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In the s-f model electrons in the conduction band are coupled with the lattice of localized magnetic
moments by exchange interaction. In this paper the influence of the exchange interaction on electron bands
and electrical resistivity is studied. An intermediate-coupling theory is presented, valid up to the region
where the level broadening exceeds the average thermal energy but is small compared to the bandwidth.
Using the functional-derivative method the spin correlations are expressed in terms of the connected
correlation functions, The functional-derivative method also provides a decoupling recipe for the electron
Green's functions. Concentrating on the two-spin correlations the single-particle Green's function is derived

by a decoupling method and is shown to be equivalent to a perturbation expansion. The finite lifetime is
obtained for all band energies. The absorption edge, derived from density of states, shows in ferromagnetic'
semiconductors the familiar red shift and in addition a blue shift of magnetic origin in the paramagnetic
region. Mobility is derived from the two-particle Green's function calculated by a decoupling method. Level
broadening aA'ects both the acceleration and the scattering part, resulting generally in smaller mobilities
than predicted by the weak-coupling theory. In addition, corrections to the ordinary acceleration term are
obtained. Results for the ferromagnetic semiconductors EuS and EuO are presented. The narrow mobility
minimum occurring at Tc in the weak-coupling case, is considerably broadened in temperature. The minimum
mobilities are around 3 cm /Vsec in both materials. The low mobility near Tc is partly caused by the intense
scattering and partly by the decrease in the acceleration term. The results compare reasonably well with
experiments.

I. INTRODUCTION

The s fmodel fo-r magnetic semiconductors des-
cribes a case in which a relatively small number
of charge carriers interact with the lattice of
magnetic moments. The charge carriers, called
s electrons, are assumed to occupy a broad con-
duction band. The magnetic moments, on the
other hand, are formed by the localized electrons,
say, f electrons. The Hamiltonian for the system
1s

H= g E„ata„—g J(v, v', i) ' S;a~a„.+H„. (l)

The first part represents conduction electrons.
The index v stands for the wave vector k and the
spin index 0 of a band electron. E„ is the elec-
tron band energy and at and a„are the electron
creation and annihilation operators. The second
term in the Hamiltonian is the s-f interaction
part. It arises from the exchange coupling be-
tween the conduction electron spin s and the local-
ized spin S, at the lattice site R, The quantity
J is given by

Z(v, ~', i) = T(kc, k'o', i)
=Z(k' —k)e"" ' '2(o. is io'), (2)

where J(k' —k) denotes the wave-vector-dependent
exchange parameter. The term H~ in Eg. (1) is
the usual Heisenberg Hamiltonian for the magnetic

lattice.
The s finteracti-on influences the optical, elec-

trical transport, and magnetic properties of the
material. A large number of papers have been
published concerning these subjects. Excellent
reviews have been given, e.g. , by Methfessel
and Mattis, ' Haas, ' Kasuya, ' Wachter, Leroux-
Hugon, ' and Nagaev. ' The basic difficulty in
the theory of the s finteraction -is associated
with the magnetic system itself. Any higher-
order perturbation treatment of the s finteraction-
involves the dynamic many-spin correlation func-
tions, which are not sufficiently understood. At
low temperatures, below the magnetic-ordering
temperature, the spin dynamics can be described
by the spin waves. Several treatments of the
influence of the electron-magnon interaction on
electron bands' ' and electrical resistivity" "
have been given. At intermediate temperatures,
around the magnetic-ordering temperature, the
spin-wave approximation is no longer valid. A

simplification results from the fact that the
magnetic excitation energies are in general
small compared with the electron energies. Thus
the spin lattice can be treated as a static system.
The static many-spin correlation functions are
easier to approximate, although in practice only
the first few correlations can be taken into con-
sideration. The first-order correction to electron
energies is caused. by the long-range magnetic
order. In ferromagnets this splits the band into
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two spin-polarized subbands proposed by Vonsov-
skii and Izyumov. " The second-order correction,
treated by Haas' and by Rys et al. ,

