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The electronic contribution to the low-temperature thermal conductivity of the noble metals copper and

silver is calculated by a variational method for two different pseudopotentials. We describe the Fermi surface

of the noble metals by the simple eight-cone model and take into account two OPW corrections which. are

very important at the lowest temperatures. The trial distribution function is expanded to the fifth power in

the energy. Cubic terms in the energy are found to lower the first-order result by about 20%%uo whereas the

fifth-order corrections are negligible. The results of the calculation are discussed and compared with

experimental data.

I. INTRODUCTION

Much work has been accomplished in recent
years on the transport properties of simple met-
als, particularly potassium, in the low-tempera-
ture region (T «e~). These works have shown the
importance of umklapp processes, phonon drag,
and the necessity of using a reliable trial function
for a correct evaluation of the transport proper-
ties. On the other hand much less work has been
devoted to the transport properties of noble metals
for which additional complications arise due to the
nonsphericity of the Fermi surface and the diffi-
culty in obtaining a good pseudopotential for eval-
uating the electron-phonon matrix elements. A

two-orthogonal-plane-wave (OPW) calculation of
the electrical resistivity of noble metals has been
carried out by Borchi et al. ' using several pseudo-
potentials, a simple Debye phonon spectrum, and
the eight-cone model to take into account the non-
sphericity of the Fermi surface. Following simi-
lar lines Brett and Black' have evaluated the elec-
trical and thermal resistivity of.copper in the
1-20-K range. However, while taking into account
the lattice dynamics by means of a Born-von KKr-
mfn method, they perform the integration on the
Fermi surface by evaluating the inverse relaxa-
tion time 1/T, at a. particular azimuthal angle 8
and using this value for all 8 in the integration.
This approximation is justified from the fact that
1/T, varies by no more than +10% as 8 is varied
over the cone. '

In this paper we report the results of a two-OPW
var iational calculation on the electronic thermal
conductivity of-the noble metals Cu and Ag using
the same model as in Ref. 1 both for the Fermi
surface and the lattice dynamics. Since it is ex-

pected that phonon drag has a negligible influence
on the thermal resistivity, "a comparison be-
tween theory and experiments is more significant
for this transport property than in the electrical-
resistivity case, where a phonon-drag contribu-
tion may be of significant magnitude at low tem-
peratures.

In the variational expression of the distribution
function we consider only the energy dependence
which has been shown to be of predominant impor-
tance with respect to the angular dependence in
several previous calculations on the thermal con-
ductivity of potassium. "' lt is plausible that this
result may also apply to the noble metals. In Sec.
II the relevant expressions for the calculation of
the thermal conductivity are reported together
with first-order variational results. Umklapp and
normal contributions are separately presented in
the 1-15-K temperature range. The calculations
have been carried out using twg different pseudo-
potentials; changes in the pseudopotential form
factor have been seen to greatly influence the mag-
nitude of the thermal resistivity. In Sec. III high-
er-order corrections to the variational calculation
are evaluated by expanding the trial function up to
the fifth order in the energy. Cubic terms are
found to decrease the thermal resistivity by about
20/q of the first-order variational result. On the
other hand, fifth-order corrections are almost
negligible. The results of the calculation are then
discussed and compared with experimental data.

II. FIRST-ORDER VARIATIONAL CALCULATION

If we take the phonon system to be in equilibri-
um, ' the variational expression for the thermal
resistivity W of a metal due to electron-phonon
scattering is given by'
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where P."'. is the probability for an electron of be-
qk

ing scattered from k to k' by a phonon of wave vec-
tor q(k —k'=q+6); e and v are, respectively,
the energy (measured relative to the local chem-
ical potential} and the group velocity of an elec-
tron with wave vector k. The trial function rep-
resents the deviation of the electron distribution
function from the equilibrium distribution f,.

