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Theory of light scattering from soft modes in IV-VI compounds
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We present a theoretical description of the Raman-Brillouin spectra from the coupled soft optical phonon
and acoustical modes in IV-VI compounds. The spectra are studied above and below the cubic to
rhombohedral transition temperature T, . A mean-field description of the sublattice distortion and static
strains below T, is also given, supposing electrostrictive coupling as well as anharmonic phonon-phonon
interactions are present. The theoretical results are compared with data on SnTe. We predict strong
interference between the Brillouin and second-order Raman spectra above T, . A different class of
interference phenomena is present below T, . We illustrate these points through model calculations on SnTe.

I. INTRODUCTION

The technique of light scattering has proved a
powerful probe of lattice dynamics of solids for
temperatures in the near vicinity of structural
phase transitions. ' In particular, there is exten-
sive data on ferroelectric materials such as
BaTiO, and KH, PO„and Sr TiQ„where a canting
of the oxygen octahedra sets in at 110 K. These
experiments explore the behavior of the relevant
soft optical modes and their coupling to acoustical
modes as the transition temperature is approached
from either above or below.

The semiconducting IV-VI compounds such as
SnTe, Ge Te, PbTe, and their ternary alloys are
narrow-gap semiconductors which exhibit apparent
ferroelectric transitions' as they pass from the
high-temperature cubic phase to the low-tempera-
ture rhombohedral structure. Since the crystal
structure in both phases is simple and the elec-
tronic band structure well studied, microscopic
models of the origin of the soft optical mode as-
sociated with the phase transition have been de-
veloped, and a number of predictions compared
with available data. '

Raman scattering experiments from the IV-VI
compound semiconductors Ge Te, SnTe, and
Pb] Sn„Te have been performed by several auth-
ors. ' In particular, Sugai et al. ' have succeeded
in observing directly the soft optical modes in
SnTe and Pb, „Ge„Te below the transition tempera-
ture. These experiments employ an Ar' laser
with frequency well beyond the absorption edge.
The soft-optical-mode frequency depends on
carrier concentration, as expected from the theory
set forward in Ref. 3, which invokes interband
electron-phonon coupling. The near vicinity of
the structural phase transition in Sn, „Ge„Te has
been probed by ultrasonic methods by Hehwald and
Lang, "and also by Seddon and co-workers. '

Rehwald and Lang invoke electrostrictive coupling
between the strain field of the acoustical wave and
soft two-phonon states to interpret their data,
which were taken above T,.

The present paper presents the theory of light
scattering from acoustical and soft optical modes
in these materials, with emphasis on tempera-
tures near T, (both above and below) where the
soft TO phonon lies low in frequency. It is then
essential to take account of coupling between these
excitations in this regime. One may refer to these
spectra as the Raman-Brillouin spectra of the
sample, since optical- and acoustical-mode con-
tributions are simultaneously present in the same
spectral regime. We sha, ll see that the electro-
strictive coupling introduced by Rehwald and Lang
plays a key role in our analysis.

Before we turn to the detailed theory, we com-
ment on the processes and mechanisms explored
in the present paper. Above T„one has Brillouin
scattering from acoustical phonons with the elasto-
optical tensor providing the coupling. First-order
Raman scattering from the soft TQ phonon is for-
bidden in these rocksalt structure materials.
There is coupling of the light to a pais of soft pho-
nons, so there is a strongly temperature depen-
dent second-order Raman spectrum that extends
well below even 2&u~o (T), since the soft optical'
phonons are broadened by anharmonicity. The
acoustical phonons couple to the lifetime-broadened
two-phonon manifold via the electrostrictive terms
introduced by Rehwald and Lang. This produces a
contribution to the real and imaginary part of the
proper self-energy of the acoustical phonon that
depends strongly on both temperature and fre-
quency. In addition, Fano interference effects
occur because the photon can couple directly to
the acoustic phonon, or indirectly via a process
with two soft TO phonons in the intermediate state.
We thus have a spectr um with r ich content.
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Below T„ in the distorted phase, the light may
couple directly to a single optical phonon, with a
temperature-dependent matrix element. This pro-
duces a new feature in the spectrum. We also
find that in the presence of scattering from the TO
phonon, the integrated intensity of the total spec-
trum is very much greater below T, than above
T„ the intensity drops very dramatically as one
passes through T,. The coupling to the TO phonon
present below T, thus influences not only the
shape, but also the intensity of the spectrum, ac-
cording to the estimates presented here.

The outline of this paper iy the following. Es-
sential ingredients for our description of light
scattering in the low-temperature phase are the
magnitudes and temperature variations of the order
parameters. We develop a theory of these in Sec.
II, and compare the results with experiments on
SnTe. Section III develops the theory of light scat-
tering both above and below T,. We present in
Sec. IV calculations for both above and below T„
with consideration of the effect of the finite skin
depth in these narrow gap materials. We also
estimate the scattering intensities that can be ex-
pected.

II. TEMPERATURE VARIATION AND MAGNITUDE OF THE
'ORDER PARAMETERS IN THE LOW-TEMPERATURE PHASE

In the low-temperature phase of the IV-VI com-
pounds there is a relative shift of the sublattices
along the [ill] directions. In addition, there is a
rhombohedral distortion of the elementary cube
as illustrated in Fig. 1. The rhombohedral angle
0 is reduced below 90'. We thus have two order
parameters, the angle 8, and the relative shift of
the two sublattices. As we shall see, these are
not independent order parameters, but are jn fact
linked by the electrostrictive terms present into
the crystal Hamiltonian. '

The basic mechanism that produces the phase

(o)
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FIG. l. Qlustration of the rhombohedral distortion
that is present in the low-temperature phase. This re-
sults (a) if an elementary cube is pulled by applying
force along [ill] so (b) the angle between OA and OB is
reduced from 90' to 8.

transition is as follows. If we presume the cubic
phase stable, and analyze the lattice dynamics in
the harmonic approximation, then we suppose the
square +o of the TO phonon frequency is negative.
The atomic positions thus spontaneously shift off
the sites appropriate to the cubic phase to form the
rhombohedral structure stable at low temperature.
The magnitude of the shift in the atomic positions
is controlled by the anharmonic terms included
explicitly in our crystal Hamiltonian. In the dis-
torted phase, we find the magnitude and tempera-
ture variation of the atomic displacements through
use of a variational principle applied to the calcu-
lation of the free energy of the anharmonic crys-
tal. We find the shift of the atoms off the sites
appropriate to the cubic crystal decreases with
increasing temperature, to vanish at a certain
temperature T,. Above T„ the free energy is
minimized with the ions on sites appropriate to
the cubic phase. Thus, our theory produces a
second order phase transition at T„with the cubic
phase stable for T & T„and the rhombohedral
phase below.

The calculation also yields temperature-depen-
dent TO phonon frequencies in both the rhombo-
hedral and the cubic phase, as we shall see.
While we begin with the assumption that ~', & 0, in
the low-temperature phase with atoms shifted
off the cubic sites, anharmonic contributions to
the effective temperature-dependent force con-
stants render the lattice stable, with all phonon
frequencies positive. As T, is approached from
below, the TO phonon softens, with frequency
that vanishes at T,. In the high-temperature
phase, the TO phonon frequency is again positive
by virtue of anharmonic contributions to the ef-
fective force constants, to vanish as T, is ap-
proached from above.

