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Stochastic theory of multistate diffusion in perfect and defective systems.
I. Mathematical formalism
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A stochastic theory of multistate transport on ideal and defective lattices is presented. A continuous-time
random-walk formalism with the inclusion of internal states is used in the derivation of a matrix (whose
dimensions are the number of internal states) probability propagator, The propagator describing motion on an
ideal lattice is modified owing to the presence of a periodic arrangement of defects. The -expression for the
modified probability propagator greatly simplifies in the long-time (diffusion) limit. In this limit the presence
of defects renormalizes the ideal-lattice propagator through the inclusion of a self-energy-type term which
depends upon the concentration of defect sites and the differences in transition rates of the, propagating
species associated with these sites and ideal ones. The formalism enables the study of complex diffusion
mechanisms, as illustrated in the following paper, and allows the calculation of observables such as positional
moments, diffusion coefficients, and occupation probability of states.

I. INTRODUCTION

Transport phenomena, either of particles or
excitations, may be studied by employing different
levels of description, which may be distinguished
according to the degree of detail with which one
describes the mechanism of the process under
study. At the most elementary level the propagat-
ing pa.rticle (and host media) are taken as struc
tureless and the only quantity of concern is the
time evolution of the position of the particle (or its
center of mass) and moments of the position dis-
tribution function. In more refined treatments the
propagating particle (and possibly host) are en-
dowed with states (whichweterm internal states), ' '
between which transitions may occur, and which
provide a more detailed description of the under-
lying propagation mechanism. Such states may be
configurational (i.e., spatial arrangements), en-
ergetic, (i.e., band states), or spin states (in
case a spin dependence occurs in the transfer
Hamiltonian).

Random-walk theory [and its extention to a con-
tinuous-time random-walk' (CTRW) semi-Markov
process governed by a temporal probability func-
tion for transition] has been found useful in the
investigation of transport phenomena in several
physical systems, ' "in particular in the long-time
(diffusion) limit. Transport systems where the
stochastic mechanism involves transitions between
internal states can be conveniently studied in a
unified manner, via a generalization of the CTRW
formalism to walks on lattices whose unit cells
contain internal states, ' ' ' and thus involve in-
tracell and jnteycell transitions. As we demon-
strate in the following paper, " a, correspondence
between a variety of physical processes and ran-

dom walks on such multisite-per-unit-cell lattices
can be conveniently established through ~appings
of the physical processes onto the appropriate
random-walk lattice. For the case of adatom
clusters diffusing on perfect-metal surfaces, as
observed in fteld-ion-microscopy (FIM) experi-
ments, we have previously' ' discussed the deri-
vation of expressions for experimentally observa-
ble quantities, using our CTRW-internal-state
formalism. When employed in the analysis of ex-
perimental data these expressions provide meth-
ods for the extraction of rates (activation ener-
gies and frequency factors) of individual transi-
tions involved in the transport mechanism of the
cluster, thus forming a "spectroscopy" of the in-
ternal states.

Defects (heterogeneities, in general} are of im-
portance for a realistic description of material
systems and are known to effect transport in
crystalline systems, and consequently to influ-
ence physical processes which involve transport
(in particular certain types of surface-catalyzed
chemical reactions, e.g. , the I angmuir-Hinshel-
wood mechanism). Thus we extended'o'2 our
CTRW-internal-state formalism'~ to include
periodic arrangements of defects in the lattice.
While our previous formalism is capable of treat-
ing systems with internal states and defects (see
'Sec. V of Ref. 2} in a straightforward manner, it
may:become calculationally prohibitive for small
defect concentrations. Consequently, a different
method for treating transport in systems contain-
ing defects is developed here (its applications are
described in the following paper). Defect sites are
distinguished from the host lattice by assigning
them a "waiting-time distribution function" (which
governs the temporal dependence of the transitions)
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differing from that of normal lattice sites. We
derive the expressions for the particle proba-
bility propagator from which observable quanti-
ties are derived. While the expression for the
propagator, valid for all times, is complicated,
we found that for studies of diffusion phenomena,
i.e., in the long-time limit, it greatly simplifies,
yielding an effective renormalization of the ideal
(defect-free, homogeneous) propagator.

