to be the radius of the regions of type 1.

Case 2 (L ~R) occurs when the local mangetiza-
tion diffuses slowly, such that it can interact with
only one localized state in the duration of the ex-
periment. The diffusion equation [Eq. (20)) can be
solved for this case subject to three boundary
conditions.
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m(r„t) = m,',
sm(-,'R, t)

8'V

(22a)

(22b) 1/T, = 3r,D/(-,' R —r,)'. (23)

tions of Eq. (22a-c) is presented in the Appendix,
and yields

(r, o) =0. (22c)

The first boundary condition [Eq. 22(a)] results
from the requirement that nuclei in regions of
type 1 relax much faster than nuclei in regions of
type 2 (the quantity m,' is just the equilibrium local
magnetization of regions of type 1). The second
boundary condition [Eq. (22b)] results from the re-
quirement that the outer boundary of a region of
type 2 occurs midway between two adjacent locali-
zed states, and therefore there will be no net dif-
fusion of magnetization across the boundary. The
third boundary condition [Eq. (22c)] results from
the requirement that the spin system is saturated
at time t = 0. It is further assumed that all boun-
daries are spherical; therefore the regions of type
2 will exist between a sphere of radius x„and a
sphere of radius —,'R. These assumptions clearly
represent an oversimplification, but if we are
concerned only with order of magnitude estimates,
the model will yield meaningful results. The so-
lution of Eq. (20) subject to the boundary condi-

1018

If it is now assumed that r, « —,'R and 1/N= 4v
x [—,'(-,'R)'], then

1/T, = er~N, (24)

a result which is equivalent to that obtained for
case 1. Thus, there is no distinction between the
two cases for —, R»x, .

Since a. value of D has been calculated [D = (1.7
+0.8) x10"cm'/sec, see Sec. III], a value of N,
the density of localized centers, can be determined
from either Eq. (21) or (23), if one assumes a
value of x,.

Figure 8 shows N(or equivalently R, since
1/N= 4m[-,'(—,'R)']) and L, the diffusion length, as
a function of temperature, plotted for several
different cases. The values of N are calculated
using Eq. (21) or (23) and the values of/C„and
E» obtained from the data. Curve 3 shows N vs T
for T1,8eAs, Te, glass, where ~, has been chosen
to be 30 A, using Eq. (21); curve 4 is similar,
except that Eq. (23) is used. Note that curve 3 is
considerably above curve 4 at higher temperatures,
but, at lower temperatures, the two curves merge.
At high temperature, L &R (L is given by curve 1),
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FIG. 8. Density of localized states (V), the separation
of the localized states (R), and the spin-diffusion length
g, ) plotted vs temperature for various circumstances.
The quantity N is to be read off the left scale, while R
and L are to be read off the right scale. Curve 1:
T12SeAs'2Te3 glass, L. Curve 2: Tl2Sehs2Te3 glass, N
and R calculated from Eq. (23), ro= 10 A. Curve 3:
TleseAs2Te~ glass, N and R calculated from Eq. (21),
r0=30 A. Curve 4: T12SeAstTee glass, N and R calcu-
lated from Eq. (23), ra=30 A. Curve 5: Tl&se(2As&Se&)
glass, calculated using Eq. (23), ra=10 A.

T=300 K

lO .

I

I

IOO

-s
IOOO

r, ( )

I'IG. 9. Density of localized states Ã& from Kq.
(21), N2 from Eq. {23)], fractional volume of regions of
type A {f„=Srp/R ), and 2rp/R plotted logarithmically
vs log rp. The left-hand scale is for N j and N2, while
the right-hand scale is for f„and 2rp/R.
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D. High-temperature T& measurements (region III)

The temperature dependence of T, in the high-
temperature region is characterized by

I/T'« = (K«,/uP) exp(- &E«,/kT), (15)

where K,» is independent of isotope. Therefore,
spin diffusion is not a limiting factor in this re-
gion. Additionally, T, is independent of tempera-
ture and the linemidth of Tl,SeAs, Te, glass does
not change until the glass is well into the molten
phase.