Before we enter the details of the theory, we
comment on basic assumption that is a key feature
of the analysis. This is that the displacements
of the atoms off the cubic sites is a small fraction
of the lattice constant. This assumption is con-
sistent with the x-ray data cited below. This as-
sumption enables us to begin with a Hamiltonian
expressed in terms of the harmonic phonon fre-
quencies of the (unstable) cubic lattice, and an-
harmonic terms with symmetry appropriate to the
cubic phase. The normal coordinate of the soft
TO phonon is then written as a static portion (Q„)
to be found self-consistently from the variational
principle, and a fluctuating part Q„ that describes
small oscillations about the shifted atomic posi-
tions. With this decomposition applied to the
Hamiltonian appropriate to the cubic phase, below
T, when (Q„)v 0, we are led to temperature-de-
pendent effective force constants and tempera-
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ture-dependent anharmonic coupling constants with
symmetry appropriate to the low-temperature

.rhombohedral phase. These coupling constants
are prescribed combinations of those which enter
the original "bare" Hamiltonian. As one ap-
proaches T, from below, and (Q„)-0, the sym-
metry and form of the effective crystal Hamilton-
ian passes over to that appropriate to the cubic
phase.

We turn in this section to the description of the
two distortion parameters and renormalized pho-
non frequencies through use of a variational
principle supplied to the free energy. ' This will
lead to coupled equations for the order parameters
which can be solved self consistently. The Hamil-
tonian that forms the basis of the theory has the
form

H=H +H, +H, ,

where H, describes the optical mode of the ma-
terial, H, are the acoustical strains, and H„ is

Q-„=Q-„.+ ~-, .(Q.,), (2.1)

where we later solve for (Q„) self-consistently
and Q-„, describes fluctuationsabout the equilibrium
configuration in the low-temperature phase. A

similar relation is presumed for the strain e 8.
For H, we have

the coupling between them.
As a basis set, for reasons outlined above, we

use the normal-mode amplitudes that characterize
the high-temperature phase. The low-temperature
phase is then a broken symmetry configuration
describable by assigning nonzero expectation
values to the relevant normal coordinates of the
high-temper ature conf igur ation. The procedure
is valid as long as the atomic displacements are
only a small fraction of the lattice constant. We
proceed by assuming that the normal coordinate
for the optical mode of polarization s and wave
vector q has the form

H, =—Q [P-,P;, +&@',(qs)Q-„, Q-„]+, p B,((qs})Q~, Q;...A(q, + ~ ~ .+q,

E!}

( g}
fS f

(2.2)

Where &u, (qs) is the bare harmonic phonon fre-
quency, and the second term describes four-
phonon coupling between the long-wavelength
optical modes that will concern us. The harmonic
phonon frequency ado(mls) is negative at q =0, when
s refers to one of the TO modes. In the long-
wavelength limit, the cubic symmetry of the high-
temperature phase causes the three-phonon term
to vanish when all three modes have q near zero.
Here the symbol B,(lqs}) is an abbreviation for
B,(q,s„.. . , q, s,) and B(Jq, js}) is an abbreviation
for B(qg„q,j„q,s„q,s,). The coupling constants
Bp thus control the inter ac tion be tween four long-
wavelength optical modes (B,), and two long-
wavelength optical modes with two acoustical
modes of polarization j, and j,(B).

The long-wavelength acoustical waves that
"freeze in" to produce the rhombohedral distortion
are split off for explicit consideration. These
modes are described by the combination of

H„=—~ ~ 4 „s„p(q„q,s„q,s,)e s(q, )

y$ 1 3
(XB

q
Q ~ 0

q

x 0 (q, s,)P, (q, s, )

+Q Q ~(q +q +q) (2.4)

p ff e+p( & ff)f Tr[exp( & ff)l (2.5)

where E„,„ is the kinetic energy of the acoustical
motions of the lattice.

Equation (2.4) is written in such a form that the
coupling constant 4 8 ~ remains finite in the
limit as all three wave vectors q„q„and q,
vanish. The term H„ is the electrostrictive
coupling that plays a key role in the paper by
Behwald and Lang. "

We treat the thermodynamics of the system
through use of the variational principle applied to
the Helmholtz free energy I . This may be done
by computing I' using the trial density matrix

1
H,

2
V ~(ysyp&nf%(q)*&y s(q) +&gf„~

e8
yh

with

i s(q) =5-„,(c s)+e s(q)

(2 3)
1

H ff Eo+—Q (P.,Pg +(d (qs)Q-, Q--, ], (2.6)
gS

where E, is a constant, fd(qs) and (Q„) are the
temper atur e-dependent var iational par ameter s
to be found by requiring

and F = Tr(p, «H) + (l/P)Tr(p, « lnp, «) (2.7)
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to be an extremum with respect to variations in
these parameters. The strain variables e„s(Q)
are here replaced by their static values 6- Q(e„s),
with (e„s) also var iational parameters. The fluc-
tuations e 8(q) about (q 8) produce the light scat-

tering that will be the topic of the remaining sec-
tions of the paper.

Use of the above trial density matrix yields the
mean-field estimate for the free energy given by
E -7$, where

F =2 g ~()(Os)&Q„)'+2 p &v()(qs)(Q((, Q-„)+ 2 g @&a(qs)(n-„,+2)
S qs es

—,„',X; (Z ~(0), 0s)(Q-",l Q-',l) g ~.(0 „o*)(Q';.,Q;.,)) (Q..)'
qs SI

Bre, q.)&Q-",,"Q-",,')&Q '„.Q--„g
q) q's

+ ~0 qs q s qs qs q q
+

qS QS

+—g p 4„8 (;(0;Os, Os)0 (Os)e(;(Os)(QQ, )'(e„())
1

0.'8 s '

yb

+—p Q 4„8„,(0; -qs, qs)dl(qs)e, (qs)(Q-„Q-„Q(e 8),
qs

(2.8a)

and finally the entropy $,

(Q-„Q-„)= [8/(d(qs)](rl-„+ —,') . (2.9)

We now restrict our attention to the selected
class of displacements (Q„) and distortions (e„8)
known to be important in the IV-VI compounds.
We demonstrate that this set gives a minimum in
F. The [111]relative displacement of the sublat-
tives is described by freezing in a TO mode in the
following manner. Let eels) be the eigenvector,
normalized to unity, for the optical mode of wave

vector q and polarization s. Let q- 0 along a
direction perpendicular to the [111]direction, and

assign to the TO mode polarized along [111]the
static displacement

e.(0~)&Q.,&
= e,(Os) &Q..) = e.(Os) &Q..) =&Q.) /~~.

The rhombohedral strain is described by pre-
sumlllg (E ) =(E ) =(E ):(6), with Other (E 8)
equal to zero.

A variation of the free energy with respect to

(QQ), (e), and (0(qs), respectively leads to the

$=A~ &+nq, ln 1+nq, —nq, inn;, . 2.8b
qs

In Eq. (2.8a), we use an abbreviated notation with

BQ (qs, fi' s') in place of B,(-mls, qs, -qs', Qs') and

permutations. A similar abbreviated notation is
used for the other coupling constants, in the inter-
est of simplicity. In these expressions,

n;, =(exp[bur(qs)/ksT]- I} '

12 Vc (e) +4,(0)(Q )'

+ 4, qs, -, , =0,
qs y

with
1

C,(qs,}=—g 4„8,(0, -qs„qs, )
0.8y&

X Ol (-qS,)8(;(qS,) .