The mathematical formalism of continuous-
time random walks with internal states in the
presence of periodic arrangements of defects is
developed in Sec. IIA. A comparison to our pre-
vious treatment of defects is given in Sec. IIB.
A concise procedure for the application of the
method (demonstrated in the following paper) is
given in Sec. III. Finally, certain simplifying
features for the practical calculation of observa-
bles such as positional mean and variance are
given in Sec. IV. '

'For z=1,

R;,(12 f
~

1(), 0; &) = R;,(1, t
~

lo, 0),
which is the probability density of reaching (1, i)
exactly at time t, independent of the number of
steps taken. Multiplying both sides of Eq. (2.1)
by z"" and summing over all non-negative n, we
obtain:

R;,(I, V ~1„0;z)—z g P f 2,,(l, l', v)
s

x R„(I',i-r
~
I»0;z) = C-, S,,&(f). (2.3)

To facilitate the solution of Eq. (2.3), we employ a
Laplace transformation over time,

g (z) fz'"g =(V)dz,
0

with the understanding that whenever the variable
u is used a Laplace transformation has been per-
formed. Upon use of the convolution theorem Eq.
(2.3}transforms into

H. CONTINUOUS-TIME RANDOM WALKS ON DEFECTIVE

LATTICES —RENORMALIZED-PROPAGATOR METHOD R(l, u;z) —z g 216(1, 1', u)R(1', u;z) = 5, , l.
1' (2.4)

A. Mathematical formalism

In this section we develop the underlying forma-
lism of the theory of continuous-time random
walks with internal states on lattices with periodic
defects, and provide a concise procedure for its
application. First we introduce R',.",.) (1, t

~
1„f = 0),

the probability density that the system perform its
nth transition into state i in cell 1 exactly at time
t, given that initially (at (= 0) it occupied state j in
cell 1„[the couple (1', n) will denote state n in
cell 1']. The evolution of the system is semi-
Markovian, and the probability density R(;&' satis-
fies the following chain (recursion) relation:

R',J'"(1,f
~
1„0)

t

=Q Q f g(l, l'; )v'R (v',)Vv(1„0)dv,
s 1' 0

(2.1)

where +,,(I, 1', T)dr is the probability that the
system will make the transition (1', s) - (1,i) in
the time interval (~, r+ d&}, given that the system
obtained (1', s) at T = 0. The quantity '0 is called the
waiting-time density for transition, and it com-
pletely characterizes the system (see examples in
the following paper").

A convenient method for the solution of Eq. (2.1)
is via the generating function defined by

t(1 )= t (1 ) t dt
0

(2.'I)

and the mean single-jump distance from (1', j),

In the above, the initial condition argument l, has
been dropped, and a matrix notation introduced.
The matrices R and + are of dimension m & m,
where m is the number of internal states in a unit
cell.

We proceed by further examining the waiting-
time density function [see Eq. (2.1)]. An ansatz
which we use for this function is

+;,(I, 1', T) -=j;;(I,I')(,;. , (&), (2.5)

where (j)(1, »(&)dr is the probability that a transition
occurs from (1',j) in the time interval (7, r+ dr}
given that the system obtained (1',j) at & = 0;
p, „.(1, 1') is the probability that, given a transition
occurring in the above time interval, it will be
(1', j)- (l,i). In general, p, ,(1, 1') can also depend
on 7. Such a form is used in our analysis of cor-
related motion in Sec. V of the following paper.
The waiting-time density, (t) and the transition
probability p are normalized:

g 6;,(1, 1') = 1, f 66,)(v)dv l(2 6). =
0

Note also that the first moments of these probabil-
ity functions yield the mean pausing time in (1,j),

R,,(I, f
~
I„O;z) =- g z"R',.",.'(I, f

~
I„O) .

n~0-
(2.2) d(-, ,),——Q Q (1 —1'),p, ,(1,1'),

i
(2.8)
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(t &-, ,&(~) = X,. exp(- X,.~),

(j&',"(r) =. X,'.
"exp(- X',."7') .

I

Using Eqs. (2.5) and (2.9), we can express Eq.
(2.4) as

R,,(1,u; z) —z Q Q P",„'(I—I') (j&„'"(u)R„,.(1',u; z)
n 1

—6&, 106 &
=z Z g [P;.(I I')4&1.4&&)

n 1

—p',.„"(1—1')(j)("(u)]R„,.(1',u; z) .