The +' frequency dependence indicates that the
relaxation mechanism may be due to some motion
of the thallium atoms. This is also reasonable in
that this region occurs around the glass transition
temperature in both glasses. The resulting form

which violates the conditions for the use of Eq.
(21); at lower temperatures, the conditions for
the use of Eq. (21) are valid, but Eq. (23) yields
the same result. Therefore, Eq. (23) can be em-
ployed over the entire temperature range. Curves
2 and 5 show the calculated values of N and R for
Tl, SeAs, Te, glass (curve 2) and Tl, Se(2As, Se,)
glass (curve 5), using Eq. (23) and assuming
r, =10 A.

Though it is not possible to calculate the value
of r„ it is possible to place realistic limits
on its value. Figure 9 shows the calculated
values of N vs assumed values of r, at 300 K
for Tl,SeAs, Te, glass. N, refers to the density
calculated from Eq. (21), while N, refers to the
density calculated from Eq. (23). As is expected,
the two calculated values merge as x, -0 [this is
the assumption made in going from Eq. (23) to Eq.
(24)]. More importantly, we can also calculate,
as a function of r„ the fraction of the total volume
occupied by the localized states (f„=Sr',/R'); this
is shown in Fig. 9 as the curve labeled f„. Now
if f„were greater than 0.05, the curve ln[M(~)
—M(7')] vs twould have two detectable line seg-
ments, a line segment of low values of v'with a
larger slope (and hence shorter T,) resulting from
direct relaxation within the localized state, and a
line segment at larger values of ~, with a longer
T„resulting from indirect relaxation, via spin
diffusion (compare Fig. 2); this was not observed,
which indicates from Fig. 9 that r, &70 A. It is
possible that a very fast T, process mould not be
observed if T, were less than the minimum ob-
served r (in the case 7' „=30 p, sec). However,
since T, - T, (compare Table I), this possibility
can be discounted. From Eq. (23), this indicates
that N(300 K) &4 x 10" centers/cm' in Tl, SeAs, Te,
glass.

of T, for a motional process is given by""
1/T, - (5'„,) ~/(I + ~'uP), (25)

where v is some correlation time, and b '„, is
the mean-square fluctuation amplitude of the local
fields. For large ~7; if it is assumed that

g6 E/0 T
0

I/T ~(b' /(u'~)e (26)

which is of the form observed experimentally.
Furthermore a T, minimum will be observed at
(o = I/v, where

(I/T, ),. (b',,/»).
If the fluctuating fields are due to the dipole-

dipole interaction (see Sec. II), then" "
(27)

(28)

If it is now assumed that r» = 4.0 A, then (T,) „-2 sec at v, = 20 MHz. This indicates that the T,
relaxation in region III is not due to dipole-dipole
motional effects, since the smallest T, observed
is 100 p, sec.

If the fluctuating fields are due to chemical
shift anisotropy, then"

(b'„,) —y 'H,'5'„, (29)

mhere 7, is the chemical exchange correlation
time, I refers to the resonant nuclei and S refers
to off-resonant nuclei. For this relaxation mech-
anism to be effective ('hcalar relaxation of the

where H, is the applied magnetic field and ~„ is
a measure of the chemical shift anisotropy. But
Ho p(d, which requires that T, be independent of
frequency for large 7., contrary to experiment.
Therefore, the T, relaxation in region III cannot
be due to a modulation of the anisotropic portion of
the chemical shift interaction.

The pseudodipolar part of the indirect interaction
could also be responsible for relaxation in this
region. If the relaxation is motional fluctuations
of B„, then (b'„Q-. B2». If the pseudodipolar coup-
ling constant is 15 times the classical dipole-dipole
strength, then (T,) „=5 msec. This is again too
large, and so the pseudodipolar part of the in-
direct interaction is not responsible for the re-
laxation.

A fourth possibility for the relaxation mechanism
in this region is the exchange coupling between
unlike nuclei. The fluctuating field comes from
the time dependence of the coupling between I and
S, where the relaxation time is given by"

I/T" ' =-' v'(A ' /h') S (S + I) (y,/ [1 + (+ —ur )'7'] }
(30)
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first kind"), either 1/T, or I/~, must be much
larger than 2vv„." Since 2vA/h = 2mv, „=125 kHz,
clearly 1/T, is not much larger than 2mv, „, but
I/v, may be. "Scalar relaxation of the second
kind" requires that the T, of the spin 8 be much
smaller than T, of spin I; this is clearly not the
case, since K», [of Eq. (15)] is independent of
isotope. Therefore, if the relaxation is exchange
coupled, it must be scalar relaxation of the first
kind.