Finally, we get for 8(qs) the result

(2.10b)

(V'(q, s) =(d()(qs) + B()( s, qs)(Q())'

+ Q q g~qS r) qi~r~ rg

+ ~ BQ(q s, q s}(Q((...Q~...)r

2+V;...

+24,(qs)(~) . (2.10c)

three conditions, with &o,'(Os) =(dQQ. The first is

(Q) (ts,'+2~), g 22, (Ss„0s)(Qs, Q;, )
q rsvp

qf

1
+0 B,(0s, 0s)(Q,)'+2@.(0)(s)) =0, (2.102)

where

C,(0) =— 4 „sy(;(0;Os, Os)e (Os)e(;(Os),=1
nsy~

and the sum on c(, P, y, and 5 includes only those
combinations for which (e~()) is nonvanishing.
Then we have
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jim (d (qs)' = ' '
(Q,)'.B, Os, 0s

q-o 3NV
(2.11)

With B (o0s, Os) &0, an assumption necessary to
produce the phase transition, Eq. (2. 11) shows
that in the low-temperature phase, the TO phonon
frequency is positive definite, to vanish as 7', is
approached from below. Anharmonicity has
stabilized the lattice.

If Eq. (2.10b) is used to eliminate (e) from Eq.
(2.10a), and if we define new effective coupling
constants

and

B, = B,(0s, Os) -NC,' (0)/2c«

-
( ) B(, 0, ) NC. (0)C.(qs, )

&44

(2.12a)

(2.12b)

We have to solve this set of equations in a self-
consistent manner. Before we do so, a brief corn-
ment on the nature of the results is in order.

The quantity (o(qs) is the renormalized phonon
frequency, with temper ature var iation produced by
anharmonicity, and force-constant changes pro-
duced by the shifts in atomic positions when (e)
and (Qo) are nonvanishing.

Note that below T„when (Q,) c 0, Eqs. (2.10a)
and (2.10c) may be combined to give

&Qo)'=y 82 B Iv(T.) —P(T)l
B D 0:—12MVVQ6'

with
OD/ P

q(T) = dxxcoth(-,'x) .
D 0

(2.14a)

(2.14b)

The second statement of Eq. (2.14a) defines a di-
mensionless parameter 5,' introduced by earlier
authors, ' that provides a measure of the relative
shift of the two sublattices in the rhombohedral
phase. In Eq. (2. 14a), ao is the lattice constant
and M is the reduced mass of the unit cell. Note
that p(T) is defined so that cp(T) = T when T»9~.
From Eq. (2. 14a), it is evident that (Q,)' vanishes
as T, is approached from below.

The strain parameter (e) is related to (Q,) by
Eq. (2.10b). We may again ignore the terms in
(Q-, Q-, ) for reasons outlined earlier, and nec-
cessarily C, (0) is negative for a solution to the
coupled equations to occur. Thus,

zero at a transition temperature defined by the
vanishing of the quantity in large parentheses.
For Qp& 0 the transition is second order. The
sum over q may be evaluated by choosing a Debye
spectrum for the acoustical modes. We replace
B(,' ',). by an average coupling constant B to find

we then solve for (Q,): (6) = [ (C),(0) ~/12 Vc„]&Q,)' . (2.15)
M&V

Bp 2KV-
q1

1
'2NV ~

gS g

B(qj, Os)(Qq, Qq-', ) —(o'

ss, (ss,)(()'.„q;„)).
(2.13)

Equation (2.13) is a self-consistent equation
from which one may determine (Q,). The order
parameter (Q,) enters the right-hand side in the
average (Qt, Q-, ), as one sees by noting the long-
wavelength behavior of 9(qs) given in Eq. (2.11).
However, our estimates show that the influence of
the third term on the right-hand side of Eq. (2.13)
is very small, except possibly extremely close to
T,. Even though (Qt„Q„) becomes large as q- 0
near T, where (Q,) is small, (Q-, Q-, ) is large
only over a very small volume of phase space.
Note that the third term on the right-hand side
remains finite even if we set (Q,) —= 0. We ignore
this term, and Eq. (2.13) then gives (Q,) directly,
and we need not solve for it self-consistency.

The phase transition occurs as follows. As
discussed earlier, ~p' is negative, and at tempera-
ture T =0, the quantity in large parentheses in
Eq. (2. 13) is positive. With B, assumed positive,
we have a finite distortion (Q,) at T =0. As T in-
creases, (Q'„~ Q~&) increases, to drive (Q,)' to

From Eqs. (2.14), it is evident that (Q,) vanishes
like (T, —T)'", in the manner characteristic of
mean-field theory. However, (e) vanishes not as
(T, —T)"', but rather as the first power (T, —T).

We next compare the predictions of the model
with experimental data. Iizumi et aL have re-
ported neutron scattering determinations of the
dimensionless displacement parameter 5.' In
Fig. 2(a), we reproduce his data (circles) and
compare with the prediction of Eq. (2.14a). We
have chosen 9D =120 K, the transition temperature
T, =100 K, MN=1 631 g/c.m', a, =6.321 A, and
finally from the fit we determine that

B/Bo =0.43. (2.16)

To choose the value of B/B„we fit the data close
to 7',. We also plotted the temperature variation
of 5 for T, =75 K in the broken line using the same
parameters with one for solid line.

Given (Q,), from Eq. (2. 15), we can calculate
(e), and in fact determine ~C),(0)

~
from the' mea-

sured magnitude of the rhombohedral angle 8 in
Fig. 1. One has 0 =90'-2(e). From an analysis
of x-ray diffraction data, Muldawer' has inferred
values of (e) for powder samples. If we choose
~C), (0)

~

=2.1 x 10"' sec ', then we obtain the broken
curve in Fig. 2(b) from the broken line in Fig. 2(a).
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Exp. (lizumi et al)
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FIG. 2. (a) Data of Iizumi et al. on the sublattice
distortion parameter 6 for SnTe, as a function of tem-
perature. (b) Rhombohedral angle 8 as a function of
temperature, from the data of Muldawer.

This calculation is in good accord with the points
reported by Muldawer, although the lowest tem-
perature point lies somewhat off our curve. Un-

fortunately, Muldawer's reported T, is lower than
the generally accepted value of =100 K by a sub-
stantial amount, indicating free carries may be
present in his sample. ' Clearly, however, our
value of ~4, (0}

~
gives (e) close to the required

magnitude.
The parameters determined from the fit to data

on t) and (c) will be employed in the light scatter-
ing calculations reported below.

III. THEORY OF LIGHT SCATTERING FROM SOFT
'MODES IN IV-VI COMPOUNDS

This section describes the theory of light scat-
tering from the soft TQ phonon and acoustical
phonons in the near vicinity of the structural phase
transition described in Sec. II. We consider tem-
peratures above and below the ordering tempera-
ture 7'„a key feature of our theory is the role
of coupling between these sets of modes provided
by crystal anharmonicity, in the form of the elec-
trostrictive coupling introduced in Sec. II in our
description of the lattice statics. Here, in essence
we explore the influence of this coupling on the
dynamical properties of the lattice.

