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Making use of Zamolodchikov's S matrix for the sine-Gordon system in (1+1)dimensions,
we calculate the frequency-dependent electric conductivity of the charge-density-wave (CD%)
condensate at T =0 K. It is assumed that the phase of the CDW wave function obeys a sine-

Gordon equation. The conductivity has a square-root threshold structure at 0) =2m associated
with soliton-antisoliton pair production, where m is the soliton energy. Furthermore below

~cu~ =2m, the conductivity has a series of resonance peaks due to the creation of the soliton-

antisoliton bound states at cv„=2m sin[a(2n + I)/2A, j, with n the integer and A. the dimen-

sionless coupling constant (A. )) 1) of the system.

I. INTRODUCTION

The low-temperature conductivities of the quasi-
one-dimensional charge-density-wave condensates
like tetrathiafulvalene-tetracyanoquinodirnethane
(TTF-TCNQ), K2Pt(CN)4Bra3 3H20 (KCP), and

NbSe3 are of current interest. In the low-temperature
region (say the temperature below 10 K), the quasi-
particle density becomes negligible and it is believed
that the electric conductivity should be dominated by

d& solitons' [which are the kinks in the phase &t of the
charge-density-wave (CD%) condensate].

According to Lee, Rice, and Anderson, ' the
dynamics of the CD& condensate is described by the
Lagrangian density

2 = No &t«2 —ca2&t&~ —2 —— (1 —cosW&t&) ——e, (1)

where

1-
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where v, 5, and cog are the Fermi velocity, the quasi-
particle energy gap, and the phonon energy with

Q =2pF, and rt is the dimensionless electron-phonon
coupling constant. Furthermore, coo is the pinning
frequency and N is an integer. In the following we
assume that s ( co & lp, where s is the phonon veloci-
ty. Finally, the last term in Eq. (1) describes the
coupling of @ to the external electric field e.

As shown by Rice et al. ,
' the nonlinear solution (&t

soliton) of Eq. (1) carries the electric charge and

gives rise to the low-temperature dc conductivity of
activated form with E& the soliton energy as the ac-
tivation energy, This may account for the observed
dc conductivity of TTF-TCNQ (Ref. 4) and KCP, s if
the pinning frequency coo is of the order of 10 K.

At even lower temperatures, where no thermally
activated solitons are available, one of us (K.M.)s has
shown that the conductivity is dominated by soliton-
antisoliton pair production due to the electric field,
which is strongly nonlinear in ~. However, the above
calculation is limited to the frequency region
~&0~ (& 2E&, where the pair production takes place
via quantum-mechanical tunneling processes.

The object of the present paper is to study the elec-
tric conductivity of the model given in Eq. (1) in the
whole frequency region (at T =0 K); from zero fre-
quency to slightly above the pair creation threshold
(o& = 2Ee). Recently Kaup and Newell' have shown
within the classical field theory that the above sipe-
Gordon system absorbs the electromagnetic wave
with co 2E& via dipole excitation of breathers (i.e.,
the soliton and antisoliton bound pairs). However, in .

the low-temperature region which we are interested
in, the full quantum-mechanical treatment of the
Lagrangian (1) is required. For example, in the
quantum limit the breathers are allowed to have only
discrete energies' unlike the classical case.

About two years ago the 5 matrix as well as the
electromagnetic vertex for soliton-antisoliton produc-
tion of the sine-Gordon system was discovered by Za-
molodchikov. ' His results allow us to construct the
exact frequency-dependent conductivity of the sine-
Gordon system at T=0 K.

For this purpose we shall first transform the

6288 1979 The American Fhysical Society



19 HIGH-FREQUENCY CONDUCTIVITY OF CHARGE-DENSITY-. . . 6239

Lagrangian density (I) into the standard form. "
,
'

8—„@d~y (—a/P') [i —cos(P@)],

~here

2dx =2'dx', x'=x/co,

4' =
2 (+oco) 4 ~=o

' 2' -1/4

P - (Sn) 'i'W I + g
'

QJg

= (8n) 'i N (co/v) '

(4)

bound-state levels. We shall see later that the elec-
tric field couples only with those states with odd n.

