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Bond percolation problem in a semi-infinite medium. Landau-Ginzburg theory
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The bond percolation problem in a lattice bound by a plane surface is defined by associating different
occupation probabilities P~, P~~, or P, to bonds in the bulk, on the surface, or hnking the bulk to the
surface, respectively. The coordinate z indicates the distance of parallel planes to the surface. The z-
dependent percolation probability rp(z) is defined as the probability that a site on the plane z belongs to an
infinite cluster and I derive a rigorous expression for y(z) by introducing z-dependent external fields h, in
the q states Potts Hamiltonian in the limit q = 1. Gaussian integration techniques are used to derive a
Landau-Ginzburg free-energy functional for arbitrary q. The resulting differential equations for the order
parameter are explicitly solved for the bond percolation problem. We introduce the parameters
t = 2n ln[q~/q, ] and co = 2ln[q~~g, /q,"], where q = 1 —P„ is the probability of a bond being absent, and

n(n, ) is the coordination number in the bulk (surface). Also P, = 1 —exp( —1/n) is the mean-field value of
the percolation concentration of bonds in the bulk. We obtain the following results: (a) for t & 0,
ca, & co & t, where co, = —1/2(t/n)'", all clusters are finite; (b) for t & 0, co & co„all clusters are finite in

the bulk but the probability for an infinite cluster to form at and near the surface is nonvanishing; (c) for
co & t & 0 an infinite cluster forms through the whole system, but it has a larger probability of being close to
the surface; (d) for 0 & t & co only finite clusters occur in the system; (e) for co & t and t & 0, an infinite
cluster starts to form in the whole system, with a larger probability of being in the bulk than on the surface.
Critical exponents are derived for the different transitions and they are shown to satisfy general scaling
relations,

I. INTRODUCTION

In the bond percol. ation model, bonds con-
necting nearest-neighbor sites of an infinite
lattice can be present (or absent) at random
with probability P (or 1-P). The occupied bonds
form clusters, and for P &P, all clusters are
finite, while for P &P, an infinite cluster starts
to form. One physical quantity of interest here
is the percolation probability y of the lattice,
that is, the probability that a site belongs to an
infinite cluster. The percolation probability
plays the role of the order parameter in this
problem, it is nonvanishing only for p &p, and
equal to unity for p = 1..

The percolation transition has been studied by
Dunn et al.' and Essam et al.' by considering
the dilute Ising model with nearest-neighbor in-
teractions in the "percolation limit" T- 0 where
T is the absolute temperature. The bond perco-
lation model can also be formulated as the limit
q =1 of the q-states Potts model. ' The rela-
tionship between Potts and bond percolation
models has been first discussed by Fortuin and
Kasteleyn. '

The problem I investigate here is bond percola-
tion in a semi-infinite lattice with a plane sur-
face. I consider for simplicity a simple cubic
lattice and the surface to be a (0, 0, 1) plane.

Bonds on the surface and linking the surface
to the bulk are considered to have, in general,

different occupation probabilities that differ also
from the bulk occupation probability. A given
bond can then be present with a probability Pi~,

pj, or p~ if it connects two sites on the surface,
one site on the surface and one in the bulk, or
two sites in the bulk, respectively. Planes paral-
lel to the surface are labeled by the coordinate
z & 0, while the surface is at ~ = 0.

By generalizing standard definitions in percola-
tion theory, ' ' we define the z-dependent perco-
lation probability y(z) as the probability that a
site on the z plane belongs to an infinite cluster.

In Sec. II, I follow closely the method of Ref. 3
and generalize it by the introduction of z-de-
pendent fields h,, in the q-states Potts model. An
effective free energy F((h}}is defined by taking
the appropriate limit q = 1, and we establish the
formal relationship between y(z} and the partial
derivative of F(th)) with respect to h„ in zero '

field. In Sec. III, I use Gaussian integration tech-
niques to derive the I andau-Ginzburg free-energy
functional, ' in the continuum limit, for the q-states
Potts model. In Sec. IV the differential equations
for the order parameter, obtained by functional
differentiation of the free energy, are analyzed for
all values of q. The analytical solutions of these
equations becomes difficult for q ~ 3, because
in this case the Potts model has a discontinuous
transition, " and the jump in the order parameter
from zero td a finite value prevents a perturba-
tion expansion For q = 2, the Potts model cor-
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responds to the Ising model, ' and this problem
has been widely investigated within the context
of Landau-Ginzburg theory. '