"depends on
the two-spin correlation function presenting the
role of the short-range order. These first two
correlations were sufficient to explain the large
red shift of the absorption edge typical of ferro-
magnetic semiconductors i-4, i~, i5 The influence
of the two-spin correlations on the electrical
resistivity was first analyzed by de Gennes and
Friedel. ' The model was further developed by
Fisher and I anger" for metals and applied to
semiconductors by Haas. " The critical-tempera-
ture region in particular has been studied by
Balberg ef, al." In ferromagnetic semiconductors
especially the scattering by spin fluctuations be-
comes very intense near T~, a phenomenon which
suggests low mobility. " This leads to the idea of
carrier localization, i.e., to the theory of mag-
netic-polaron formation proposed by de Gennes"
and further discussed by several authors.
At high temperatures the spins become almost
uncorrelated. Then the s finteract-ion is equiva-
lent to scattering by random short-range poten-
tials, and thus provides a link with the theory of
disordered materials. For the s-f interaction
treatments in a coherent-potential approximation
(CPA) have been presented. ""

This paper deals with the s finteractio-n at
intermediate and high temperatures by means of
the' static-spin approximation. The paper is
motivated by the observation that, for instance,
in ferromagnets the many-spin correlation func-
tions are divergent in the long-wavelength limit
at Tc. Consequently the s finteraction -cannot
be considered as a weak coupling in this tempera-
ture range. Furthermore, the mobilities limited
by the spin-disorder scattering are calculated in
Refs. 14-18 from the ordinary Boltzmann equa-
tion. In ferromagnetic semiconductors the mobili- .

ties are of the order of 10-100 cm'/V sec in the
paramagnetic region and even smaller near T~."
This means that the level broadening & due to
the finite lifetime is about 0.1-0.01 eV. However,
the necessary condition for the validity of the
Boltzmann equation is that «& k~T in nondegene-
rate semiconductors. ' " Thus the condition is
violated in most parts of the relevant temperature
range and a higher-order treatment of mobility
is needed. 'This paper presents an intermediate-
couplingtheoryfor mobility extending to region &

&k~T by means of Green's-function techniques.
The higher-order spin correlations are expressed
in terms of connected correlation functions. Then a
class of terms depending on the two-spin correlations
is treated to infinite order. One-particle Green' s
functions are considered in Sec. II. Mobility is cal-

culated f rom the two- particle Green's function de-
rived in Sec. III. As an application, results for the
broad-band ferromagnetic semiconductors EuS
and EuO are presented.

II. ONE-PARTICLE GREEN'8 FUNCTION

The electronic properties are calculatedby means
of the Zubarev double-time Green's functions. ""
Constructed from operators A and B, the retarted
and advanced Green's functions are

Here 9 is the unit step function, the angular
brackets ( ~ ) denote the thermal average, and
A(t) and B(t') are the operators in the Heisenberg
picture. The quantity g =+1 or -1, denoting the
respective commutator or anticommutator of the
operators. The time-Fourier-transformed
Green's functions «A;B))„satisfy the same equa-
tion of motion,

h(o«A; B))„=([A, B]„)+«(AH - HA); B)) . (4)

In the complex-co plane the retarded Green's func-
tions can be continued analytically into the upper
and the advanced ones into the lower half plane.
Hereafter the type of Green's functions is expres-
sed by specifying the sign of the imaginary part
of w. When not needed, the subscript co is sup-
pressed.

Consider the one-electron Green's function
((a»at„.)), with q=-1. Using Eq. (4) and neglecting
che magnetic part of the Hamiltonian as a small
term, one derives the coupled equations

(S(o —E„)(&a,; a', ,))

—P J(p, , v, i) ' (&S;a„;at„.)),
Vq 4

(hg) —E„)«S,a„;a', , ))

= (S,.)5„„,—g J(v, v', j) ~ ((S,.S,.a„,;a„.)),
IVqg

(It(u —Ev) «S,.S,.av; a'„,))

= &S,S,.)6„,—g J(v', v", l) ((S,S,S;a,-; a t,)),

(h&u —E„,. )((S,S,.S;a„-;a~.))

= &S,S,.S,.)n„.,

J v", v"', m ~ S,S,.S,.a„-.; at~.

etc. This system can be solved, for instance, as
an power expansion in J or by using some de-
coupling method. In both cases a systematic way
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is needed to classify the fluctuations. Here the
functional-derivative method, "frequently used
in theory of disordered materials, is chosen.
Consider" first its application to the magnetic
system: By definition the thermal average of the
component of a spin operator is

&S, &= Tr(e ")(i ~i) S )/Tr(e ")( 's ) (6)

where the Hamiltonian for the magnetic system is

H„= P I(R,. —R,.)S, Si+g(use S,. ' 8, . (7)
i

Here I is the Heisenberg exchange parameter and

B, denotes the flux density of a magnetic field
at the point R;. Considering B; as an independent
variable, we can express different correlations
as derivatives of (S, & with respect to B~. These
are called connected correlation functions and
defined as

The first few of these are

«(S;),a„,a', &) = «f, a„;a"„)&,

(((s',s;.), „; '„,)&

(((s;s',s;.),a, ; 2„,»
=«e, pea„;a'..»- &e, g&;&(&a "„.»