(2.io)

(2.11)

In the above equation the left-hand side represents
propagation on a perfect lattice, and the right-
hand side is nonvanishing only for transitions
(1', n) -(I, i) which involve defects. In the case
of a perfect lattice, Eq. (2.11) can be solved by
means of a discrete Fourier transformation (see
Appendix A) over space 1-k. Whenever the argu-
ment k occurs it is to be understood that a Fourier
transformation has been performed. Such a trans-
formation yields

where r = (x, y, z) is a Cartesian direction. For
motion on a perfect lattice,

+ (I I' ~) =p",,'(I- I')e',"(~), (2.9)
where the translational invariance of the lattice
has been used, and g&,."(w) is common to all cells
but depends on the internal states j. To maintain
our matrix notation, (t),(7) will be treated as the
(jj) element of a diagonal matrix (t). Note, that
both of the waiting-time distributions &I)&,."(7) and

g&»&(r), for transitions from normal and defective
sites respectively, do not explicitly depend on l.
Rather, they are written in terms of assigned total
transition rates X,. (j = I, . . . , m) for leaving an in-
ternal state j associated with a defective lattice
site, and X&,.

o& for a normal site (1 serves to iden-
tify the location of a defect site). We choose here'~

[R(k, u; z)] R(k, u; z)e'"'(&

= e '"'o 1 +zD(1, u)

x Q e &"'R(d, t&; z) .
d

Using Eqs. (A3) and (A6), we find that the sum on
the right-hand side of Eq. (2.14) is equal to

(2.14)

y-Z g-1 n -l.

. 27T 27T 27T
k +j — k +m —k +n — u'z

y p
& z

(2.16)

where the arguments of R are calculated mod27T,

and 0 ~ k„,k„k,&27T. For simplicity we consider
first a one-dimensional (1D) case with one inter-
nal state and P„(k) =P&'&(k). Denote (omitting the
z variable)

I (k, u) =- [R'"(k, u)]-'R(k, u)

~ eiklp eiklp (2.16)

D(k,.) =- p'"(k) [C,(.) —e'"( )]- (2.1V)

Note that for the choice (t~(t) = Xe "and g
' (t)

= X' 'exp( x@'t) [see Eq. (2.10)],

On the left the convolution theorem for Fourier
transforms has been used and on the right
d= ( j„&&&l„,j,Pl, , j,yt, ) denotes the set of all de-
fect sites as j„, j„and j, vary over the integers.
The unit lengths of the lattice are I„, l, , and t„so
the unit-cell volume is Vp= l„l,l,. The reciprocal
unit-cell volume of the defect superlattice is
A=(n(syV, ) '. To proceed further we write e'~'

as ei"'" +e""', and sum over l to find

=[[1—z p'"(k )(j&' '(u)] '}.e'"'" (2.12)

where R'" denotes the propagator for motion on a
perfect lattice, and the system has started at
(1&,j) at t = 0. In our examples, we will choose
P(1, 1') =P (1 -1') and P(1, 1') =P&(1 - I') fortransi-
tions from normal and defective sites, respectively.
We now Fourier transform Eq. (2.11) and return
to matrix notation (whose dimensions are' those of
the number of internal states) to find

[R'"(k u. z)]-'R(k u z)e"'
= e'"'(& 1+z P e'"' g D(l, u) R(d, u; z),

(2.13)

e -1 . 27T
&(&,u)= a '&&(&u) QR &+) —,) .

j-0
(2.IS)

Consider values of k (denoted by K) such that
0~K&27&/o. . Since for m =0, 1, ... , o. —1

I ~ 27TVl JD ~ 27TVl
@ ~ 27T

D(k, u) =p~'(k) [X/(X+ u) —I&!"/(X"'+ u) ],
which for small u behaves as

D(k, u) = P"'(k)(1/X"' —1/X) u+ O(u') .
Thus D(k, u) vanishes as u -0. In our new nota-
tion, and by means of Eq. (2.15), Eq. (2.14) be-
comes (0 ~k&2&&)
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the expressions corresponding to all values of k
(0 ~ k & 2 v) are related by (m = 0, 1, . . . , n —1)