The percolation transition, , described by the
appropriate limit q =1, is again continuous. Close
to the transition, the free-energy functional can
be truncated by keeping only the third and second
power of the order parameter in the bulk and
surface terms, respectively. The differential
equations obtained in this way are easily inte-
grated with the following results: analogous to the
Ising case" we can identify an inverse extrapola-
tion length or "surface force" ~ ' that depends on
the bulk and surface occupation probabilities.
I introduce the parameters t = 2n ln[q~/q, ] and

n. ga=2 in(q~~ q, /q", ] where n and n, are the number
of nearest neighbors in the bulk and on the sur-
face, respectively, and q =1-P is the probabil-
ity of a bond being absent. Here q', =1-P, is the
percolation concentration of vacancies in the bulk
and in[q, '] =n ' in mean-field theory. ' The sign
of X ' is determined by the sign of cu —t and we
can identify four different cases: (a) When A. '&0
and t &0, all clusters are finite; (b) for A. '&0
and t & 0 an infinite cluster starts to form with a
larger probability of being in the bulk that on the
surface; (c) when A,

' &0 and f &0 the bulk has
too many vacancies for an infinite cluster to ap-
pear, but an infinite cluster may form in the
neighborhood of the surface for sufficiently large
values of P]~,P&. The condition for this surface
cluster to exist is that ~& ~~(t), where ~z(t )

(t/n)" '; (d) when A.
' & 0 and t & 0 the infinite

cluster extends to the bulk, but it keeps a larger
probability of being close to the surface. These
transitions can be identified with the surface,
ordinary, and extraordinary transitions defined
by Lubensky and Rubin, ' and the corresponding
critical exponents are given at the end of Sec.
IV. The exponents for the ordinary transition are
shown to satisfy the scaling relations of Bray
and Moore '0

II. GENERAL RELATIONS

bulk, respectively. We consider a lattice with I
planes and M sites by plane. Sites are labeled
by the coordinate R = (r, z), where r indicates the
position on a plane, 0 ~z ~I and the surface is at
z =0. The Hamiltonian is then:

-p&= g ff(R, R')&(os-oa)
2(g.m)

+ Qk, 5[op -1] (2.1)

where we introduced z-dependent external fields
coupled to one of the components of o'g. The
first sum runs only over nearest-neighbor pairs
and

Xs = Pee if z, z' & 0

Kj =Pe~ if z(s') =0, z'(z) &0

Ej( —- Peg if z = 2' = 0

0 otherwise .
The partition function is then

Q = Tr[v) [ [1+v(R, R')5(oui —oil.)]
(B,B')

(2.2)

«xp
I g ~ &(oil —1)

I
(2.3)

)

where v(R, R') =e ' ~ —1. Stephen (Ref. 3,
Appendix A) showed that the trace can be evalu-
ated by expanding the product in Eq. (2.3) and

by assigning a weight 1 to an "empty" bond and
a weight v(R, R') to an "occupied" bond. In this
way the product over nearest neighbors splits
into a sum over "graphs" or configurations G,

- where every graph is a given distribution of bonds
in the lattice. ' Lattice sites fall into clusters,
and due to the 5(og —oit. ) term in Eq. (2.3), all
sites in a connected cluster C(G) are in the same
state 0,. The smallest connected cluster has a
single site and for the moment we consider a
large but finite lattice of L planes and M sites
per plane. Following the same steps as in Ref. 3
we obtain

In the q-states Potts model every site of a
lattice is occupied by a spin og which can take on

q different values. Nearest-neighbor spins have
an interaction energy -& if they are in the same
state and 0 otherwise. When the Potts model is
used to describe the percolation problem, the
interaction energy -E is related to the bond oc-
cupation probability. ' To treat the percolation
problem in a semi-infinite medium we consider
then the interaction energy to be 'Eg +J or c~
if the two spins are on the surface, one on the
surface and the other in the bulk, or both in the

'Ig(G) g~(C) Q(C)
VB VL VII

x [] exp
j gh, g, (C) (+(q —1)

c(c)
(2.4)

where v =e -1, o. =~, )~, or & from Eq. (2.2).
Here q (G) indicates, for a given graph G, the
total number of occupied bonds in the bulk, sur-
face, or perpendicular to the surface if n = jp,

~~, or &, respectively. The product in Eq. (2.4)
is over all connected clusters C(G) of a given
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graph t" and

g,(C) =No(~) (2.5)

(2.6)

where P~, P~], or pj are the occupation probabil-
ities for a bond in the bulk, on the surface, or
linking the surface to the bulk, respectively.