Therefore, at low temperatures these bound states
contribute to a series of 5-function-like absorption
spectrum in the electric conductivity.

II. FORMULATION

The electric conductivity is given by the imaginary
part of the photon self-energy II (q') (the Kubo
formula)

o (~) = —Im 11 (q }I 2 2 ~

1

M
~ Oj

In Eq. (3}we have rewritten x' and $' as x and $.
From Eq. (4) we have

which is defined in terms of the polarization tensor in
the 1+1 dimensions as

0&P'«Sm,
which implies that the energy spectrum of the
soliton-antisoliton bound states is given by

E„-.2m sin(n n /2h. ),
where m = E@~(=SruoP 2) is the soliton energy

SwP 2-1

and n is an integer. In the present model X » 1 we
expect a large number of the soliton-antisoliton

11""(q) =ie d x e' "(0[T[j~(x)j"(0)](0&4

(g&—" q&q—"q ') II (q'),

where the current operator j~(x) is defined by

J+(x) = fr e~ 8„@(x)

and e"" is the antisymmetric tensor. (Hereafter we
adopt standard notations of the relativistic field
theory in the 1 + 1 dimensions and set co = 1.)

Inserting intermediate states, one has

(8)

m2
Imli(q') -

2 J z dpi dp2 E E o'(pi+p2 —q}(0IJ"(0}lpip2& (ptP2IJ&(0}10&
1 2

(10)

where

m -Eo, E) =(m'+p, )'i',
etc. Here (ptp2& denotes the state with a soliton (fer-
mion) with relativistic two momentum p~ and an an-
tisoliton (antifermion) with p2. Making use of the
equivalence between the sine-Gordon system (3) and
the massive Thirring model, "

with

where u(p~) and v(p~) are two-component spinor-
wave functions for particle with momentum p~, and
antiparticle with momentum p2, respectively, and

E = —,
' s, p = —,

' (s —4m') 'i' s = q',

are individual energy and momentum of the pro-
duced pair, the latter resulting in the characteristic
square-root singularity at the threshold.

For the sine-Gordon Lagrangian (3} (or the mas-
sive Thirring model) the form factor G(q2) has been
determined'0 as

g = m(4n/P2 —1),
the current matrix elements may be parameterized in
terms of two-dimensional spinors as

cosh [-,
' (i w —to]

G (q2) G (to e Oe-o)

cosh[ —,
' k(in —e)]

with

(14)

(o1j"(o}l pi/2& —= ti(pi}V"v(p2}G(q'} ~

such that

ImII (q') =e' [G(q') I'.
2Ep

(i2)
ie OO

T(z) = '

~0 y

1

sin2 sinh —1 ——y
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2m 2 A,

t

sinhy sinh cosh
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(15)
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Here —,8 is the rapidity of the particles in the center

of mass frame

has poles at

e„=i~ 1 ——", n =1,3, 5, ... , [I ] (Is)
8 a 8 E

sinh —=—,cosh —= —,
2 m' 2 m'

q' = s = 2 m (1 +cosh 8) .
(16) corresponding to bound states with masses

M„=2m sin(2n m/X) .

x=1+ =- =2g 8m

7T
2

(17)

In particular, in the case of the charge-density-wave
condensate, we have A. &) 1. From the
cosh[ , (i rr+-8)] denominator, the form factor G(8)

As we have noted already the parameter X( & 0) is

expressed in terms of P or g as
Comparing with the mass spectrum of the bound
states (6), one notes that the electromagnetic field
couples to bound states with odd n, the state with
c = —1, only, where c is the charge conjugation
operator. These bound states give rise to a series of
resonance poles in the complex electric conductivity.