L K+,u =D K+,u D-'E, u LK, u .27m 2 pm

(2.20)

For an infinite ID lattice which contains defects

with regular spacing n, the spectrum of k values
is broken into n zones (the familiar Brillouin
zones). Here K is a vector in the first zone
[0, 2(//n) and Eq. (2.20) relates the expression
for k values in other zones to that in the first
zone. To evaluate the sum in Eq. (2.19), we use
Eqs. (2.16) and (2.20), which yield

g ~+ u ~(p) g+ u L ~+ u + ei(K+23'm/+)lp ' e-&(K+2ffm/)lp
Q

g+ u D ~+ u D-1 ~ u L @ u + ei(K+2ffm/at)lp e-i(K+2n m/e)lp
2 em I 2am

(2.21)

Now we sum both sides of Eq. (2.21) from m =0, . . . , n —1 to find

)( ([Ro (K li) ]-lR (K u) e ) Klp e (Kl0) + ie(K &eeemu/) lp e ((K+2(-(m/ 0()(0

(2.22)

where the m =0 terms has been separated from the sum on the right and Eq. (2.16) was used. Substituting
Eq, (2.22} on the right-hand side of Eq. (2.18} (for k =K} and using the definition of L(K, u) given in Eq.
(2.16), one obtains an equation for R(K, u) the solution of which is [for an analytical evaluation of Eqs.
(2.23) see Appendix B]

R(K, u) = W '(K, u) V(K, u),

where

W(K, u)=([R~'(K u)] 'e' '0 —n 'D(K, u)) —n [R''(K, u)] ' R'' K+,u D K+, u e ""p p t 2m'm 2am
m=i Q

-(2n im/e)l(e(Ã, )=e' "ee ' ' ee"'(Ke, e p(«e) —& tCe, e(e '"'"""'I.m=i Q )
Note that

(2.23a)

(2.23b)

(2.23c)

R(0)(k u) [1 P (0)(k)(t)(0)(u) ]-l elk lP

diverges only in the u-0 and k-0 limits, since
in all cases which we study p"'(k)-1 as k-0, and
with the form of P )()!) given in Eq. (2.10), R(0)(k, u}
-u ' for k-0 and small u. Since D(k, u)-u for
small u, and R" ()K+ 2)/m/n, u) for m c 0 does not
diverge in the k -0 limit, not all the terms in Eq.
(2.23) contribute to calculations which involve
long-time (t-~, or u-0 in the Laplace space) and
k-0 limits [see Eqs. (2.33)-(2.42}]. For the pur-
pose of such calculations a reduced expression for
the propagator may be used,

sum in Eq. (A5) and kept only the m =0 term,
which led us directly to Eq. (2.24) rather than to
Eq. (2.23}." We note that Eq. (2.24) is equivalent
to replacing (I)(')(f} by an effective waiting-time
density:

(2.25)

The generalization of the above results to systems
with internal states and in 3D is obtained by re-
placing all quantities by matrices of dimension
s && s, where s is the number of internal states
per unit cell, and by introducing the vector g „~
as

R(K, u;K) =([R"'(K,u;K)]-' g, = 2«(m/n, n/p, p/y) . - (2.26)

-n 'e '«'()D(K u e)j ' (2.24)

which is obtained from Eq. (2.23) by keeping only
the most divergent terms in u in the k -0 limit
[other terms, i.e., those which occur in the sum
over m (m = 1, . . . , n —1) do not contribute in this
limit]. In a previous publication' we omitted the

Following the same derivation as in the 1D scalar
case (performing matrix operations in the appro-
priate order), we ootain the following expression
for the matrix probability propagator R (k, u):

R(K, u) = W '(K, u) V(K, u), (2.2Va}
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where

W(K, u) =([R~'(K, u)] 'e'"'&)- QD (K, u)j
n-1 8-1 -1

-QD(K, u) g g R"'(K+g „u)D(K+g u}D-'(K u)[R"'(K u)]-'e-&g-~ ~
m=1 n=l p=l.