As a first approximation, the trial function C has

been chosen in the standard form

@oc v ug (2.2)

where u is a unit vector in the direction of the
heat current. This differs from the form C
o-k u&.„used for the spherical Fermi-surface cal-
culation. With this trial function and a local-pseu-
dopotential approximation, the thermal electronic
resistivity is

Ivk I vk'I

x jv(k) —v(k'} I'-2, Iv«) - v(k'} I'x'+ —,.x'I v(k} I' (2.3)

where the double surface integrals are over the
effective Fermi surface, g~(k, k') is the electron-
ic scattering matrix element, and f,(x) is a sta-
tistical factor. Detailed expressions for g~ and

f,(x) are reported in Ref. 1. L, is the Lorenz
number for free electrons.

As appears evident from Eq. (2.3), a detailed
. knowledge of the lattice dynamics and the Fermi

surface is a prerequisite for a correct evaluation
of the thermal conductivity. On the other hand,
the use of a very accurate Fermi surface' and a
detailed lattice dynamics would considerably in-
crease computation. In order to make the compu-
tational work tractable we will follow the same
approach as in Ref. 1, i.e. , we will consider the
simple "eight-cone" model of the Fermi surface
and a simplified description of the lattice dynam-
ics by means of the Debye spectrum. It is likely
that these approximate features of the calculation
will in some way affect the results. Qn the other
hand, in order to obtain more reliable results,
an electronic-states expansion using more than
two OPW's, especially at the top of the necks on
the Fermi surface, should be necessary; this will
require a great amount of computational work. In
this paper we will consider in particular the rele-
vance of changes in the pseudopotential form fac-
tor and only test the sensitivity of the thermal-
resistivity calculation with respect to small
changes in the parameters of the eight-cone mod-
el and the Debye spectrum. In the eight-cone mod--
el. the Fermi surface is made dependent on only
the parameter x/p, i.e. , the neck radius relative
to the axis of the cone. In this calculation the
same values as in Ref. 1 have been used for the
longitudinal v~ and transverse v~ phonon veloci-
ties and the rip quantities. More recent values,
mc", = 1.42m„„(Ref. 10) and m,"',= 0.85m„„,"
have been chosen for the optical-electron masses.

The integration in Eq. (2.3) was performed by
means of the Gauss method with the help of a CDC
7600 computer. For each value of the temperature
ture T the numerical evaluation of a three-dimen-
sionaJ. integral in q space is required; this three-
dimensional integral is reduced to a series of one-
dimensional integrals by using the same proce-
dure as in Ref. 1. Thirty Gauss points for each
one-dimensional integral were used for T& 4 K,
whereas forty points were necessary to obtain
good convergence for T &4 K.

The normal and umklapp processes have been
evaluated separately in the calculation. In this
respect we must mention that when a description
of ihe electron states by multiple OPW's is
adopted, this separation is not as trivial as it is
for the one-OPW description. For our separation
we used the Lawrence and Wilkins prescription. "

In Figs. 1(a) and 1(b) the first-order variational
result for the thermal resistivity of Cu and Ag is
reported. The resistivities are evaluated using
two different pseudopotentials: a recent version
of the Moriarty" pseudopotential and the Nand et
g/. ' pseudopotential. From these figures it ap-
pears evident that the umklapp contribution ex-
ceeds the normal one by about one order of mag-
nitude for the Moriarty pseudopotential and by a
factor of 2 to 3 for the Nand et g/. pseudopotential.
On the other hand, the longitudinal and transverse
umklapp components [not separately shown, in
Figs. 1(a) and 1(b)] are of comparable magnitude.
Moreover, contrary to what occurs in the case of
potassium, the umklapp contribution does not
freeze out at the lowest temperatures. These re-
sults are not surprising since the Fermi surface
of the noble metals just touches the zone boundary
at the (111}faces. We also see that the choice of
the pseudopotential form factor significantly af-
fects the magnitude and, to a lesser degree, the
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temperature dependence of the thermal resistivity,
leading to changes of a factor of nearly 2. These
calculations were repeated using several dielec-
tric functions from Hartree, "Geldart and
Vosko,"and Singwi ef, al. ,