—[&P)~i&(((s;},a„;at„, &&+ perm. ],

(((S'S",S~is;),a„;a„.&&

=&&&'.p&', &; .; '„.»-&&'.q&', p&« „; '..»
—(&t'.q&';&«(s;). .; '.»+p )

-(«'.q&«(s',s;). .;".» p- .j,

(12a)

(12b)

(12c)

(12d)

(8)
To simplify the calculation, the spins are treated
classically in the following. The first few of the
C functions are

c&"(s;)=(s, &,

c(2)(su sii ) (~a g8 )

c'"(s„s'„,s",.) = &~; ~'. p, &,

c&4'(s;, s~, s;., s', )

= «&'e~'&-(&e&'&&e~';&+perm. ),
etc. The quantity g,. is defined as

~,. = s,. (s,.&,

and the notation "perm. " denotes the sum of all
the term~'obtained by permuting the spin indices
but excluding the permutations within the thermal
averages.

Equation (9) is suitable for a perturbation treat-
ment of the problem. The functional-derivative
method can also be applied to the Green's function
itself to obtain a decoupling recipe: %hen II~ is
neglected in the time-dependence of a„(t), the
magnetic Hamilto'nian is included in ((a„;a„&)
only in the statistical weight operator analogous
to Eq. (6). Again treating the spine classically,
we can easily calculate the derivatives of ((a„;at„.&)

with respect to the field B, In this way the set
of Green's functions is obtained as a set of func-
tional derivatives defined by

«(S,S, ~ ~ ~ S„'),a „;at.»

u, r " 8"((a„,a'„,&)

gP, eB„"~ ~ ~ 8B,'8B,

etc. The decoupling in the given order means that
the functional derivative in that order is neglected.

Approximate C functions can be calculated by
means, e.g. , of the mean-field theory. " At the
end of the calculation B is replaced by the true
magnetic field acting on the system. In the ferro-
magnetic case, considered here, let B denote a
constant field in the z direction. By the mean-field
theory" "the two-spin correlation function for a
crystal with fcc lattice and with nearest neighbor
interactions only is

e (i (Ri- R j)P(~~}
N ~
Cp 4s(s+ 1)r

Zqg —Xqgq q p—
~t'+ ~ ~ &c

(13)

«'=121 —I '=~'=&2 —— ' ' —1)&T~,'(-)

Here N is the number of unit cells in the crystal,
S the spin quantum number, B~ the derivative of
the Brillouin function, and a the lattice constant.
Higher-order correlation functions can be cal-
culated by the same method, "but are not needed
here.

In the equation of motion the thermal average
part of spins is conveniently taken into account
by introducing the new spin-polarized bands de-
fined by

E„=E-„,= '0l'f/2m* &+E, ,

&E,= —Z(0}N&s&(5, i —5, ) ),

where m* denotes the effective mass, (S} the
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thermal average of S'-, and 4 and 4 the two differ-
ent spin orientations. From now on the interac-
tion part contains the spin operators $, = S;—(S;).
The lowest-order Green's function is obtained
when the decoupling is made in Eq. (12a):

G',"=((a„;a'„,&)("=5,„,/(n~ E,) . (15)

This is the free-electron propagator associated
with the spin-polarized bands. Performing the
decoupling in Eq. (12bi, one gets

(18)

E.=«a.;a'. ))=6.. (Ea-E.-+ 6(a, v, i) (1;1)'6(v, ai)(&a , a!)))..

6(a, v, i) ((;(~)'J(v, )vj)),
%hen continuing to higher orders mathematical complications arise. However, concentrating only on the
two-spin correlations and on the terms diagonal in the electron indices, one obtains a solution similar to
Eq. (16), but the denominator h(d —E„becomes also corrected to second order. When continuing in the
same way the solution becomes a continued fraction. Thus the Green s function is finally

!