We find it convenient to define the free energy
per surface site:

where A~~z) is the number of sites in the cluster
C(G) that are on the plane z. It is obvious that

Q, , g,(C) is the total number of'sites of cluster
C, and for K~] =K~ =E~ and constant field Eq.
(2.4) reduces to Eq. (AS) of Ref. 3. In the same
way, the correct description of the bond percola-
tion model is obtained if we associate the weight

-I =P./(I-p. ), o. =B, II, or i,

r,($.)= Q r(5„~ ~ 4, ~ ~, 5z)
allgIf'( g

is the average number of finite clusters with (,
sites on the plane z. Hence we conclude that
W, (g) = t'y, (() is the probability that a site on z
belongs to a finite cluster with g sites on the
plane z. W, in Eq. (2.11) is then the probability
that a site on the plane z belongs to a finite
cluster and

q (z) =1 —W(z) (2.12)

is the z-dependent percolation probability, i.e.,
the probability that a site on the plane z belongs
to an infinite cluster.

The probability W that any site belongs to a
finite cluster is obtained from Eq. (2.11) and the
definition of y, (g,):

where

=- —gw{G) P exp(- Pa, &,(c))
I

C c (") ~ac
(2.7)

N

[5,+ (, + + 5i]y((„,(&)
, ~ ..4 J=1

(2.13)

W(G)=
" [~: (I+(.) ]

is the probability of occurrence of the graph G.
Here -g indicates the total number of bonds in
the bulk, surface, or perpendicular to the surface
for o(=B, II, or s, and only finite clusters con-
tribute to the sum in Eq. (2.7).

We call

where
N

r(k) = Q Lr(&„,&g)~[& —(5, + ~ +4)],
40, ...,5I=Z

and according to Eq. (2.10), y(g) is the average
number of finite clusters with g sites, per site.
Equation (2.13) reproduces Eq. (1.1) of Ref. 3.

Mr((„~, (g', G) (2.8) III. LANDAU-GINZBURG FUNCTIONAL

the number of finite clusters in G with Po sites
on z =0; g~ sites on z =L, and we can then write
from Eq. (2.7)

+(f&})= —g " g r((.. . . . .5, )
&0~1 EI j.

The Landau-Ginzburg functional for the free
energy is derived by the same method we intro-
duced in a previous paper' to study the order-
disorder transition in a semi-infinite medium.
We start by separating the bulk and surface terms
in the Hamiltonian of Eq. (2.1), then

where

l,
x exp — h, ,]' (2.9)

PSC = PXs +P3C~

where

(3.1)

r(&.. .&i) = g ~(G)r(i.. ...$;G) (2.10)
G

is the average number of finite clusters with g,
sites on z =0; gz sites on z = L.

We obtain for the partial derivative of E((k})
with respect to k, in zero field

(3.2)

P3Cs =
2 -g j(R,-R')I'(z')6(&a, —&I(),

R0,R'

with

(3.3)

-pSCs = 2Ks Q j(0-R')6(a'g —o'a.)+ Q k,6(aft —1),

where

=0 g=1

(2.11) j(R —R') =1 if IR —R'I =a

= 0 otherwise,
(3.4)
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V(z) = [Kg Ks]5(z) +2[K' -Ks]5(z —~)

—2Ks5(z +a) . (3.5)

j(z —z') =[ns5(z —z')+5(z —z' —a)+5(z -z'+a)]/n,

(3.12)

I call a the lattice constant and R, = (r, 0) is a
position vector on the surface. The function
j(R-R ) in Eq. (3.3) just insures that PXs is
translational invariant and that only nearest
neighbors interact.