"w'ith no substantial
variation in the thermal resistivities. Finally,
in order to test the sensitivity of these results to
the fine details of the Fermi surface, we repeated
our calculations with new values of the r/p pa-
rameters differing from the previous ones by a
small percentage (3%-6%). As in the electrical-re-
sistivity case, no significative variation in the
thermal resistivities of copper and silver was ob-
served. Moreover, to test if. the use of the simple
Debye spectrum significantly affects the results,
we subjected the v~ and zr velocities to a +10%
variation. The subsequent changes in the results
should represent a useful estimate of the changes
which could be produced by using a more realistic
phonon spectrum in the calculation. The resulting
changes lie in the range +10%-+25%. These are of
the same magnitude as the changes observed by
Leavens" in his calculation of the thermal resis-
tivity of potassium, in which he used two different
phonon spectra, one obtained from a fit to neutron
data and the other from a first-principles calcula-
tion.
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FIG. 1. (a) Temperature dependence of the thermal
resistivity of copper calculated with the standard, trial
function given by Eq. (2.2) using the Moriarty pseudo-
potential (- —~ — -) and the Nand et al. pseudopotential
(----). In each case the total thermal resistivity has
been explicitly separated into normal and umklapp com-
ponents. The results obtained with the three different
dielectric functions (see text) were so nearly identical
that they could not be resolved on this scale. (b) Temper-
ature dependence of the thermal resistivity of silver
calculated with the standard trial function given by Eq.
(2.2) using the Moriarty pseudopotential (- — — —.) and
the Nand et al. pseudopotential (----). In each case the
total resistivity has been explicitly separated into nor-
mal and umklapp components. The results obtained
with the three different dielectric functions (see text)
were so nearly identical. that they could not be resolved
on this scale.

III. HIGHER-ORDER VARIATIONAL CORRECTIONS
TO THERMAL RESISTIVITY

Using a higher-order variational trial function
in the energy, Sondheimer" first showed that cor-
rections to the first-order variational result are
important in the thermal-resistivity case. More
recently Ekin" carried out a variational calcula-
tion for potassium, keeping terms up to cubic or-
der and showed that the corrections are slightly
less than 20% in the low-temperature regime
where, umklapp processes are frozen out. How-
ever, as umklapp processes become important,
the corrections rise to slightly less than 30% near
5 K before diminishing at still higher tempera-
tures. In other words higher-order corrections
are significantly greater for the umklapp compo-
nent than for the normal one. A similar varia-
tional calculation for potassium, expanding the
trial function up to the seventh power in energy,
has been carried out by Jumper and Lawrence. '
In this work the seventh-order terms improve the
results in such way that the exact (except for the
negligible angular-dependent corrections) Leav-
ens' clean limit" is nearly attained. This work
also attempts to evaluate the pure limit of the
thermal resistivity of copper and silver by taking
into account higher-order terms in the energy de-
pendence of the trial function.



ELECTRONIC CONTRIBUTION TO THE THERMAL. . . 6263

To estimate the magnitude of higher-order cor-
rections, we expand the trial function up to the
fifth power in the energy:

(3.1)

a= g X,.(P-'),X, (3.2)

P,.',. denotes the ijth element of the 3 x 3 matrix
P '. The matrix elements P,.&= (qr, , Pp&) and X,
= (y, , X), where the expressions for P and X are
given in Ref. 8, are reported in the Appendix. In
Table's I and II the results obtained -for various
orders of the trial-function expansion are pre-
sented for both the Moriarty and the Nand et aL
pseudopotentials. Since for the noble metals the
umklapp contribution is not frozen out at the low-
est temperatures, it is not possible to see how
much the higher-order corrections affect the um-
kalpp contribution with respect to the normal one.
However, the third-order correction is seen to
range from slightly more than 20% at 1.5 K to
slightly less than 20% at 15 K (with a weak de-
pendence on the particular pseudopotential and on
the particular metal). The fifth-order correction
is, on the other hand, practically negligible in