We set up the theory of light scattering in two
steps. First, we suppose the material transparent
to the incident radiation, a condition unlikely to be
met xn experiments on these compounds. With

&& (n „*.(0, t)o.„.(0, t +~)),

where dQ, is the element of solid angle, ~, and

+, are the frequency of the incident and scattered
light, and n„„(Q, t) is the fluctuating part of the
electric susceptibility of the material. This des-
cribes modulation of the susceptibility by fluc-
tuations of wave vector Q=k —k„where k, and

k, are the wave vectors of the incident and scat-
tered light. More precisely, if o.„,(r, t) is the
amplitude of the fluctuating susceptibility at posi-
tion r, then

(3 I)

(C, )) rfrd're '~'a, .e, t). (3.2)

To begin, we need the form of o.„,(r, t). As in
our description of the lattice dynamics that formed
the basis for Sec. II, we presume all atomic dis-
placements (including the static displacements be-
low T,) are small, and expand about the equilibri-
um positions in the high temperature cubic phase.
Then if we write, in a continuum theory, the
optical displacement as u,(r) =(u, )+u, (r) and the
dynamic part of the strain as e„„(r),

+ Q Aq„, q(u, )uq(r)

0& 'Y'Y~ (3.3)

where A„, and K„, q may be related to second
and first derivatives of the electronic polarizability
with atomic displacement.

the scattering efficiency found in this manner, a
simple convolution procedure using theory de-
veloped for light scattering from opaque materials
by one of the present authors and his collabora-
tors, "and later by Inoue and Moriya, " leads one
to results that incorporate the role of the finite
skin depth. We shall see that the strong absorption
of the visible radiation, with the consequent un-
certainty in wave vector components normal to the
surface, dramatically modifies the line shapes
appropriate to a transparent material. At visible
frequencies used in typical light scattering
studies, the (small gap} IV-VI compounds are
strongly absorbing, with skin depths of at most
a few hundred angstrom.

The differential scattering efficiency is defined
as the fraction of photons scattered per unit solid
angle per unit frequency interval. This scattering
efficiency $ has the form

S ~ (d() 6'7; (~ ~ )~
dg, dc@, c cu, 2m
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We note right away that in the high-temperature
cubic phase where (u, ) vanishes, first-order
Haman scattering by the soft TO phonon is for-
bidden [second term in Eq. (3.3)]. We do have
scattering by two-phonon processes that extends
to very low frequencies near T, (first term). By
virtue of the electrostrictive terms that couple
the acoustical strain into the two-phonon manifold,
we shall find interference effects above g, in the
Brillouin-second-order Raman spectrum. Below
g„ first-order scattering is also allowed, and
the other processes remain.

We expand u, (r) in terms of normal coordinates
Q~„with interest only in values of q near the
zone center:

ta) ELEC T ROSTR ICT I V E COUPLING

FACTOR OF (Qos)
0 = o~„ = b'av)8

a ~ DIAGRAMS ABOVE AND BE LOW Tc
(i) V~

u, (r) =( )„, Q P, (qs)q-, e'q'"
qs

For the dynamical strains,

(3.4)
b) DIAGRAMS BELOW Tc ONLY

(iv)

e„,(r) =—g i [q,B,(qj)+q D, (qj)]
qj

(a)

x ~
(ay)1/2 (3.5)

(v)

Throughout this section, s serves as an optical
mode index and j an acoustical-mode index.

We can then cast the expression for n„,(Q, t) in

the form

(vi)
0

n, (Q, t) = P P a„,(Q-q's, q's')
q SS

x Qo -, ,(t)q-„, (t)

+2 + a„,(0s, Qs')(Q„)Qo, (t)
S,S

FIG. 3. Illustration of the contribution to the photon
self-energy from the basic scattering processes incor-
porated into the present theory. (a) Diagrams that con-
tribute both above and below T and (b) diagrams that
contribute only below T~.

P f „.(Qj)e-, , (t). (3.6)

We do not write out the coefficients a&,(qs, q s )
and b,(Qj) explicitly, since they are obtained
straightforwardly from the quantities displayed
above.

When the form given for n„,(Q, t) is inserted into

the scattering efficiency, nine terms result.
Again, we do not write these out in full. In Fig.
3, we provide an illustration of the basic processes
incorporated into the theory. In a previous paper, "
it was noted that from examination of the imagin-

ary part of the photon proper self-energy, one

may obtain the Raman cross section. In Fig. 3,
we show the basic contributions to the photon

proper self-energy included in our present treat-
ment.

The diagram (i) in Fig. 3 describes Raman scat-
tering by two soft TO phonons, diagram (ii) Bril-
louin scattering by an acoustical mode, and dia-
gram (iii) shows interference between the one-

(3.7b)

phonon and two-phonon manifold (Fano interfer-
ence) produced by the presence of electrostrictive
coupling. Of course, there is also a diagram not
shown that has the two TO phonons created at the
left vertex. Below T„ the additional processes
shown in Fig. 3(b) contribute. First-order Raman
scattering is now allowed [diagram (v)], there is
coupling between the acoustical mode and the soft
TO phonon [diagram (vi)], and interferenee between
a single TO phonon, and the two-TO-phonon mani-
fold which overlap the TO-phonon spectral density
in frequency, when damping is present.

To calculate the scattering efficiency, we re-
quire the following Green's functions:

&, ,'(, r) =(T(Qo (~)Q;(o))), (3.7a)

D„,(Q, ~) =(V (qo.(~)qo, ,(O))),

&„,, (q, Q —q;Q;~)

=(&(~vq, (7)Qo-q, (7)Qo~y(o))), (3.7c)
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&„,-(q, 4- fl, 4;~)
= (T(Qt4, (~)Q" -„, (r)Q, (0)&),

&,y(Q &) =(T(Qo,(&)Qo~g(0)))

D„,„(q,4-4, 4",Q-q";~)
= (T(QIq. (&)QQ-q, (&)QQ-q" t'(0)Q--&(0))& ~

(3.7d)

(3.7e)

(3.7f)

~rp(q, T) =~rp(T) +Aq' (3 8)

In Sec. II, we developed a microscopic theory of
the temperature-dependent soft TO phonon. Here
we regard A as an adjustable temperature-inde-
pendent par arne ter.

We also include damping in the soft-TO-phonon

The correlation functions in Eqs. (3.7) may be
calculated within the framework of the imaginary-
time many-body formalism. Then the relevant
spectral densities may be formed and related to
the light scattering cross section. We have pro-
ceeded through use of the diagrammatic approach,
focusing attention on the role of the electrostric-
tive coupling between the acoustical modes, and
the long-wavelength optical phonons. It is straight-
forward to solve the set of coupled Dyson equa-
tions produced by this analysis. Rather than write
out the full details, we sketch how the calculation
proceeds through illustrating first the diagrams
included. Then we discuss the various propaga-
tor s that enter.

The diagrams included in the present analysis
are illustrated in Figs. 4 and 5. The encircled
crosses denote the electrostrictive coupling and
the dashed line the factor of (Q„) that controls
the mixing between the acoustical and optical
branches below 7',. In propagator s, we use the
Green's function, that describes a soft TO phonon
with dispersion relation

propagator by taking its spectral density to be
I.orentzian, centered at u3ro(q, T), with pheno-
menological halfwidth I'(T); in the interest of
simplicity we take I'(T) independent of frequency
and wave vector. In the. numerical work reported
below, we adjusted I'(T) to reproduce the width
of the TO mode far enough below 7', that mixing
with acoustical modes is unimportant. We com-
ment on this in more detail below.