A comparison of the values obtained from Eq.
(3c) indicates that exchange coupling is in all
probability the correct relaxation mechanism.
Clearly, (v, —&uz) 7;» 1 (since there is an &u' de-
pendence of T,). If a. particular value of r, is
assumed, then a value of v,„can be calculated.
Two methods were used: (a) the smallest value of
T, observed was chosen as (T,) „(this will yield
a lower bound on v,„) and (b) (T,) „was chosen to
be T„ the temperature being the intersection
point of an extrapolation of the ln T, vs 1/T curve
and ln T„since T, - T„ this will yield a maxi-
mum value of v„. At (T,) „, &uz —&u~ = 1/r„and
the following results are obtained:

Tl SeAs, Tes, 19& v,„&48 kHz,

Tl, Se(2As, Se,), 20& v,„&31 kHz.

In all cases, 1/7, » 2mv, „, so this condition for
scalar relaxation of the first kind is satisfied.
Note that the results presented above agree with
the calculated value v,„=20 kHz (see Sec. VI A).
Considering the possible sources of error, the
agreement is remarkable, and certainly is con-
sistent with the proposition that the nuclear re-
laxation in region III is due to scalar relaxation
of the first kind.

VII. DISCUSSION

Thus far, the nature of the localized ralaxation
centers in the regions of type 1 has not been dis-
cussed. This has been unnecessary since the
analysis does not depend upon the nature of these
localized centers —only that they be localized,
stable and very efficient relaxation centers. These
facts, coupled with the Arrhenius temperature de-
pendence of 1/T, (and hence N), strongly indicate
that these localized relaxation centers are in fact
localized electronic states in the gap of amorphous
semiconductor s.

As discussed in Sec. II,' unpaired electrons with
substantial s character (such as conduction elec-
trons in metals) can create nuclear relaxation via
the Fermi contact interaction as well as a Knight
shift. Since Hz, contains y, (-103&„), this type of
relaxation is very efficient. It has also been

shown by Warren" "that localization of electrons
in liquid semiconductors can enhance the nuclear
spin-lattice relaxation relative to that which would
be expected from the Korringa relation (the Kor-
ringa relation states that T,(&H/H, )' = const/T,
where &H/H, is the Knight shift). This enhance-
ment, as well as the enhancement due to localized
electronic states in the gap of amorphous semi-
conductors, stems from the requirement that the
electrons must be at the nuclear site in order to
effect relaxation. The more an electron is local-
ized, the more time it spends at the nuclear sites
within the special domain of the localized state,
and the more chance it has to relax the nucleus. "
Therefore, localized electronic states will be ex-
tremely effective relaxation centers for nuclei in
their immediate vicinity.

It has been assumed above [Sec. VI, assumption
(c)] that the localized states must also be stable
for the duration of the experiment. Pfister and
Scher have performed drift mobility measurements
on As, Se, glass and determined that there is a
large distribution of trap times (from 10 ' to 1
sec) in this glass. 4' If the localized states ob-
served here are the trapped electrons observed in
the drift mobility measurements, the trap times
are indeed reasonable and many of the localized
states would be stable for the duration of the
experiment.

Therefore, it is reasonable to identify the local-
ized spin-lattice relaxation centers in the regions
of type 1 as localized electronic gap states with a
large amount of s character, since (a) the tem-
perature dependence indicates that the localized
relaxation centers are thermally activated with
activation energy less than ,'E, (b) loca—lized elec-
tronic states would be extremely efficient relaxa-
tion centers, and (c) the stability requirement is
satisfied by the localized trapped electronic states
in the gap of amouphous semiconductors.