The thermal conductivity is then obtained accord-
ing to the usual variational procedure' by evaluat-
ing the expression

the whole range of temperatures, as it amounts at
most to 0.3-0.4% of the total contribution. Also re-
ported in Table I are the first-order variational
results previously obtained for copper by Brett
and Black, ' who used the first version of the
Moriarty pseudopotential and the eight cone as
a model of the Fermi surface. The diQerences
with our first-order results are both in the abso-
lute magnitude and in the temperature behavior of
the thermal conductivity. In order to test if these
differences can be due to differences in the peudo-
potentials, we have repeated our first-order cal-
culation using the earlier version of the Moriarty
pseudopotential"; however, no substantial varia-
tion is obtained with respect to our results re-
ported in column III of Table I. From this test
we can conclude that, whereas the differences in
the absolute magnitude of the thermal conductivity
can be plausibly ascribed either to the use of a
different constant multiplicative factor in Eq. (2.3)
or to a different extrapolation of the Moriarty
pseudopotential" for q& 2&z, the different temper-
ature behavior must be ascribed to the different
approach in treating the phonon spectrum and,
perhaps, to the different integration procedure.
In Figs. 2(a) and 2(b) the calculated total electronic
contribution to the thermal resistivities is re-
ported together with the recent experimental data
for copper and silver by Rumbo. " The experi-
mental data on a ultrapure sample by Ehrlich and
Schriempf (ES) and the data of Van Baarle et gl."
are also reported for silver. Rumbo fitted his
experimental data to a simple power law

TABI.E I. Electronic components of the thermal resistivity of copper. divided by the square
of the temperature. W& is the first-order, W3 the third-order, and W= W&+ W3+ W5 the total
variational contribution, including the fifth-. order correction. The results obtained with the
Moriarty and the Nand et a). pseudopotentials are reported. Also reported are the first-order
variational results by Brett and Black (Ref. 2). The units are 10 cm/wattK.

Mor iarty pseudopotential
W/T Wg/T —W3/T

Nand et al. pseudopotential
W/T' W, /T' -W, /T'

Brett and Black
W, /T'

1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

78.50
82.76
86.62
88.34
89.68
90.32
90.77
90.89
90.81
90.44
89.91
89.19
88.33
87.40
86.38
85.40

98.00
102.09
105.87
107.45
108.50
108.92
109.02
108.78
108.46
107.80
107.09
106.22
105.30
104.35
103.35
102.30

19.50
19.33
19.25
19.11
18.79
18.59
18.22
17.83
17.56
17.24
17.01
16.83-
16.72
16.69
16.68
16.67

35.24
36.98
38.31
38.73
38.03
37.75
37.32
36.84
36.39
35.89
35.40
34.89
34.39
33.91
33.40
32.92

44.19
45.84
47.07
47.27
46.45
46.11
45.64
45.14
44.68
44.15
43.64
43.10
42.56
42.01
41.44
40.85

8.95:
8.86
8.76
8.54
8.42
8.36
8.32
8.30
8.29
8.24
8.21
8.16
8.10
8.04
7.96
7.87

55.0

57.0

60.0 (7.5 K)

65.0
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TABLE II. Electronic components of the thermal resistivity of silver divided by the square
of the temperature. W& is the first-order, W3 the third-order, and W= W&+ W3+ W5 the total
variational contribution, including the fifth-order correction. The results obtained with the
Moriarty and the Nand et a). pseudopotentials are reported. The units are 10 6 cm/watt K.

Moriarty pseudopotential
W/T Wg/T —W3/T

Nand et a/. pseudopotential
W/7 Wi/T —W3/T

1.5
2.0
2.5
3.0
4. 0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

77.86
78.92
79.83
80.04
80.03
79.62
79.08
78.28
77.20
76.09
74.90
73.62
72.23
70.76
69.25
67.69

95.01
96.12
97.10
97.39
97.57
97.23
96.85
96.18
95.35
94.32
93.10
91.70
89.97
88.05
86.01
83.88

17.15
17.20
17.27
17.35
17.55
17.62
17.80
17.93
18.04
18.08
18.02
17.85
17.52
17.06
16.52
15.93

25.08
25.31
25.49
25.40
25.16
24.90
24.62
24.32
24.00
23.68
23.32
22.95
22.58
22.14
21.75
21.29

30.79
30.97
31.10
31.00
30.76
30.48
30.21
29.89
29.54
29.15
28.71
28.23
27.70
27.12
26.53
25.91