In Fig. 4(a), we show the diagrams that con-
tribute to the acoustical-phonon Green's function
introduced in Eq. (3.7a). Note that in the renor-
malized optical phonon propagator described in

Fig. 4(b), the internal acoustical-phonon line is
described by a propagator that differs from the
full propagator in Fig. 4(a). If this distinction is
not drawn, then certain diagrams which involve

(Q„) are double counted.
To describe the Green's functions produced by

the above analysis, one introduces the coupling
constants

g, (ss') =& g C' s„,(q„0s, 0s')
na

x 0 8(q,)u„(0s)P, (0s'), (3.9)

where @ 8„,(q„0s, 0s ) is the limit of C 8„„(q„.
q, s, q, s ) [Eq. (2.4)] as all three wave vectors
vanish. In principle, the resulting object depends
on the directions of q„q„and q, in this limit.
We shall always encounter the square of the cou-
pling constant g,.(s, s') here, and in the square we
construct an angular averaged coupling constant
by replacing the squares of the optical eigenvectors
by the average of these squares over a solid angle,
treating the average on q, and q, as independent.
These averaged coupling constants still depend on

(o) Eq (III —7a)
(a) Eq. (III —7c) (b) Eq. (III-7d):

7/

S

WHERE

DAMP ED SOF T TO PHONON
(c) Eq. (III) —7e):

(b) Eq (III -7b):

+
S S

WHERE

(d) Eq. (III) —7f):
S

7/

S' Sl

+
j S

FIG. 4. Diagrams which contribute to the acoustical-
phonon Green's function defined in Eq. (3.7a). The en-
circled cross denotes the electrostrictive coupling, as
in Fig. 3. (b) Diagrams that contribute to the optical
phonon propagator defined in Eq. (3.7b).

FIG. 5. Diagrams which contribute to the propagators
defined in (a) Eq. (3.7c), (b) Eq. (3.7d), (c).Kq. (3.7e),
and (d) Eq. (3.7f).
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the polarization of the acoustical phonon j through
the explicit retention of the factor e 8(q,), which
depends on both the direction of q, and the polar-
ization of the mode as q, -0.

In the imaginary-time representation, the
Fourier transform D»(Q, i(d„) of the propagator in

Eq. (3.'la) is, from Fig. 4(a)

D,q(g, i(d„) =[D, (Q, i&a„)
' —G, (Q, i(d„)] '

(3.10a)

where (d„=(2wnlhP), the self-energy II&(Q, i~„) is

11,.(Q, f~„)=4+ Ig, (s, s') I'(Q„&'
SS

, x D(D'(Q, i(o„)

+—$ I g, (s, s') i'D,"(q, z(u „)
qss '

11,(tq), i(u„) = 4 Q Q i g, (ss') i'(Q„, ,)'
S

x D, (Q;I(o ),
where

o, ((),ax.) =(Drq(q, ax.) '

(3.11b)

ig,.(s's") i'D,",(q, i(d )
p

g s' & . m

x DS((C —q, (rs„—irs ))

with De)(Q, iu ) constructed as outlined above.
For the propagator in Eq. (3.7b), we have

D„.(g, i(d„) =5„.[Del(Q, i(d„) '-II, (Q, iv)„)] ',
(3.11a)

where

and also
x D (o](Q —q, i(d„—i e ), (3.10b)

(3.10c)

(3.11c)

In terms of the quantities introduced above, the
Fourier transforms of the remaining Green's
functions become

D„,. (q, Q —q; Q; i(q)„) = -g& (s, s )—g De) (q, i(q) ~)D, .((q) —q, i(q) „—i ()) )D&& (Q, i(q) „),
&~m

,,„(q,Q —q, Q;i(d„) =Pg~(s, s')— P D@'(q, i~ )

(3.12)

x D~'l(Q —q, ie„—i(d )2p D ((q), i&@„)(Q, .)g (s"', s")D,-, (Q, i&@„),
S"

D„.(g, i~„)=-De'(Q, i(u„)'Q g, (ss')(Q„,)D„.(Q, fu„),
S

and finally,

D„.„.(q, Q —q, I|",Q —q";i(d„) =D~i. „.(,i(u„)
a

sg Sr(ss )(D (aa )D r(q), ars) —, P Dqa(q, (rs )Dt)(@-q, ars„—ars
))

x I D, '(q", irs, )D,r(q —q", irs„—(rs,)),
'l (d

with the lowest-order contribution to the two-phonon propagator D(D), «.( . , iur„)

(3.13)

(3.14)

(3.15)

D~'l «.(,i&u„) = —g D('l(q, i(d )De)(Q-q, i(q)„—iv )
P ((r)

"(~ ~~ '~'~qq '+~ ~'~ 't6 ',o-q) (3.16)

This completes the calculation of the various
propagators that enter our description of the light
scattering. The final step is to combine all these
into a formula for the scattering efficiency.
Again, we do not reproduce the algebra, in the
interest of brevity. %hen the scattering efficiency
is written out, it is proportional to the quantity

8(a, fi) = P Z &/* (s)&y(s) eII:.(I)88(t)S,, S,s(g, II)

(3.17)

where e(s) and f)(1) are the polarization vectors of
the scattered and incident light. It is 5(Q, Q) that
controls the behavior of the light scattering cross
section, and we leave off prefactors insensitive
to the frequency shift Q of the light, and its wave
vector transfer Q. We have

8, ~, 8(Q, n) =2h[l+n(Q)] Q Q Im[I ~, 8, „(&—ie)y'y .8'8
S

X I By Js(Q +1E)

x Dgg(fq, 0+4], (3.18)
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where D, , (Q, Q+ie) is the analytic continuation of D,, (Q, i~„) [Eq. (3.10a)J from the imaginary axis to just
above the real axis in the Q plane. In Eq. (3.18), n(Q) is the Bose-Einstein function n(Q) = [exp(80/
ksT) —1] ', and

1"
Sy.~.(Q + i&) =

&s„y —4 go's, (0s', 4s) g&(ss')(Q. , )'D,"'(Q, Q +i&)
S

Z c't)), (~-~l s Ws)D, (q, i& )DC(C-T&, Q+ie —i)d )g, (s s).
q &fdic

(3.19)

With these formulas, one may examine the
light scattering spectrum, as a function of fre-
quency shift Q and wave vector transfer Q. These
results assume the material is transparent. As
remarked earlier, the light scattering experi-
ments will be carried out under conditions where
the sample is opaque to the incident radiation.
In a simple backscattering measurement, with
incident light at normal incidence, the spectrum
for scattering from the opaque substrate is readily
calculated. One takes Q directed normal to the
surface, with 0(s) and 0(i) parallel to it. Note
that 0(s) and 8(I) may be either parallel or perpen-
dicular to each other. We discuss the backscatter-
ing selection rules explicitly in Sec. IV, for
specific geometries. Given the relevant compo-
nents of 8,

& gnQ, Q), with n normal to the sur-
face, one performs the convolution operation

(3.20)x 8 ~ sos(Qn, Q)

where ~,' and ~," are the complex wave vectors
of the incident and scattered radiation in the sub-
strate.

In Sec. Pf, we present a series of numerical
studies of the light scattering spectrum for SnTe,
for the cases where the substrate is transparent
and where it is opaque.