Additional insight concerning the nature of the
localized centers giving rise to spin-lattice re-
laxation can be gained from a consideration of the
activation energy, &E», obtained by fitting Eq.
(14) to the data of region II in Figs. 3 and 5. As
mentioned previously, the values given in Table
II are in each case considerably less than the
thermal activation energy for intrinsic electrical
conduction (,'E ) This fact—and. the localized
nature of the centers as indicated by the occur-
rence of spin diffusion in the relaxation process
are consistent with thermally activated occupation
of localized states or traps lying well below
(above) the conduction (valence) band edge; these
occupied traps then function as localized relaxa-
tion centers. Under this interpretation the acti-
vation process differs from the usual thermal
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activation of carriers from localized gap states or
traps into delocalized conduction or valence-band
states as inferred from thermally activated con-
ductivity measurements. The latter process rep-
resents the therma, l ernPtying of the localized
states, while we are apparently observing the
thermally activated occupation of deep lying lo-
calized states. If it is assumed that in a one-
electron picture the thermal activation is to
either an isolated localized level or the lowest
energy of a band tail of localized states extending
into the gap, the depth of this level below the con-
duction band edge or extent of the band tail could
be given by ,'E, —nE—» or 0.225 eV for Tl,SeAs, Te,
and 0.35 eV for Tl,Se(2As, Se,). It is these ener-
gies which should coincide with the thermal acti-
vation energies derived from extrinsic transport
measurements on chalcogenide glasses. For ex-
ample: Andriesch and Kolomiets" have reported
a localized level (trapping level) lying 0.23 eV
above the top of the valence band in Tl, SeAs, Te„
on the basis of thermally stimulated current
measur ements.

Alternatively, if one chooses to describe the
nuclear spin-lattice relaxation process in terms
of the doubly occupied or two-electron localized
gap states proposed by Anderson' (see also Street
and Mott, ' Kastner, Alder, and Fritzsche, ' and
Ngai, Reinecke, and Economou'), the activation
energy presumably represents the energy required
to convert a doubly occupied gap state into a singly
occupied localized state and a delocalized carrier
in one of the bands of extended states. The singly
occupied localized state which is thermally gen-
erated is, of course, the localized spin-lattice
r elaxation center.

If, in fact, localized electronic states are re-
sponsible for the relaxation, then they would be
expected to have unpaired spins —i.e. , they would
be paramagnetic. However, no ESR or magnetic
susceptibility has been observed resulting from
localized electronic states in the gap of pure
chalcogenide glasses in the equilibrium state.
Presumably, the absence of observable paramag-
netism is attributable to the low density of these
thermally activated centers expected in the rela-
tively wide gap chalcogenide glasses that have been
studied. The minimum number of spins that mag-
netic susceptibility measurements can observe is
about 10" spins/cm' at 4 K; at 300 K, the lower
limit of observability increases to 10" spins/cm'.
As can be seen from Figs. 8 and 9, it might be
possible to observe a localized state contribution
to the magnetic susceptibility in the narrow gap
Tl, SeAs, Te, glass at 300 K, and in Tl,Se(2As, Se,)
glass at somewhat higher temperatures. However,
the numbers that are predicted are on the border-

line of observability —one may or may not see the
signal. ESR measurements might also be used to
observe these localized states; however, it is not
clear how delocalization will affect the ESR line.
As r, is increased above -10 A, the ESR line
should broaden, due to scattering, and as many as
10" spins/cm' would not produce an observable
signal. In addition, the large interaction of the
spins of the s-like localized electronic states
with the thallium nuclei, as evidenced by the ob-
served spin-lattice relaxation, indicates that a,

large hyperfine interaction could also arise which
would seriously broaden the ESR. The ESR
measurements have been performed in pure
Tl, SeAs, Te, glass, and no signal due to localized
states was observed"; therefore, a lower limit
of x, ~ 10 A seems reasonable. Correspondingly,
a maximum value. can be placed on N(300 K) of
6 x10" spins/cm' in Tl, SeAs, Te, glass (see Fig.
9). Note that corrections of Eqs. (22a-c) (see
the Appendix) have not been employed. For small
values of 2x,/R, these corrections are negligible.