5.71
5.66
5.60
5.60
5.59
5.58
5.57
5.56
5.52
5.46
5.36
5.25
5.10
4.94
4.76
4.58
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FIG. 2. (a) Temperature dependence of the thermal resistivity of copper evaluated taking into account fifth-order var-
iational corrections. Solid lines are our calculated results: upper curve, the Moriarty pseudopotential; lower curve,
the Nand et al. pseudopotential. The dashed line refers to the experimental behavior as obtained by Bumbo (Bef. 21) (for
pa=0.4 &&10 0 cm). The results obtained with the three different dielectric functions were so nearly identical that they
could not be resolved on this scale. (b) Temperature dependence of the thermal resistivity of silver evaluated taking
into account fifth-order variational corrections. The solid lines are our calculated results: upper curve, the Moriarty
pseudopotential; lower curve, the Nand et al. pseudopotential. The dashed line refers to the experimental behavior as
obtained by Rumbo (Ref. 21) (for p0=0.4&10 0 cm). Other experimental data are from Refs. 22 (0) and 23 (D) (for po
= 0.88 X10"~ 0 cm). The results obtained with the three different dielectric functions were so nearly identical that they
could not be resolved on this s "ale.
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W(T) = BT" with n = 1.6 (CU) and 1.V (Ag) below 8.5
K. The measurements by ES on very pure silver
show, on the other hand, a mean temperature de-
pendence proportional to T' over the range from
about 4-12 K, in perfect agreement with the Bloch
law. The data of Van Baarle et al. substantially
agree with the Rumbo results. All these experi-
mental data lie very close to the pure limit. "

Calculated thermal resistivities, on the other
hand, do not follow a well-defined power law, but
if one assumes the validity of a simple relation
W'~ T", the exponent varies continuously, ranging
from n= 2.3 (Cu) and n= 2.05 (Ag) at T= 2 K. to n
= 1.66 (Cu) and n= 1.67 (Ag) at T= 15 K, using the
Moriarty pseudopotentials, and from n= 2.16 (Cu)
and n= 2.03 (Ag) at T= 2 K to n= 1.V9 (Cu} and n
=1.69 (Ag) at T= 15 K, using the Nand et gl. pseu-
dopotentials. Note also in Fig. 2(b) that the theo-
retical results, using the Nand pseudopotential,
are lower than some experimental data. This
contradicts the variational principle which should
give values larger than the experimental ones. A

simple explanation of this fact may be found in
the inadequacy of the pseudopotential form factor.
However, do not forget that the absolute magni-
tude of the thermal resistivity is also considerably
sensitive to the multiplicative parameters, such
as the optical mass, which appear in E(l. (2.3).
From this comparison we can draw the conclusion
that there are some discrepancies between the
experiments and our calculations both in the ab-
solute magnitude and the temperature dependence.

Some discrepancies can certainly be ascribed to
the approximations in the shape of the Fermi sur-
face and in the phonon spectrum, but the largest
one arises from the uncertainties in the pseudo-
potential form factor which, of themselves, can
explain the difference between the absolute mag-
nitude of the experimental and theoretical results.

Finally, in this work higher-order variational
corrections have been seen to contribute about 20%
at low temperatures for the noble metals; more-
over, umklapp scattering has been shown to give
the dominant contribution to the thermal resis-
tivity down to the lowest temperatures.

In conclusion, we briefly discuss a very recent
calculation by Kus" on the electrical and thermal
resistivities of copper and silver in the range
10-100 K. Kus, using the Leavens' approach, "
numerically solves the Boltzmann transport
equation for the energy dependence of the plectron
distribution function, assuming the lowest-order
angular dependence. A comparison of our results
with those obtained by Kus is, however, not pos-
sible, as they are for different temperature re-
gions. However, since Kus uses the wrong Fermi
surface (spherical) for the noble metals, his cal-
culations will be poor at low temperatures.