The above form factor is derived from the 5 matrix
for fermion (soliton) and antifermion (antisoliton)
scattering in the c = —1 state '

cosh[z X(irr+8)]
Sfj (8) =e ~f =—, Sff(e),

cosh[ —,
'

X(iver —8)]

where Sff(8) is the two-fermion scattering amplitude

Sff(8) = I'[X(2( —8)] I [1+k(2( —2 —8)] I'[h(2( —1+8)] I [1+I((2( —1+8)]
( ( r[I((2(+8)]r[I+) (2(-2+8)] r[) (2( —i -8)] r[I+((2(-1-8)]

with

8= —i8/m

and follows uniquely by postulating (a) the absence of a left-hand cut in the s plane, i.e. ,

(20)

(21)

G(Iw+8) =G(I~ e), e &—0,
(b) the discontinuity over the right-hand cut according to Watson's theorem

(22)

G (8) 2((f() (e)

G(-e) (23)

and (c) the absence of any physical sheet singularity other than the bound-state poles displayed in the

form factor of Eq. (14). For our purpose it is useful to rewrite the infinite tail of the product (21) as an
integral representation

where

I'[I((2 —8)] I'(1 —I(8) F [I((I + 8)] I'[1 + I((1 + 8)] (,&

I'[X(2 + 8)] I'(1 + h. 8) F [h. (1 —8)] I'[I +h, (1 —8)]

J(e) =Jt ~
0 y

e sinh y sinh .
~8 . ~ 1

im 2

sinh(y/2h. ) cosh
z y

(25)

Here use is made of the formula

ln = „3 ——2((ze ~i~+e~i" ' z ' sinh(zy)/sinhI'(a +z) "0 y 2A,
(26)
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The integral (25) converges for

Im 8 ( n (2 + I /X) (27)

III. LIMITING BEHA VIORS

It is now useful to discuss two regions separately.

A. Threshold region q & 4~

Close to threshold the conductivity for the free-
fermion case is dominated by the p ' divergence in
Eq. (13). The form factor G(q') introduces the fol-
lowing modification: If X is not an odd integer, Eq.
(14) shows

G(q2) = —i sinh(
2

8) sec(—mh) e '" .1
(28)

The sinh —,8(=p/m) factor destroys the threshold

peak such that

due to the fact that we have explicitly kept the first
I =1 factor (20): its t-channel poles at g„' =i m(n/X)
would destroy the convergence for Im 8 ~ I/h. if it
were included into the integral representation.

G (q2) ( I) x —1/2 e (h (30)

The reason for this is the arrival of a bound-state
pole A. = n at the threshold point. Its approach X n

is signaled by the ( z
secmX)' factor in Eq. (29).

Summing up the conductivity near the threshold is
given by

goes through unity for k =1 (free-fermion case). It
decreases as e ""for large ) && 1, since strong at-
traction presents an obstacle to the production of free
pairs. Correspondingly, for the repulsive case [i.e.,
Xe(1, 0)1, although this is very unlikely in our model,
there is an enhancement by e0.6 = 1.82 at X =0. If
one goes beyond A. =0 (this is already the unphysical
region in our model) there is a discontinuous jump to
infinity indicating instability of the vacuum with
respect to pair production. At the same point
A. =O, P2 =8m has been shown before, " in the con-
text of the sine-Gordon theory, to have a bottomless
energy. The resulting phase transition was investigat-
ed by Luther, ' who argued that there would be a
rearrangement of the vacuum with the new A.„,„&0.

If A. happens to hit odd integers ) 1, the original
(s —4m') 'i' threshold behavior becomes again visi-
ble, since

t

ImII(q ) = sec e
e mA,

2E 2
[ ' —(2m)']' '

(r(rv) = (rp(i) (31)

p oo

2 T+ = 2 T(i rr) = — ~ tanh2+ coth
y 2 2A,

with
r

e2
op(Z) =—sec

2 2
e (32)

-tanh&
2

(29)
for X~n.

Equation (29) is numerically evaluated as a function
2

thof A. and shown in Fig. 1. The exponential e

B. Resonance peaks below the threshold

Let us consider now the resonance peaks in the
conductivity caused by the bound-state poles. Insert-
ing the bound states ~8„(q) ) into Eq. (10), we find
their contribution

432 1
4

2-

—1/2
r

8 2
m'

Im II (q2) =—X +„4' 2
8(q2 —m„), (33)

n:odd n

I—
CV

-2-

-4-

2

8„P with g„being the dimensionless direct photon-
"vector" meson (i.e., the c = —I soliton-antisoliton
bound-state) coupling defined by'

-6-
&0IJ"~&n(q)) =2mg. e'(q) . — (34)

-8
107 5 3 2 1

FIG. 1. T+(X), which appears in the threshold expression
of the electric conductivity, as a function of A..