IV. NUMERICAL STUDIES OF BRILLOUIN-RAMAN

SPECTRA FOR SnTe NEAR T,

We present here our results of numerical studies
of the light scattering spectrum from SnTe near 7'„
using the theory developed in Secs. I-III. We
predict the form of the Brillouin-Raman spectrum
with emphasis on the influence of interference
between the acoustical phonons and the low-lying
two-phonon continuum associated with the soft TO
modes near 7',. Below T„we have also the first
order scattering from the soft TO mode which,
as we have seen, is added into the interference
structure below 7.',.

The calculation is performed in the following'
two steps:

(i) We suppose the following: (a) We probe only

the cubic (001}, (ill) surfaces above T, and
rhombohedral (001) surface below T, of SnTe with

7, =100 K. We consider only a monodomain crys-
tal with c axis along the [111]direction below T,.
(b) The sample is transparent for Ar' laser line
(5145 A}. (c) The laser light is incident normally
on the surface and is scattered with scattering
angle 180' (backward scattering), and the polar-
ization of scattered photon is parallel or perpen-
dicular to that of incident light.

(ii) We take into accout the effect of the opacity
of the medium which is met in actual experiments
with visible radiation. By simple convolution pro-
cedure mentioned in Sec. III, the second-stage
calculation smears out the interference structure
of the lines and spreads the spectrum over the
entire frequency range, with strong temperature
dependence. In Table I, we show the selection
rules for relevant modes obtained by examining
the symmetry properties for elasto-optical tensor
P,J as well as Raman tensor components.

A. Line-shape function under. transparent conditions

1. Behavior above T,

We examine the scattering spectrum from (001)
surface. According to Table I, the longitudinal-
acoustical (LA) mode with wave vector parallel
to the z axis is only allowed for the z(xx)Z configu-
ration. The expression for the lineshape function
due to this mode is derived from Eq. (3.18). After
tedious rearrangement of the formula, the spec-
trum can be written

where

I- = —v [(A„+AL))4)„+&„4)„]P&/K)2Q gL'A i

(4.2a)

gLA V( @12 @11}) (4.2b)

~LA (Q, Q) =2k[1+n(Q)]-
4p

x K, [1+4((u „—Q )] (g„)'
1

+())*/4p)g,* Il, (q, n)) '

(4 1)
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(
2 2)2

and the quantity g„. is related to the elasto-optical
tensor as g„.=-q'„P,&, with e the optical dielec-
tric constant.

In deriving Eq. (4.1), we neglect the terms with
origin in the imaginary part of g, &

as well as the
terms corresponding to the pure second order
process which separates out of the spectrum as a
distinct contribution. Thus, we include only the
scattering from the acoustical mode, with its
proper-self-energy affected strongly by electro-
strictive coupling to the two-phonon manifold.
The quantities A, &

and 4,~ represent the compo-
nents of the second-order Baman tensor and of
electrostrictive coupling tensor, respectively,
with abbreviation of index in the ordinary manner
(i.e. , the notation is the same as that used in
elasticity theory. )

From Eq. (A8) in the Appendix, the proper
self energy function IIO(q, n) is, for our model,

1

~,(T)A'" ' (4.Sb)

cd

0
~W

Q
Q
Q
M

O
O

tQ'

h-t
O
O

O

O'O

O
O

80

where I'(T) represent the halfwidth of the soft TO
phonon. %'e have taken the limit Q-0 on the right-
hand side.

In the scattering geometry z(xy)z, we have the
contribution from the second-order scattering, not
contained in Eq. (4.1),

8,, = 25[n(n) + 1]g(A„)'[-lmil, (q, n)] . (4.4)

We turn now to the discussion of the scattering
spectra from the (111)surface. In order to ab-
breviate the complex combination of the fourth
rank tensors, we set up new coordinates (x y z ),
where x, y', and z axes are parallel to the [110],
[112], and [ill] crystal axes, respectively. The
line-shape function for the LA and the transverse-
acoustical (TA) modes allowed in the z (x.x )z
scattering geometry is given by

Q2
g, (q, n) =2n[I+n(n)]-

&& K,'[1+f.', ((u,
' —n')]'(~, )'

1
A' —~', +(Q'/4p)g, ")I,(q, ()) ) '

(4.5)

When the index j refers to the LA mode, we have



19 THEORY OF LIGHT SCATTERING FROM SOFT MODES IN. . .

s (K„+2K„—2K44), (4.6a) = 1.7S7:0.405:1,

and

(4.6b)

~(+11 +12')@3l @33 413 1P~
L'LA SK ~2 ~2 c)

LA Q gLA

gLA Y(@ '' 2@ ' ')'
For TA mode, we have

K = (I!F18)(K„—K„—2K„),

TA +~@'z' ~

(4.6d)

(4.7a)

(4.7b}

»2)@4i +2&v4@~A pl'
TA 2 12 (4.7c)

9KTA Q'aT'A

I2
kTA Y(@4 I @4i4) ' (4.7d)

The corresponding one from the TA mode for the
z (x y )z' scattering geometry may be obtained from
(4.7a)-(4.7d) by replacing the polarization vector
component 2C, ... by 2q„.... Since the formulas con-
tain quite a number of parameters (second-order
Raman tensor, elasto-optical tensor, electro-
strictive coupling constant, soft-phonon halfwidth),
we have to choose the appropriate value for each
parameter in the most reasonable way. Hopefully,
future experiments will enable us to refine these
initial estimates. Rehwald and Lang" experiment-
ally evaluated the ratio of the electrostrictive
coupling constants y„y„and y, on Sn, „Ge„Te
with value of x between 0.0S and 0.25. The quan-
tities y„y„and y, are the coupling constants
between a pair of soft modes and the dilational,
tetragonal, and rhombohedral strain, respectively.
Their evaluated values give the ratios y, .y, .y,
=0.437:0.348.:1. By employing these values we
can estimate the ratio of the electrostrictive cou-
pling constants in our notation as

I)(Q, 0) = (4p/2AQ'e J) S~(Q, 0), (4.8)

for the wave number Q =0.865 x 10' cm '.
In Fig. 6(a) the curves show the temperature de-

pendence of the scattering spectrum due to the LA
mode from the (001) surface. There is a strong
temperature dependence in its peak position and

where 444 is equivalent to —,'4, introduced in Sec.
IL The value of ~C, ~

is 2.1x 10" sec ' which we
estimate by reproducing the magnitude of the ob-
served rhombohedral angle, as displayed in Fig.
2 and discussed earlier in the present paper. The
elasto-optical tensor components are chosen in
the following way. A recent theoretical calculation"
provides us the value of the rate of change of the
refractive index (n) with density (p} for SnTe.
Then from this we can estimate the numerical
value 3(p»+2p») through the relation

P„+2Pi2 2 dn
3 =f3/2 pdp

Assuming the same value for the ratio ply p 2 p44
=1.22:I:& as KI (Ref. 14) with NaC1-type structure,
we have p„=-0.0407, p,, =-0.4S6, and p44
=-0.00623. This choice for the relative values
of the elasto-optical tensor is the least certain
in our choice of numerical parameters, in our
view. We comment below on the role this choice
plays in our calculated spectra.

The remaining parameters such as the second-
order Raman tensor and soft-phonon halfwidth
are chosen so the halfwidth of the calculated
spectrum agrees with the observed one at 45 K
on SnTe. ' The values of parameters estimated as
above as well as other parameters require in the
computations are listed in Table II.