It is interesting to compare this solution with the
perturbation expansion in terms of the C functions
obtained by using Eqs. (5} and (9). The expansion
is visualized up to fourth order in Fig. 1. The
double horizontal line presents the true Green's
function and the single line the zero-order func-
tion given in Eq. (15). The dashed lines repre-
sents the s finteracti-on. With each cross from
which n interaction lines are emanating there is
associated a factor C'"'. When the two-spin cor-
relations only are considered, a solution is ob-
tained by summing the diagrams of types a, d,
and f to infinite order This .is done by the self-
energy insertion

Z„= g J(g, [/, i) ' ((,(j) ' J([/, jj.,j)((Q„;a„}), (18)

which gives a solution equivalent to Eq. (1V).
After the lattice sums in Eq. (18) have been

calculated by means of Eq. (13}, an integration
over the wave-vector space is left. The integral
is relatively slowly converging. Thus it is neces-
sary to ensure the convergence by the fact that
J(q), the Fourier transform of the exchange para-
meter, must decrease rapidly beyond the I
Brillouin zone. The q dependence of J is not
known. Here a simple form

J(q) =J/(1+ q'P) (19)

is adopted. The parameter I describes the extend
of the exchange interaction in real space. Thus l
is of the order of the radius of the magnetic shell.
Assuming then that in the integral the self-energy
is independent of the wave vector, we can perform
the integration. The result is

c(&6 o') I t au ak ak (a/(t) [1+(fQ,,/0)']
16 E a6,, [)v(Mv/a) ['1 a(a, a') —iivv a(a, a')+a/1 6 [ (, )aa/a)P va)vak

(b) where

Q.=(I~ —/(.E;—5' )'/'E '/' E =5 /2m*a'

I [[([ lIi) y
l I i 6 + // + 0 ~ ~

c((76 0' ) = K(66 (T ) =

2CO p
0'~ 0'

p Kg p
0'~ O' ~

FIG. 1. Diagrams occurring in the expansion of the
one-particle Green's function.

t

Here Z,, denotes the wave-vector-independent self-
energy. The expression can be further simplified.
In semiconductors the states close to the bottom
of the band are the most important ones. For
these states ~(l/a)Q

~

«1, in general. Further-
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more, the self-energy can be assumed to be inde-
pendent of spin. Then finally a third-order equa-
tion is obtained for the spin- and wave-vector-
independent Z. Typical results for EuS are shown
in Fig. 2 for the self-energy and the density of
states defined by

D.(~) = 2,~ Q [G;;(~)—~,.(a)j, (21)

(a) - z(ev)

I im(Z) I

— 0.2

—0.1

I ~(eV)

I I I

-0.3 -0.2 —0.1 0.1 0.2

—-0.3

where

G~,(v) = G~, (&u a ie) ~

Here q is a small positive number and V denotes
the volume of the crystal. Using the k-independent
self-energy, we find for the density of states

D,(~) =
1

, (22)
'g'(2Z )'~' [ A+(A'+ZP)' ']' '

where

A=~& —&&, —&e~(~), &= I&m&(~)
I

~

As shown in Fig. 2(a) the self-energy is a slowly
varying function of co. Thus the approximate band
energies, determined as zeros of the real part of .
the Green's-function denominator, have roughly
speaking the same k dispersion as originally.
However, the new band energies are all well
damped because of the nonvanishing imaginary
part of Z. The density of states is similar to the
unperturbed curve, but is shifted downwards in

energy. Figure 3 shows the absorption edge as
a function of temperature in EuS and EuO. .The
absorption edge is defined as the edge of the
density-of-states curve. A large red shift of the
edge, typical of ferromagnetic semiconductors, ' '
is seen. In the ferromagnetic phase the edge is
determined by the long-range order, but near and
above Tc the corrections arising from the short-
range order dominate. The transition region
appears as a kink in the edge below T~. The kink
becomes suppressed by the applied magnetic field,
which possibly explains why it is not reported
experimentally. Haas" calculated the corrections
to energy bands coming from spin fluctuations up
to second order using the ordinary perturbation
theory. The results were good except at T~,
where the second-order correction was divergent
in the k-0 limit. Rys et al.' calculated the band
edge from a Green's function, which was essen-
tially the same as in Eq. (16). Their result was

I I I I I I I I ~

~ 020
(U

GV/K

I I

—0.3 —0.2 —0.1 0.1 0.2 0.3

0.10

CL
I

0.05

FIG. 2. (a) Self-energy Z and (b) the density of states
per spin, D, , for EuS in the paramagnetic region at the
temperature T=1.025T&. The parameter values used
in the calculation are S= ~, a=5. 96 A, m*=mo, To
=16K, and i=0.3 A. The exchange parameter J(0) is
chosen such that the maximum band-splitting energy
&E=2J(0)NS =0. 66 eV.