There is only one polarization vector e~(q) = (q, q )
for a massive vector meson in 1+1 dimensions. The
coupling can be determined by making use of the fac-
torization property of invariant amplitudes at poles.
By the reduction formalism, G (q)' and Sff- must
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behave close to the pole q = m„according to

(q' —m„'+i e) '(O~ j"(8„(q))(8„(q) )j~[p)p, ) (35)

and

(q' m,'—+ie) 'I (pip I
j"18m(q))

2Ep

Therefore one has

2 1 (Res G)2
4m' (im/2Ep)ResS & -~,

Now G(q') and S have the same poles (2/h. )(I/O —8„)
from

x (8.(q) Ij,lpip2) ~

sech (i—w —g)
2

respectively. The kinematic factor i (m2/2Ep) in the
second expression appear, since the invariant scatter-
ing amplitude A is defined in terms of S via

S -=i —i(2~)'S'(p, -p,)~, (37)

where pq and pr are two momenta of the final state
and the initial state. For the c = —1 states with our
normalization, 1 stands for the 8 functions

1
I -—(2m)' g(p, ' —p, )

m

x g(p, —p, ) + (pi p2 ) (3g)

mS= 1 —i A l.
2Ep

(39)

IIut (2m)252(p~ —pI) can be rewritten as m2/2Ep times
the above expression such that

Therefore we can directly take the 8 residues multi-
plied by

bq2 2 e . . e
88 2 2

=4m cosh —sinh —=4Ep, (41)

such that

I [cos(nn/2h. ) [ e
gn =

A sin%A e'l'ff'" e-e
n

(4.2)

The above expression gives the intensity of indivi-
dual resonance, associated with the creation of the
soliton-antisoliton bound states.

Some limiting cases g„' can be calculated analytical-
ly. For h. )) n, the integral (15) gives

n n2T(i rr e„)———", e'r= exp —"
. (43)

2A, 2X )!

The Sff(to matrix, on the other hand, yields

J(e„)
2I8ff(~ ) 7P I (X+n) I'(2A. n) I'(1 +2—h. —n) e " rr

sin7rA. I'(h. —n) I'(3h. —n) I'(1+ X —n) I'(n) I (I + n) sinmk n!(n —I)! (44)

Thus

g2= n!(n —I—)!h. "+' e " " for h. )) n .
1

'??
(45)

I

constant gn initially decreases rapidly with increasing
n, but begins to saturate near the threshold.

Finally the conductivity below the threshold
(~co~ & 2E~) is given

g = (h. —n )e
» (I)

n 4~3 max (46)

Equations (45) and (46) indicate that the coupling

Note that the factor sinmA. cancels, thereby guaran-
teeing positive definiteness of g„[which is equivalent
to positive norms of the states ~8„(q))!]. Its origin
lies in the occurence of r-channei poles at tt„' =i rrn/X

2i8 (e)
in e, one of which coincides with the s-channel
pole as well as sign flip.

When the last bound state lies very close to the
threshold (i.e., h, n,„«1)—, one has another limit-
ing behavior

e ff — . (h. —n)m«, e =e2i5 ~ T 2T

sinn A.

and

E2
~(m) =2ne' t X g„'g(~' —E,') .

n todd

(47)

IV. CONCLUDING REMARKS

Limiting ourselves to T =0 K, we constructed the
complex electric conductivity of the one-dimensional
sine-Gordon system (1). Making use of
Zamolodchikov's S matrix, we have shown that the
electromagnetic wave can excite soliton-antisoliton
bound states with the odd quantum number. The di-
pole coupling constants are explicitly determined.
Furthermore, we have analyzed the threshold struc-
ture of the conductivity near co = 2m. It is hoped
that these results will be tested in some of the quasi-
linear CDW systems.
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