APPENDIX

In this appendix we present, for the sake of com-
pleteness, the evaluated expressions of the ma-
trix elements P,&= (y„Py,.)and X,.= (y,., ~):

P„=C(r)«* Jl
' ' 2 Ig(k, k')If («) l lv(k) -«(k')I* —

g * lv(k) -«("') I*«'v .«')Iv(k') I') ("()
lv(k} I lv(k') I

6m' 7r'

1
6 -

)7 2

P„=((«)«'j,.
«V P ~g(k, k')I f («) —", ~~v(k) —v(k')~~' —~v(k)-v(k')~~'

63 g' 21 g2 x4
+

I
v(k')

I

' ——+ ——+ 2—
10 m' 5 m' m

(A2)

p„=c(T)w"

23 x" 10 x' x' 15500 x' 635 x'
]26 ~&0 3 7)8 6 ]26 g4

P„=P„=C(T)~'
IV(k ) I lv(k') I

g /g, (k, k') /'f, (x) —,',
/

v(k ) -v(k') ('

1 x 1 x—iv(k) -v(k') i' ——--—
20&4 6~2

2 4

+ iv(k ) i
—~+ ——

~
x 1x

(A4)
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P =P = C(T): '" '-", g I~.«k') I'f.(~) —;', Iv(k} -v(k') I'
lv(k) I lv(k'} I

2 1 x ix 7x
Iv(k) -v(k') I'

42@ 6m 6m

-, , »' 5x' Vx'
+ Iv(k') I' ——+ ——+-—6 3 4 (A5)

where

C(T) = (1/4v'n)'va' T'/6e,

and

X, = a(T),

(A7)

(A8)

~ x' 34»'—Iv(k) —v(k') I'
504 m8 60 ~ 126 m

19xs 8x 77 x 155 x+ Iv(k}I ——+ ——+ —+84' 3p 6 p4 7 m

X,= a(T) -', m',

where

a(T) = -(u, T)'nv'/3m. „.

(A6)

(A9)

(A 10)

(A11)

~E. Borchi, S. De Gennaro, and P. L. Tasselli, Phys.
Bev. B 12, 5478 (1975).

2M. E. Brett and J. E. Black, Can. J. Phys. 55, 521
(1977).

M. Bailyn, Phys. Bev. 112, 1587 (1958).
J. W. Wilkins, EPS Conference on Transport Proper-
ties, Cavtat, 1977 {unpublished).

~F. W. Kus, J. Phys. F 6, 59 (1976).
W. D. Jumper and W. E. Lawrence, Phys. Rev. B 16,
3314 (1977).

In the following calculation only the scattering of the
electrons by phonons is considered. In particular,
the electron-impurity scattering is not taken into ac-
count.
J. M. Ziman, E/ectrons and Phonons (Clarendon, Ox-
ford, 1960).

M. R. Halse, Philos. Trans. R. Soc. Lond. 265, 507
(1969).
H. Ehrenreich end H. R. Philipp, Phys. Rev. 128, 1622
(1962).
A. G. Mathewson, H. Aronsson, and L. G. Bernland,
J. Phys. F 2, L39 (1972).
W. E. Lawrence and J. W. Wilkins, Phys. Bev. B 6,
4466 (1972).

3J. A. Moriarty, Phys. Rev. B 6, 1239 (1972).
~4S. Nand, N. W. Bamesh, B.B. Tripathi, and H. C.

Gupta, Solid State Commun. 17, 773 (1975).
~ W. A. Harrison, Pseudopotentials in the Theory of

Metals (Benjamin, New York, 1966), p. 49.
6D. J. W. Geldart and S. H. Vosko, Can. J. Phys. 44,
2137 (1966).

~7K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjo-
lander, Phys. Rev. 176, 589 (1968).

8C, R. Leavens, J. Phys. F 7, 163 (1977).
~9E. H. Sondheimer, Proc. R. Soc. Lond. Sect. A 203,

75 {1950).
J. W. Ekin, Phys. Bev. B 6, 371 (1972).

2~J. A. Moriarty, Phys. Rev. B 1, 1363 (1970).
Since the first version of the Moriarty pseudopoten-
tial is available only in the region 0 &q &2k&, we
have assumed as constant the values of the pseudopo-
tential in the small region 2k+ &q &2p.
E. B. Bumbo, J. Phys. F 6, 85 (1976).

24A. C. Ehrlich and J. T. Schriempf, Solid State Com-
mun. 14, 469 (1974).

2 C. Van Baarle, G. J. Roest, M. K. Roest- Young, and
F. W. Garter, Physica (Utrecht) 32, 1700 {1966).

2 F. W. Kus J. Phys. F 8 1483 (1978).