I

20 40 60 80 100 120 140 160 280 300

Temperature (K)
FIG. 3. Absorption edge in EuS and EuO. For EuO

the values a=5.15 A and Tz ——69 K are used, the other
parameters being the same as for EuS.
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= g G„(-J(,i, i) ~ «g&)G. ,
2

«(S,S,),a„;a'„» (23)

[G„(-J(v,v', l') ~
&$,,$,.&)

x G„g-J(v', p, , l) ~ ((,f,&)G„+(ij.)],

in good agreement with experi'ments, and was not
divergent anymore. Our result in Fig. 3 explains
also properly the red shift. In addition, as a new

property, it shows the blue shift of the edge in
the paramagnetic region in EuS. The magnitude
of the blue shift compares favorably with the ex-
perimental value 2.8 x 10 4 eV/K for EuS.S' With
the choice of the parameters used in this calcula-
tion the magnetic blue shift in EuO occurs at
temperatures above 300 K. However, the temper-
ature dependence of the absorption edge is general-
ly more complicated. In ordinary semiconductors
the shift is caused by lattice dilatation and by elec-
tron-phonon coupling. " Recently the blue shift
in EuSe was explained by Batlogg and Wachter"
entirely by means of the lattice mechanisms. Our
calculation shows clearly that the magnetic part
of the blue shift cannot be disregarded.

With the same approximations as used above in
the case of the one-electron Green's function, the
solutions for the higher-order functions are

«(s,). „; '„))

etc. Here (ij) means the permutation of i
and j.

III. ELECTRICAL CONDUCTIVITY

In an electric field E e '"' applied in the direc-
tion n the electrical current density in the direc-
tion P is

J~=o~ ((o)e '"'E, ,

where the conductivity is given by

a, (~) = —(e'/V)«v, ;r,))„... , @=+1.

(24)

(26)

In this equation e denotes the unit charge and v~
and r are the velocity and position operators

(26)

Sgg
vg = ~.6j, pajaaj'o ~

Og SZ
k|y, k'fy

~. = g ( ', h&&'&)a'-„a;..
, .„, i isk'

The conductivity depends on the retarted two-
particle Green's function of the type ((ata, r ».
This is calculated by the same method as the one-
particle function in Sec. II with repeated use of the
equation of motion. The decoupling principle
given in Eqs. (11)-(12)can also be applied in the
present case. With the same approximations as
in the one-particle case an equation for ((ata;;r »
is obtained:

(K& —E„+E)&(ata„.; r »= T(v, v')+ g J(v", v"', i) '
&f;$&&

' J(&U, ",p, '",j)«[(a a„., a~a„-.), a~ a~. ];r~&&.

The commutator with curly brackets means

Fa„a&, a,"a„-I=a„a„-. „.&.Eq(d, v, v j —a„-a~a„„-.Fyv, v , v ),
where the function F is to be derived from the equation

F '(~, v, v') =h~+ E„E„,
J v', p. , i ~, , ' J p, , v', j F (d, v, p, + J p, , v, i ';, ' J v, p, ,j F &, p, , v'

(27)

(28)

(29)

The quantity T is given by the expression

T(, ') =&[ F. . .]&+&H! . »']

+ &[Qa'„a„,, e'],a'), r, ]&+ ~ ~ ~ . (30)

Here H' denotes the s-f interaction part, modi-
fied in the following way: After the curly-bracket
commutators have been calculated, the spin oper-
ators are replaced by the same combination that

I

occurs in the functional derivative of that order.
This takes care of the decoupled terms forming the
last part in Eq. (27).