In Figs. 6 and 7, we plot the function I&(Q, O) de-
fined by

TABLE II. Values of physical parameters of SnTe.

Density
refractive
index

p 6.51 (gem 3)

3.54 for 5145 A"
K 4.20 for 5145 Ab

Soft-mode
dispersion
coefficients

1.63 x 10 (cm sec )~
8.883 x 1022 (sec-2 K-1)c

Elastic
tensor
components

c&1 10.93 x 101 (dyncm )

12 0.21 x 1011 (dyncm-2) d

0.97 x 1011 (dyncm-2)

Electrostrictive
coupling
constants

gzA 0.933 x 10 (sec- )

g~ 1.092 x 10 (sec )

gTA 0.567 x 10 (sec+)

~ (at5OK)
1- (at 9O K)

2 (cm-')
3.4 (cm-') 44'4' 1.184 x 1027 (sec-2)

'S. Katayama, Solid State Commun. 19, 381 (1976).
"M. Cardona and D. L. Greenaway, Phys. Hev. 133, A1635 (1964).
'S. Sugai, K. Murase, and H. Kawamura, Solid State Commun. 23, 127 (1977).
T. Seddon, S. C. Gupta, and G. A. Saunders, Solid State Commun. 20, 69 (1976).
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FIG. 6. (a) Temperature
dependence of the cal-
culated line-shape function
ILA(Q, O) according to Eq.
(4.1) from the cubic (001)
surface. (b) Interference
effect bebveen the Bril-
louin process and second-
order Raman process at
T=102 and 120 K. The
interference parameter is
chosen as L = 0.39 cm .

width. This is a consequence of coupling to the
two-phonon manifold, which broadens and softens
as T, is approached. In Fig. 6(b) the full and
broken lines show the curves in the presence (L
=0.39 cm') and in the absence (L =0) of the inter-
ference effect at 102 and 120 K. The main in-
fluence of the interference effect here is simply
to increase the integrated intensity of the I.A fea-
ture in the spectrum. Below the bare LA phonon

. frequency u~„=1.8 cm ', the interference is con-
structive, and weakly frequency dependent. In
Figs. 7(a) and 7(b) we show the spectrum from the
(111)surface calculated from Eq. (4.5). In order
to depict together the spectrum due to the LA mode
and TA mode we magnify the intensity of the TA
spectrum by a factor of 10. Note that the intensity
of the spectrum increases as the temperature de-
creases. The tendency is opposite to that of the

LA phonon spectrum from the (001) surface, as
illustrated in Fig. 6(a). In Fig. 7 the Fano inter-
ference interference factors are assumed to be
L« =0.39 cm' and L~„=-40 cm'. As is seen in
Fig. 7(b) where the effects of interference are
explicitly explored, the effect increases the inten-
sity of the spectrum due to the TA mode dramatic-
ally and works constructively for the spectrum
due to LA mode.

2. Behavior below T~

The spectra from the (001) surface for the back
ward scattering geometry below 7', come from the
LA and TA modes propagating along the c axis.
The soft TO phonon with the polarization vector
P,(Q) or 0„(Q) also contributes to the spectrum.
The expression for the line-shape function due to
these modes is given by

2

S,(q, n) =M[I +n(A) j 4
K", [1+1,q(&&g

—II') +L.y(&w —II )~
4~

2 2 -1

TO

(4.9)

O
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FIG. 7. (a) Tempera-
ture dependence of the
calculated scattering spec-
trum due to the LA and
TA modes from the {111)
surface. (b) Interfe rence
effect in the line shape at
T=105 K. The solid and
broken lines represent in
the presence (L~zz. = 0.39
cm I &A=- 40 cm ) and
in the absence of this ef-
fect.
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LA ~12

~LA = ~az r

~1LA

I(A„+A„)C„+A„C»]pV

4 LA

R«Y( @31 @33)

and frequencies

= uP« —(Q'/4p)gL'„Re Il, (Q, fI),
2 = 2

+2LA LA

For the TA mode, we f ind

~~A =K14

CYA
= 2Eyz p

LnA —A, ~PV/IfTA Q 4'~4 ~

[(A„-A„)C„+2A„4„]p V

~&4gTA 0

RTA T(@44 @41) &

@rA =@44~

and frequencies

e', „=uP „—(Q'/4p)g"„Reli, (Q, 0),
2 2 ~ Q %24,2 ~ +To ('Q)
2TA TA g (QO/ 44 /Il2 2 %2 4II2F2

(4.10a}

(4.10b)

(4.10c)

(4.10d)

(4.10e)

(4.10i)

(4.10g)

(4.10h)

(4.1la)

(4.11b)

(4.11c)

(4.11d)

(4.1le)

(4. 1lf)

(4.11g)

(4.I lb)

The contribution due to the TA mode for the g(xy)z
configuration will be obtained by replacing the
polarization vector 2e„ in (4. 11b) by 2e„,.

In Fig. 8 we plot the functions I«(Q, 0) +
10ITp, (Q, Q) and IT~(Q, Q) for the two scattering

When the index j refers to the LA mode, we obtain geometries. Again, the factor of 10 is included
to artificially enhance the rather weak scattering
from the TA mode. Our assumed values for the
ratio pi' p12 p44 produce a rather small value for
(P» —P» —2P„), which controls the intensity of
the TA scattering. The values of the electro-
strictive constant are supposed to be the same
values as one above 7',. The temperature varia-
tion of the order parameter (sublattice displace-'
ment) is taken into account by employing Eq. (2.14).

As mentioned earlier, first-order Raman scat-
tering from the TO phonon is allowed in the low-
temperature phase. This mode appears in Fig.
8(a) as a broad feature near 15 cm ', and in Fig.
8(b) we see the TO frequency sink to zero as TO
is approached from below. The Brillouin lines
from the TA and LA modes have a strong Fano
interference structure. In Fig. 8(b) we show the
temperature variation of the interference structure
near the TA mode frequency for the z(xy)Z configu-
ration where the spectrum due to the LA mode is
forbidden. The TA mode is now broadened, and
interferes with the two-phonon background com-
bined with piezoelectric coupling to the optical
motion. This coupling produces strong asymme-
try of line which becomes steep as the tempera-
ture approaches 7,.

B. Effect of the opacity and integrated intensity

The frequency of Ar-ion laser line is above the
fundamental absorption edge of SnTe, and conse-
quently the real and imaginary parts n and K of
the index of refraction are of comparable magni-
tude, "as listed in Table II. This gives rise to a
very small skin depth (-100 A), so that the ob-
servation of Raman-Brillouin spectrum from this
material becomes difficult due to the reduction of
the scattering efficiency. Theoretically, we can
take into account this effect through simple con-

Z
O

O
W CO

CO

O
C3

C9
Z
K g)
bJ QI- c[

O
V)

(a) SnTe (Tc = IOOK)
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(b)
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FIG. 8. (a) Calculated
scattering spectrum at T
=50 K for the z(xx)z scat-
tering geometry. There
appears a strong Fano
interference effect. (b)
The temperature varia-
tion of the calculated
scattering spectrum at the
z (xy)z scattering geome-
try.
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Haman-Brillouin
spectruln from the rholn-
bohedral (001) surface cal-
culated according to Eq
(4.12) under opaque condi-
tions for both tempera-
tures below and above
T, . The arrow is dir-
ected at the frequericy of
the soft TO phonon.

volution procedure over the momentum distribu-
tion. From Eq. (3.20) we calculate

(4.12)

the calculated integrated scattering intensity of the
Raman-Brillouin spectrum. From Eq. (3.1) by
taking account of the refractive index" ~" we have

GAS I'u) 'I' 1

Roman-Brillonin k C ~ (~ 1 ~2)

with x~ dgg) Q
P

(4.14)

(4.13a)

(4.13b)

In Fig. 9 we plot the function S,.(D) for frequency
with temperatures below and above T, from rhom-
bohedral (001) surface below T, [i.e. , (111) sur-
face above T,]. This predicts the scattering spec-
trum from opaque SnTe, one should observe under
realistic exper imental conditions.