I will not use here the representation of the
q states of 0'g as the q roots of unity, "but I
rather start from the identity

where n is the coordinate number of the lattice
and n~ =n —2 the coordination number on the
plane. Moreover, we consider that the q -1
components of qg that are not coupled to the field
are equivalent and we also neglect the correla-
tions between them by approximating the identity
in Eq. (3.6) by

5(~m-~m )=5(qil-1)5(oS -1)

+ g 5[&X —&]5[&ii -o], (3.6)
+ 5 ag-0 5 0„-, -0'R

(3.13)

(3.7)

9 |8
y(z) = —— in@ ——

i~q M&5, q)

5(og —o') =1.

It is convenient at this point to identify the ap-
propriate order parameter in the theory, before
going to a mean-field-like approximation. From
Eqs. (2.11) and (2.12) the order parameter in the
bond percolation problem can be expressed

Introducing Eqs. (3.11) and (3.13) in Eq. (3.2)
we obtain the effective Hamiltonian -PXs:

—pX, = K,n p j(z —z')e(z)e(z')1 (q -1)
2M q

(3.14)(q - 1) g h @(,)

where 4(z) is as defined in Eq. (3.10) and we
dropped an uninteresting constant. We expressed

(3.8)

where we used Eq. (2.7) and

(3.9)

e(z)= iq Q5(c;,—I)- M i.1
q-1 i "' j' (3.10)

To obtain mean-field theory we replace the
Hamiltonian of Eq. (3.1) by an effective Hamil-
tonian that neglects correlations of the order
parameter on the planes, but we keep the corre-
lations between planes. ' In other words we ap-
proximate in Eq. (3.2):

j(R —R') = (n/M)j (z —z'), (3.11)

P(z) =
i
—g (5«;.,—») —1 i ~

1 t'q
q-1 lM

g(z) in Eq. (3.9) is the correct order parameter
for the q-states Potts model: in the disordered
phase all the q states are equally probable and
we obtain from Eq. (3.7) that (5(&it —1)) =q ' and
P(z) =0, while in the complete ordered phase
(5(qlt —1)) =1 and p(z) = 1. To this order parame-
ter is associated the operator

g 5(~it.—~) =1 —5(oil —1) .
Iy &1

To obtain the effective surface term from Eq.
(3.3) we use also Eqs. (3.11) and (3.13), but we
make the further approximation'

4 (0)4 (z) = 0 (0)(C (z)), z O 0
(3.15)

4 (0)C (0)= N. (0)(4 (0)) .
We obtain for the effective surface Hamiltonian

—P36s = Ks&go@(0),
(q -1)

q
(3.16)

L

g, = Q j(z)&(z)k(z),
g=Q

with P(z) as defined in Eq. (3.9) and

(3.17)

U(z) = (Kii/Ks —l)5(z) + (Ki/Ks —1)5(z —a)

-5(z+a). (3.18)

To evaluate the partition function from the ef-
fective Hamiltonian we use Gaussian integration
techniques. From the identity

CM
exp' ——g j(z-z')4'(z)C(z') i

=X '
Jl

~ ~ ~
Jl '[J dy(z)exp' - p j '(z-z')y(z)y(z')+C py(z)4(z) i(2M, j 2 j

(3.19)
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where C =Ken(q —1)/q and X is a numerical constant; we obtain for the partition function

Q =Tr[exp(-PXz —PXz)]

dye exp — jz —z'yegz'T(CM

z z zt

The function T[(y}] is expressed by the trace

(3.20)

T[(y}]= Tr[o';,]exp([5(o;,-1)—q '][h, +Kzny(z)]} [l Tr(o',",}exp([5(o,",—1)-q '][h, +Ksnvp, ]},
r, zAp r

(3.21)

where

v =I+g /y . (3.22)

The I andau-Ginzburg functional. is obtained in
the continuum limit of Eq. (3.24). We write'

The trace is now easily performed and the
partition function in Eq. (3.20) can be written

y(z)y(z') = y'(z) —I—& dy ' (z —z')'
(dz 4

(3.2'7)

Q =gl ' Jl' ~ ~ ~ Jt' [' dy(z) exp[-M(Gs+Gz)],'z"

where Z = (z+z')/2 and we neglect higher deriva-
tives. Hence Q is given by the functional integrai,
in zero field

where

(3.23)
q =) qy(q) exp[-M(G, +Gq)], (3.28)