Formally Eq. (27) is a transport equation: The
term on the left-hand side represents the free ev-
olution of the system, T arises from the accelera-
tion by a (unit) electric field, and the last term
represents scattering by spin fluctuations. When
the lowest-order terms only are considered, i.e. ,
when T is replaced by the first term,
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T (v v') = T (Ry k'g') —~' — . " 5-
'sh

Q

(31)

and F is similarly approximated by

F(G)((o, v, v') = (h(o+ E„—E„) ' (32)

it is seen that Eq. (27} becomes formally equiva-
lent to the Boltzmann equation for the case v = v'.
In the following, Eq. (2V) is treated more care-
fully in order to obtain a proper intermediate-
coupfing result.

Consider the solution of Eq. (29). The role of
the function F is to produce in the weak-coupling
limit the energy-conserving 5 functions in the
scattering part. In the higher -order calculation
the 6 functions become broadened. An approxi-
mation to F is obtained by introducing a finite

damping term into Eq. (32), i.e. , by inserting

F((o, v, v') = (h(o + E„—E„, + i&, „,) '.
Substituting this into Eq. (29) and assuming that
&„„,is slowly varying in its indices, one can
carry out the integrations and obtain an equation
for &„„,which can be solved by iteration. There
is also another solution, which relates F to the
Green's functions: Consider the quantity

OO

I((o, v, v ') = d(o' G.((o')G„',((o'+ (o),
mOO

(33)

-ih ™
27T

one obtains

d(o'[G„((o') —G;((o')] = 1,

where G„'((o') = G„((o' sic). Substituting the Green's
functions from Eq. (17) and. using the sum rule

00

I((o, v, v') = 1 ——P d(o'[J(v', v.",i) (g,.gj) ~ J(v", v', j)G„'„((o'+&o)
40 + p pl f ptJ

—J(v, v", i) ((,.(v) J(v", v j)G„,, (tv')]G„(tv')G„'.(tv'v v)) . ($4)

j 0O

d(o' G:„((o'+(o)G„',((o'+ (o) [G,((o') —G„"((o')].

This follows from the analytical properties of the
Creen's functions: the part coming from G'G'G'
is zero, since the integration can be performed
over a contour in the upper half plane. Then in
the integral the approximation

[G.( ') -G;( ')][G.( ")-G:( ")]
= (2vi/h}5((o~' —(o') [G„((o")—G„((o")]

The first part of the ~' integration can be written

r d(o' G; „((o' + (o)G„((o')G;,((o'+ (o)
m 00

((at a„;x„))= F((o, v, v) T(v, v) . (38)

Introducing a complex, frequency-dependent re-
laxation time 7.„defined by

((ata„;x )) = (1/ih)[7'„/(1 —i(ov)]T(v, v), (39)

we see that

0O

F ((o, v, v ') = d(o' G„((o')G„',((o'+ (o) . (37)
lF ~0O

When the scattering part in Eq. (27) is written
out for the case v = v', the familiar terms repre-
senting the forward and backward scattering are
recognizable. By neglecting the latter contribu-
tion, one obtains the solution

is made. This is allowed if the spectral density
G -G' shows a peaked structure. Then the in-
tegral becomes

J d(o' G„'„((o' + (o)G „((o')G„',((o'+ (o)
~00

1/7„= (1/eh)[F '((o, v, v) —h(o].

The use of Eqs. (3V}, (29), and (18) then gives

] $ t"

d(o'[Z„'((o'+ (o) G„((o')1. 2r--

(40)

-ik
d(o' G„'„((o'+co)G„((o')

2m g

x d(o" G„', ((o"+ (o)G„((o").
~00

(36)

+ Z„((o') G„'((o'+ (o)], (41)

where Z'((o) = Z((o + ic). By applying the spectral
representations for the Qreen's functions" '

G,( )
1 "d, ImG'((o')

(d —4) T- &C
Similarly one can treat the second integral in Eq.
(34) involving the product of three Green's func-
tions. As a, result one obtains for I((o, v, v') an
equation which turns out to be equivalent to Eq.
(29} for F. Hence

G'((o')
2gg 0O QP QP + ZG

(42)

and analogous representations for the self-energy,
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Eq. (41) becomes

1 i
A) [G„((d + (0)

~p tt ~Op

—G„((o' —u))]
~

ImZ„(u)')
~

. (43)

When it is again assumed that the spectral density
shows a peaked structure, the relaxation time in
the dc case becomes

Here 5(d means the new band energy, i.e. , the en-
ergy at which h+ —E„—ReZ„(+) = 0. Equation (44)
expresses the known relation between the momen-
tum relaxation time and the level broadening,
originally derived in the weak scattering limit. '4