This upper limit coupled with the estimated
lower limits calculated in Sec. VI place N and r,
for Tl, SeAs,Te, glass within the ranges (at 300 K)
4x10"&N&6 &&10" spins/cm', 70 A&w &10 A.
Similar limits for Tl, Se(2As, Se,) glass at room
temperature can be established, but, since the
density is smaller (see Fig. 9), the limits are
much broader; we obtain (at 300 K) Sx10"&N&1.4
x 10" spins/cm, 500 A &r, & 10 A.

VIII. SUMMARY

The temperature dependence of the spin-lattice
relaxation time (T,) for thallium nuclei has been
studies in two thallium-containing chalcogenide
glasses [TI,SeAs, Te, and TI,Se(2As, Se,)]. These
data indicate that there are three regions of dis-
tinctly different temperature dependence which are
characteristic of different spin-lattice relaxation
mechanisms. At low temperatures, the relaxation
is most likely due to a Raman excitation and de-
excitation of the disorder modes characteristic of
amorphous materials. At intermediate tempera-
tures, the relaxation process relies upon spin
diffusion which demonstrates that the relaxation
mechanism is provided by localized states; in ad-
dition, the exponential temperature dependence of
T, in this intermediate range reveals that the den-
sity of these localized relaxation centers in ther-
mally activated. At high temperatures, the relax-
ation is most likely due to exchange-coupled scalar
relaxation of the first kind.

A model is presented for the nuclear relaxation
in the intermediate temperature regime. From the
analysis of this model, it is possible to place a
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lower limit on N, the density of localized centers
which contribute to the spin-lattice relaxation pro-
cess in the glass, and an upper limit on x„ the
characteristic radius of the localized centers.
From ESR, a lower limit on x, is obtained, which
results in an upper limit on ¹ The most reason-
able interpretation of the relatively small activa-
tion energy, 4E„, which is obtained by fitting the
model to the data, is that the localized relaxation
centers are localized electronic gap states or traps
lying well below (above) the conduction (valence)
band edge, whose occupation is thermally activa-
ted. When occupied, these localized electronic
states provide an efficient spin-lattice relaxation
mechanism for adjacent nuclei through the Fermi
contact interaction. These efficiently relaxed lo-
calized volumes or regions then provide the re-
laxation mechanism for the remainder of the sam-
ple volume through the spin-diffusion process.

where p are the solutions of the transcendental
equation,

tanp (-,R r,—) = p (—,'R), (A2)

(A3)

The integral can be performed, yielding,

OO 2

m, = mo, g V„(1—e n' ')-, (A4)

where

D is the diffusion constant and m, is the equilib-
rium local magnetization. In an NMR experiment,
we are interested in the total magnetization in a
region of type 2, M» which is given by
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APPENDIX: SOLUTION OF THE DIFFUSION
EQUATION FOR CASE 2

Assume that the diffusion equation IEq. (20)]
holds, subject to the boundary conditions in Eqs.
(22a) -(22c). Furthermore, assume that the boun-
daries are spherical. 'fherefore, the local mag-
netization, m (or spin temperature), in a region
of type 2, the region between the sphere of radius
r, and the sphere of radius —,'R, will be given by s

The quantity V is in units of volume, and goes to
V, = (4m)/3(-, R' —r', ) a,s 2r,/R-0; in fact VJ
is the fraction of the contribution that the mth
term makes to the sum in Eq. (A4). For ex-
ample, for 2rJR =0.4, V,/Vo= 0.94; since the
ratios 2r,/R shown in Fig. 9 will be less than 0.4
for the limits considered (see Sec. VII), a reason-
able approximation is to ignore all but the nz = 1
term. Therefore

1/Ti = Dps,

where P, is the smallest solution of Eq. (A2). If
tan P, (—,'R r, ) is expa-nded in a Taylor series,
where only the first two terms are kept, then

m(r, f) = —Q (1 —e asm')
m=i

1/T, = 3r+/(-,'R -r,)'. (A7)

( P'„+ 4/R
"I,(-,'R -r, )(P'„+ 4/R') -2/R)

x ' ' sinp„(r r,), -
m

(Al)

The use of Eq. (A7) will introduce an error in the
calculated values of N (= ,' mR'), tendin—g to make
N too large. The error in N is dependent upon the
ratio 2r,/R, being 52% for 2r, /R = 0.3, and 13/q
for 2r,/R = 0.1.
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