There appears two significant features in the
spectrum below T,. One of them is the drastic
modification of the spectrum near Brillouin reg-
ime. The interference structure in Fig. 8(a) is
completely smeared out, and instead of it the
sharp winglike structure appears. This spectrum
originates from the steep dispersion of the acous-
tic modes. However, as the soft mode drops into
the Brillouin regine, there appears a broad peak
whose position does not correspond to the soft-
mode frequency (see the curve for 90K). Another
important feature is that there is not such a big
change in the spectrum near the soft TQ frequency,
except the reduction of its overall intensity. This
is due to the weakness of the dispersion of the I'0
mode compared with acoustical phonons.

Finally we show the temperature dependence of

where c, and e, are the real and imaginary part of
the dielectric constant, respectively. In Fig. 10,
where for the five temperatures used in the earlier
spectra, we plot the integrated intensity of the
Raman-Brillouin spectrum from Eq. (4.14).

We find that the integrated Haman-Brillouin in-
tensity diverges as the temperature approaches
T, from below, and abruptly decreases when one.
passes 7,. The absolute magnitude of the integra-
ted intensity is of order of 10 "for our rgodel
parameters, wi'th absorption included in the calcu-
lation.

V. CONCLUDING REMARKS

We have presented the theory of light scattering
from the soft modes in the near vicinity of the
phase transition temperature in IV-VI compound
semiconductors. In order to describe the tempera-
ture variation of the order parameters, we de-
veloped the thermodynamical mean field descrip-
tion for the displacive structural phase transition,
with emphasis on the role of electrostrictive coup-
ling. This coupling gives us the appearance of the
static rhombohedral strain below T„and from
fitting data on the magnitude of this strain, we
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determine the principal fundamental parameters
of the model.

While there may be uncertainties associated
with some of the parameters we have used in the
calculation, we have been led to rather striking
predictions; we see that below T„ the prominent
peak in the spectrum lies quite far from the fre-
quency of the soft TQ phonon, by virtue of the
coupling to the acoustical mode and the two-phonon
manifold. Also, we find a dramatic drop in inte-
grated intensity as one moves above T,. We hope
our work will stimulate detailed studies of the
structural phase transition of these materials by
the light scattering method.

D
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FIG. 10. Temperature variation of the integrated
Raman-Brillouin intensity calculated according to Eq.
(4.i4).
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APPENDIX: EVALUATION OF THE PHONON PROPER SELF-ENERGY .

The purpose of this Appendix is to derive the result quoted in Eq. (3.3). We begin by writing the second
term of Eq. (3.10b) in the explicit form, denoting it by II~S~(Q, i~ ),

o.)- 1
lip (Qi&~m)=p Q Igg(sis)l Q 2 2 g ( )SS q )~ t Qs m s & m

~ m

(Al)
1

(~ ~ —~„)'+~& -,— 1(1g-q, i&u —iu& .)

Here s and s refer to soft To modes, so in fact ~&~ and the proper self energy are independent of s.
We begin by converting the sum on i~ to an integral over real frequencies in the standard fashion.

After doing this, we absorb the real part of the proper self-energy into a renormalized phonon frequency,
presumed to.be the experimentally measured mode frequency, and only the imaginary part is retained ex-
plicitly. If n(&u) = [exp(h~/ksT) —1j is the Bose-Einstein function, the result can be written

vV ((d —(d ) +4(d I ((d)

X
1

2 ' g. 2

1
(A2)at ~-(ii —ii)* —2i(A-a&)I' (n-~~) iiii, -,-(A+td)* —Ri(Q+w)rii. NB+~))

Here g2~=+„ lg&(ss') l' is the coupling constant of the acoustical mode of polarization j with the two-phonon
manifold. We have neglected the dependence of lg&(s, s ) l' on the direction of q and Q- q. This greatly
simplifies the analysis. Also cui'-„(~) is the imaginary part of the proper self-energy of the soft TO phonon
of wave vector q. Ultimately, we shall ignore the dependence of I'~(&u) on both &u and the wave vector q.
After this, if we suppose that v', =~', (T) +Aq', a model description of the soft TO phonon used in this text
and earlier work, the integration over the direction of q may be performed in Eq. (A2). This gives a re-
sult that may be written, after replacing the Bose-Einstein function by its high-temperature form ksTIK+,



6388 S. KATAYAMA AND D. L. MILLS 19

g,'I,T ' d~I
Ii)(Q!0 +26) g dq q

( 2 2)2 4g

(n —(u)'+2i(0 —(d)r-(u2 o (0+(u)'+2i(0+(u) I'- (u2 o
(0 —(u)'+2i(0 —~)I'- (o2,o (0+(d)'+2i(0+(d) r- (d2, o

(A3)

Now we let Q-O, and

gives, with a!, =8(d, /sq,
note the integrand on the right-hand side of Eq. (A3) is an even function of Q. This

IIJ(0, 0 +is) = ' dq qv, (r),

)((!r—~)' —rd.'+ or(!r.- a )r (!r + ra)' —ro,'+ 2!(!r+ w)I') ' (A4)

The expression in large parentheses in Eq. (A4) is an even function of Q. We then approximate the first
factor in the integrand by

I /[(~,' —&u')'+4&v'I ]—= (I/4(d,')(r /[(~, —(d)'+ I ] + r/[(~, +~)' + r']], (A5)

and approximation valid as long as r& (r), (but I' will not be small compared to 0). The integration on ~
may now be done in closed form to give

4g', ksT dqq' (0+2iI')'+I'v', &u,
' 4a,'(0+2il )' —[(0+2iI')'+I"']' '

In Eq. (A6), for 0 «(dq and I' small compared to

(d„ the second term in the denominator is neg-
ligible. After some rearrangement, we get

g ~A~ T
~

T'
or(O, rr+.r)=, +„,.„,)

f doq'

0 (dq
(A V)

The integral over q converges, with (d', = (d', (T)
+gq', demonstrating that the soft TO phonons con-
tribute a separate, identifiable contribution to the

proper self-energy, in the limit considered. The

integral on q can be readily performed to give

Ii)(0, 0+is) =g,'k~T I
47(A'" &u, (T)

xl I+ . , -, (A8)0+2iI'

a result equivalent to that displayed in Eq. (4.3).
Note that T- T, and &o,(T) vanishes, both the real

and imaginary parts of lT& diverge. This produces
a strongly temperature- dependent renormalization
of the sound velocity near T„after noting that

g& is proportional to Q'. Also, the attenuation
varies strongly with T.
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