As seen above, the result is more general. When

Eq. (44) was derived, the assumption of a peaked
spectral-density structure has been utilized. At
first sight this seems to imply weak interaction,
but in fa,ct it can be replaced by an assumption of
a slowly varying Z(ro), which is valid in the pres-

- ent case.
When the zero-order acceleration term given in

Eq. (31) is used, the dc conductivity becomes

-~(~, ~', v)]D:. (G„G;), (4't)

where

siderably from the Fermi-Dirac distribution: In
the region &&k~T, n» is a slowly decreasing
function of k compared to the exponential decrease
in the &-0 limit in the nondegenerate case. Thus
(I/n&-„)(sn-, /sk, ), and consequently the mobility,
decreases. In the limit &» k~T the mobility de-
creases, as an order-of-magnitude estimate, by
a factor ksT/b, from the ordinary result.

(ii) The relaxation time r„'to& given by Eq. (44) is
usually smaller than the result obtained by the
lowest-order theory. Thus the mobility decreases
further relative to the ordinary result.

Next, consider the corrections to the accelera-
tion term. Using Eq. (23), we find the second
term in the expansion to be

T"'(v, v') = ([(a„'a„,, H'J, r, ])

2
(0) — V (0&

k

(45) (48)

where

d~[G„-'.(~) —G„-.(~)]f(~),iS
~OO

(46)

f(~) —(e(&&ul-Ey'&/ks T p I )-&.

and E~ denotes the Fermi energy, differs con-

where A. denotes the spin index. This is formally
the same as the result of the Boltzmann transport
equation, but includes the effect of level broaden-
ing both in the relaxation time and in the momen-
tum distribution. Thus the validity of Eq. (45) is
not restricted by the condition & «k~T as in the
case of the Boltzmann equation. There are two
consequences of the level broadening in Eq. (45):
(i) The momentum distribution defined by'6~27

n~ = (a.' a. )

and D denotes in general

D- - (G- G- )
kgfJy ' kn'Jn kj.~y knffn

S 9 8

2& ~k, ek

X d(d' G-' (d' .. ~ G-' (d' —C.C.

(49)

In higher orders the calculation becomes tedious.
In order to pick up the large terms in the expan-
sion the following hint is used: In the case of
scattering by short-range potentials the Fourier
transform of the potential is independent of the
wave vector. Then all terms of the type
Z, . ~ ~ D™,(G„, ~ ~ ) = 0, by symmetry. Thus only
terms proportional to D„'(G„) with v fixed contrib-
ute. The following term in the expansion is

T&'&(v, v') = ([((a&'a„, ,H'], H'), r ])

= —5„„, (W(p, ",p, ')W(p, ', v)[F(u&, p, ', v)E(co, &u", v)+E(ap, v, y, ')E(v, v, p, "))
f

—W(p, ', v)W(&u", v)[E(&o, p', v)F(v, p, ', p, ")+E(v, v, p, ')E(v, g",g')])D„(G„G„B„„).
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-X (u&', ko, k'o') '" ' f(~'),
Bk

(51)

where X satisfies the integral equation

X'(&u', v, v')

= 1+ PG'„(e')[W(p, , v)F(cu, v', p)X"(ur', p. , v')

—Qp. , v')F(+, p, v)X'(~', v, p, )].
(52)

When iterated for solution, it is observed that
approximatively Eq. (52) consists of two geomet-
rical series provided the wave-vector dependence
of W is weak. With these approximations the so-
lution is

K'„((u') L'„(co')
1 -K;((u') 1+ L„'((u') '

where

K'„(&u') = Q G', ((o')W(p, , v)F(a), v, V.),

L'„(cu') = Q G', ((u') W(V. , v)F (ro, p. , v) .
(54)

It turns out that a class of terms in the series of
T can be summed to yield

A
T(kv k'o') = ——5-

ka, k~o '

sG,:(Id')
x d(d X ((d ~kook o )

Bk

becomes considerably broadened in temperature.
The minimum mobilities are about 2 cm'/V sec in
EuS and Euo. Then the mobility increases with
increasing temperature, reaching values of the
order of 20 cm'/V sec at room temperature in
both materials. In the ferromagnetic region the
mobility increases rapidly owing to the onset of
the long-range order, which effectively quenches
the spin fluctuations.