(z —z')y(z)y(z')(q-1)
z, z'

where, in the limit L —~, G~ is expressed by
the integral

It' Z,n
+ Q ~ y(z) —ln(exp[h, +Kenny(z)]

q

+(q —())), (3.24)

Gz = —
J «Gs(y(z)),a

Gz(y(z))=
4

Kza'
d )I +Vs(y(z)),

1 (q —1),. dy'I '
4 q

' dz]

(3.29)

(3.30)

G~ = (v.- 1)y(o)

exp[h„+Ken v~(0)]+ (q —1)
exp[ho+Ksny(0)]+ (q —1) (3.25)

From Eqs. (3.9) and (3.24) the order parameter
g(z) is given by

Vz(y) = — Kzny'+ y —In[e ~"'+ (q —1)],
1 (q -1), Ken

(3.31)

and Gz is unchanged. In the limit M- ~, Q is
evaluated by steepest descents and y(z) is given
by the stationary condition

1 f 1
5

6 (
)(Gz+Gz) =0, (3.32)

Q
~ JI' F 0 '

, .dy(z)

xexp[-M(GI + G z )]A ((y (z)}}.

1 ~Gg=(q-1) ' —
( )

+(q-() Q j'(q-q')q(z')) (q. qq)

gl

where

(A((y (z )})&

where 5/5y(z) is a functional derivative. We ob-
tain from Eqs. (3.29) and (3.30)

(q-1) a2

q 2n

(q-1) a
2n

d'y
Vs(y(z)) = 0,

gS

I,
—d)

t dye

(3.33)

=0.dye
dz j, (3.34)

A steepest descent evaluation of the order pa-
rameter p(z) in Eq. (3.26) gives, from Eq. (3.32),
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t))(z) = g j '(z —z')y(z')=y(z), (3.35)
gt

where y(z) satisfies the stationary condition of
Eq. (3.32).

Equation (3.33) is then the differential equa-
tion for the order parameter in the q-states Potts
model, with the boundary condition at the surface
given by Eq. (3.34). The standard mean-field
theory7 for a uniform medium is obtained by
neglecting the surface term and by writing
y(z) =R, independent of z. It follows from Eq.
(3.32) that

ft = [ersos - I][~sos (~ - 1)j-l,

and the mean-field free energy of Mittag and
Stephen' is reproduced by introducing this expres-
sion for A in Eq. (3.31).

For q ~3, Eqs. (3.33) and (3.34) cannotbe solved
by standard analytical methods" because mean-
field theory predicts in this case a first-order
transition' that cannot be described by a pertur-
bation expansion in the order parameter close to
the transition point. For q =2 we recover the
Landau-Ginzburg equations for the Ising model,
that have been widely investigated. ' In the limit
q =1, the percolation transition is again contin-
uous and Eq. (3.33) can be integrated to obtain
y(z) close to the transition. We do that in the
next section.

IV. LANDAU-GINZBURG EQUATIONS FOR BOND

PERCOLATION

The order parameter in the bond percolation
problem is, from Eq. (3.8),

(4.1)

and from Eqs. (3.33) and (3.34) it is the solution
of the differential equation

"'=' "' (».')dz Q 9 (4.6)

(4.7)

where
I

t =2(l —K,n)/(K, n)'= 2(l -K,n),
)(, ' = -(vo —1)(2n/a)(Ken) .

(4 8)

(4.9)

The last expression in Eq. (4.8) is justified
because we are working in the region ldy/dkl
« 1/a, for the continuum approximation to be
valid, and this will imply that ltl «1 or Ksn
close to unity. In Eq. (4.9), A. ' is the "surface
force" or inverse extrapolation length. Also
the validity of this theory is restricted to ~ '
« 1/a or vo close to unity. Introducing Eqs.
(3.17) and (3.18) in the definition of v, in Eq.
(3.22) we obtain

vo- 1 2(vo- 1)

2
[(K[[ Ks)ns +(KJ Ks) Ksj I (4.10)

E~n

and we used Eqs. (3.25) and (3.31). From Eqs.
(2.7) and (3.28), we can identify Es(y) in Eq.
(4.4) as the mean-field approximation for F(h =0)
in a uniform infinite system, when y is inde-
pendent of z. In the physical region of the order
parameter, 0 y 1, Fs(y) &0 and it has the cor-
rect sign. When Ksn& 1, Es(y) has a minimum at
y=0 and a maximum for y&0, while for Een&1
it has a maximum at y =0 and a minimum for some
0&y~ &1. The transition is continuous and it can
be studied by expanding Es(y) and Es(y) up to
the third and second power, respectively. We
obtain from Eqs. (4.2) and (4.3)

andy 1 +'(y(z) &
= o

S

with boundary conditions

(4.2)
where we approximated i((z) =y(z) =y(0) and
j(z) is given in Eq. (3.12).