IV. DISCUSSION

The functional-derivative method provides a
straightforward procedure for treatment of the
s-f interaction. The intermediate-coupling theory
presented above successfully explains the behavior
of the absorption edge. In addition to the red shift
of the edge, a blue. shift of magnetic origin was
found in the paramagnetic region. Discussion of
mobility is more complicated. Ferromagnetic
semiconductors typically show a resistivity peak
near T~. The height of the peak increases by
orders of magnitude when doping decreases. The
key question is to what extent the resistivity peak
is caused by mobility changes compared to changes
in carrier concentration. Experimentally the mo-
bility is usually determined by the combined con-
ductivity and Hall-effect measurements. Unfortu-
nately, the resistivity peak is sensitive to mag-
netic field, which introduces complications.

The last two terms in Eg. (52) give the correc-
tions to the ordinary a,cceleration term. In the
weak-coupling limit the corrections vanish. In
the intermediate-coupling case the corrections
tend to reduce the ordinary acceleration term at
small-k values. When the wave vector increases,
the corrections again vanish. Consequently, the
corrections to the acceleration term tend to fur-
ther decrease the mobility.

Figure 4 shows the average dc mobility in EuS
and EuO. The mobility is calculated from Eq.
(45), taking into account the acceleration-term
corrections given in Eqs. (51)-(54). The average
mobility is defined by

~l

l

10 -~

~ 10
1

I

I

OSgg ~g~ ~ W

p =(o, +o, )/e(n, +n, ), (55)

where n~ ~ denotes the concentration of spin-up
(down) electrons. For the sake of comparison
the results derived from the Boltzmann equation
are also shown. As seen, the intermediate-coup-
ling theory gives in general smaller mobilities
than the weak-coupling theory, even by a factor 0.1
above T~ in EuS. Furthermore, the narrow mini-
mum occurring at T~ in the weak-coupling case

-1
10

20 40 ' 60 80 100 120 140 280 300

Temperature (Kj
FIG. 4. dc mobility in EuS and EuO calculated by

means of the intermediate-coupling theory (full lines)
and by the wreak-'coupling theory (dashed lines).
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Shapira et al.""succeeded in measuring the
Hall-effect at all temperatures in EuS and EuO in
samples where the carrier concentration exceeded
10" cm '. The data are more complete for EuO."
Typically p(300 K) = 30 cm'/V sec, the minimum
mobility is about 10 cm'/V sec slightly above Tc,
and then the mobility increases rapidly in the fer-
romagnetic region. Owing to the utilization of the
Hall effect, the reported mobilities are limited to
region where the external magnetic field B is at
least of the order of 0.5 T. The zero-field mo--
bility can differ considerably from the previous
results. Still, it can be concluded (Ref. 36, Figs.
3 and 7) that the minimum zero-field mobility in

EuO is of the order of 1 cm'/V sec for n&10"
cm '. The mobility in EuS is similar to that for
previous case, but the minimum values can be of
the order of 10 ' cm'/V sec (Ref. 35, Fig. 1). Re-
cently Kajita et al."have obtained mobility re-
sults for pure EuO using fast-photopulse techni-
ques. Their results are limited to T &T~ and
8 &0.5 T.

Extension of the mobility results. to the zero-
field case requires that the Hall-effect measure-
ments be replaced by another experiment. Oliver
et al."were able to measure the free-carrier
absorption in the infrared region at all tempera-
tures in EuO where n&10" cm '. Their mobility

results follow the behavior described above.
Similar results were obtained by Schoenes and
Wachter" in EuO from combined free-carrier
absorption, Faraday-rotation, and plasma-reso-
nance experiments for a sample with n&10" cm '.

Photoconductivity has also been utilized to de-
termine carrier concentration and mobility. ~ In

general, the photoconductivity is a quantum ef-
ficiency-mobility-lifetime product Ppr T, h.e esti-
mation of the recombination lifetime v is particu-
larly difficult. However, the transient-photocon-
ductivity experiments seem to indicate that P7 is
almost constant for temperatures near Tc."
When this is adopted, it is concluded from the
photoconductivity data, that the minimum mobil-
ities near T~ are in undoped samples of the order
of 1 cm'/V sec in EuO and 10 '-10' cm'/Vsec in

EUS.
The behavior of the mobility described above

compares reasonably well with the calculated re-
sults in Fig. 4. However, according to the photo-
conducti:vity experiments, the calculated mobility
minimum in EuS should be deeper.
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