The first integraio of Eq. (4.6) is obtained by
multiplying both sides of the equation by
J," (dy/Ch')Ck' and by using the boundary condi-
tion at z =~:

Here E~ and E& are defined to be

Es(y) = lim Vs(y)
1

q —1

(4 3)

where 8(-f) is the unit step function and

(4.12)

1 2 -IC n) .+B+~ +BPgg g B (4 4)

1
P's(y) =lim Gs(y)q-1

e-Ãsnv(o) e-E&n y(o) Kn(v 1)y(0) (4 5) —,
' yo+ Ty +8(-ot)ltl'/6 =0, (4.13)

is the value of the order parameter in the bulk.
The order parameter at the surface is one of the
solutions of the cubic equation, from Eqs. (4.11)
and (4.7)
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where

7 = ,'[t -—~-'(a'/n)(Z,n)-']. (4.14)

y(z) =ye —z ltl[«»h(z/$+U. ")] ',
U,"=arg cosh[-', (1-yo/ltl)] ''.

(4.28)

(4.29)

We do not go into the tedious details of the so-
lution of a cubic equation and we just quote the
results here. Equation (4.13) has three real
solutions:

yi = -T(2 cos Q+ 1),

y, = -v[2 cos (o.+ -', v) + 1],
y, =-r[2cos(o. --,'v)+1],

where

(4.15)

a=e(-t)-', are tan[&(lvl'- ltl'/4) '], (4.16)

~'= ltl'[l~l'--.'Itl']&0. (4.17)

The physical solution for the order parameter
at the surface y, depends on the signs of t, v, and

We distinguish two main regions and we
present the results obtained by integrating Eq.
(4.11):

A,
' = ——[2n Ln(qz/q, }—2 ln(q~~ q~/q", )]

2n= —((u —t)a (4.30)

where q =1-P, K =Ln(q ') and q, =e '" is the
mean-field value' for the percolation concentra-
tion of vacancies in the bulk. Here

When ~ ' =0, the effect of the surface disap-
pears and v = —,'t. In this case we obtain from Eqs.
(4.15)-(4.17) that u =8(-t)v/3 and y, =y, = ltl =ye
when t&0. The regions I(c) and II(b) coincide and
we have from both Eqs. (4.25) and (4.28)
y(z) =ye =ltl.

We summarize the results in terms of the oc-
cupation probabiLities P, n=B, ll, or &, by
using Eq. (2.6). We write from Eqs. (4.8)-
(4.10)

t =2n Ln(qz/q, ),

z =+ —
( dy (ty'+-, y'+-, y~z) ",

ECzn RB y(g)
(4.18) (o = 2 Ln[q ~) q~/q", ], (4.31)

y2 =ys =0, yo =ye =y(z) =0. (4.19)

where yz was defined in Eq. (4.12).
Region I. ~ '&0. From the boundary condition

in Eq. (4.7), y(0) ~ y(z) ~ yz and equation (4.18)
should be considered with the positive sign.
(a) t&0, v&0;.

and from Eq. (4.14)

v = —,'(Ezn) '[t —4n((o —t )']. (4.32)

When ~ ' & 0, t & ~ and the concentration of vacan-
cies is higher in-the bulk that on the surface.
When q~ &q, it follows that t & 0 and we can define
a critical value of &u from Eq. (4.32):

(b) t&0, v&0; +s (qB }= - z (t /n)' =-[.' » (qz /q c)1'"& o (4.33)

y, =0; y. =y, =3l~l;

y(z) = -,'t[sinh(z/&+ U,)] ',
g =2(a/vn)ltl ",
U, = arg sinh(-,' t/l rl)' '.

(4.20)

(4.21)

(4.22)

(4.23)

(c) t&0, v&0.
For these values of t and v', we check from

Eq. (4.15) the inequalities y, &0&y, &ye &y„
when 0» o. » —

6 m. Hence we obtain

yo =y, = lrl(2 cos o. + I); ya = It I

y(z) =ye+-,' ltl[sinh(z/)+ U,')] ',
where now

Uo=arg sinh[ —', (yo/ltl —1)] ~~,

(4.24)

(4.25)

(4.26)

y, = y, =
l e l[2 cos (n —-', v}+ 1]&ys, (4.27)

and $ is given by Eq. (4.22).
Region II. ~ ~&0. From the boundary condition

in Eq. (4.7), y(0) ~ y(z) ~ yz and we consider Eq.
(4.18) with negative sign. (a) t &0; yo=y(z) =ye
=0. (b) t&0, 7&0;

such that sgn(v) =sgn(&o- arz). We then obtain in
region I: (i) qz &q„&u& &uz(qz) and all clusters
are finite; (ii). q, &q„~«uz(qs). The concentra-
tion of vacancies on the surface is sufficiently
small that there is a finite probability for a cluster
to form in the neighborhood of the surface. The
magnitude of &uz(qs) decreases with qz, then the
closer q~ is to q, the less bonds are needed on the
surface for a surface transition to occur. (iii)
q~&q„and there is also a finite probability for
an infinite cluster to form in the bulk, but the
probability for an infinite cluster remains en-
hanced at the surface. In region II t & e and the
excess of vacancies on the surface prevents the
surface from ordering independently of the bulk:
(i) qz &q, and all clusters are finite; (ii) qz &q,
and there is a finite probability for an infinite
cluster to form in the system, but this probability
is larger in the bulk that on the surface.

Fol.lowing Lubensky and Rubin, ' we can identify
regions I(ii), I(iii), and II(ii) as describing a
"surface" transition, an "extraordinary" tran-
sition, and the "ordinary" transition. According-
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ly, we define the critical exponents P,
' and P„',

where i = s, e, 0 stands for surface, extraordinary,
and ordinary.

We obtain from Eqs. (4.20) and (4.32) for the
surface transition

yo(t)=(t~-t)~&; t~=4n(u2, (v&0;

P,
' =1; P„' undefined. (4.34)

(4.36)

Bray. and Moore" have shown that surface expo-
nents can be derived exactly in terms of bulk
exponents. From Eqs. (4.4) and (4.12) Es(t)
=ltl2 "with n=-1; while from Eq. (4.22) v= —,.
It follows that P, in Eq. (4.36) satisfies the
scaling relation P, = —,'(3 —u) —v. The validity of
the continuum theory is restricted to A, , $»a,
where ( is the bulk correlation length in Eq.
(4 22), th«« ltl «I, l~l « I.

V. CONCLUSIONS

I have analyzed the q-states Potts model in a
semi-infinite medium within the context of mean-
field theory by deriving the Landau-Ginzburg
free-energy functional for the order parameter.

From Eqs. (4.24) and (4.16) we obtain for the
extraordinary transition

y, (t) —y,(0) = It I
' ' y (t) = It I

" '

(4.36)

and from Eqs. (4.27) and (4.16), for the ordinary
transition

The differential equations for the order param-
eter are expl. icitly solved in the limit q =1, when
the Potts model represents the bond percolation
model, as is shown in Sec. II. I demonstrate in
Sec. II that a percolation probability y(z) for a
given plane z can be rigorously defined by intro-
ducing z-dependent external fields in the Potts
Hamiltonian. Here y(z) is the probability that a
site on the plane z belongs to an infinite cluster.
I consider in general that the occupation probabil-
ities of bonds are different in the bulk than on the
surface. The results obtained are analogous than
those obtained previously for the Ising model. "
We can define an inverse extrapolation length
or surface force ~ ' that depends on the bulk and
surface concentration of bonds. According to
its being positive or negative a surface transition
may or may not occur. In this theory a transition
occurs when an infinite cluster starts to form in
the system and in a surface transition the infinite
cluster is concentrated in the neighborhood of the
surface, while in the bulk only finite clusters
occur, i.e., y(z-~) =0.

The detailed results in terms of occupation
probabilities were analyzed at the end of Sec. IV.
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