%-1 g-1 y-1
V(K, u) = e' '&) 1+QD(K, u) p p R&"(K+'g, u)[l —D(K+'g „,u)D '(K, u)e "~&&'&&].

nt= 1 n= 1 p=

(2.27b)

(2.27c)

In the long-time limit n -0, and for K-O, keeping
thS most divergent terms in Eq. (2.27a) yields

~,(l, t ll„o)= R,,(1, t ~)l 1„0)

R(K, u; e) =([R"'(K,u; e)]-'

—QD(K, u;z)e &"'o]. ' (2.28a)

which is the equation for the matrix probability
propagator used by us in the study of diffusion
phenomena in defective lattices.

The defect matrix D(K, u, e) is given as

D(k, u;e)=e Q [p;. ..(K)y,; „(u)
(dj

@&0)(K ) (&0)( ) ] (2.28b)

(where the term La —L"' enters only for defective
transitions).

With Eq. (2.26), the above yields

R =OR"') '+ Q[I. —(R&") ']) ' (2.31)

which gives a formal motivation for the result de-
rived above [Eq. (2.24)].

The conditional probability P of being at (l, i) at
time t [starting from (lo, j) at t =0] is related to
the propagator R via

where the sum extends over gal defects in one of
the equivalent groups of defects which repeat
periodically (denoted by (dj), with spacing
(&).1„,Pl, , yl, ), where n, P, y are integers, V,
= l„l,/, is the unit-cell volume of the perfect lat-
tice, and 0 is the inverse of the defect-superlat-
tice unit-cell volume Q=-1/V~=(nPyV, ) '. From
the structure of Eq. (2.28) it is observed that the
defect matrix renormalizes the perfect-lattice pro-
pagator, which is obtained in the limit of 0-0
(i.e., the vanishing-defect concentration).

In an operator notation we can write the ideal-
lattice propagator equation [Eq. (2.11}with the
right-hand side equal to zero] with 1,= 0 as

(2.2S)

which defines the operator L'". The addition of
defects changes the equation, in Fourier space,
for u -0 (i.e., keeping only the most divergent
terms in u), to

[L&0)+ &-).(L L&0))]R (2.30)

&n&=g nR', ",'(T., tl 1„0)
n=0

(2.33)= —R,,(l, t
l
1„0;z = 1) .

(ii) The mean time &t& it takes to reach (1, i) is
given by [see Eq. (2.4)]

rR, ,(1& r
l
1„0;a=1)dv

(2.34)

(iii) The positional moments of the probability
distribution are given by (r =x, y, z)

&1",(t)&=+ g(1-1.)",&,,'(1 tll 0)g,' (2.35)

where ~. , is evaluated at z = 1 (omitted for brevity)
and g,. is the initial probability of occupying inter-
nal state j'. Substituting the expression for P,,.
given in Eq. (2.32), we obtain

&1"„(t)&=2 ' Q Q (1 —10)"„RJ,(l, u lo, 0)

(2.36)

where 2 ' denotes an inverse Laplace transfor-
mation. Using the definition of 4 [in Eq. (2.32)],

T

X 1 — (1,.) 7 dT dT
0

t

R;,(1, t —7)l 1„0)C&),)(T)d7,

(2.32)

where the function 4)&),)(7'), defined above, accounts
for the event that the system has reached (l, i ) at
an earlier time t-7 and still remains there at time
t.

Various statistical quantities of physical concern
can be calculated readily via the propagator (gen-
eiating function), in direct or transformed spaces:

(i) The average number of steps (n& to reach site
(l, i) at time t is given by [see Eq. (2.2)]
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(I"„(f))=Z-' g P(I-I,)"„]4,". '(u)+ 5;, „,.
&& [4'~. ,(u) —O',"(u)]j

x R, , ,(l, ((„0)ge), (2.37)

where d represents a defective site. Further-
more,

g (I-1,)"„R,, (i, u
j
1„0)

=( i)",—„gR„.,(l, u
j
1„0)e'"'"-"'j-„,~k„

=(-i)" „„R,,,(k, u
j
1„0)e-'"'oj-„,.

Finally, combining Eqs. (2.37) and (2.38), we ob-
tain for long times

(2.38)

(~"„(t))= (-i)"& '

Laplace transforming over time, and partitioning
contributions from normal and defective sites
yields

mean waiting times).
We proceed by calculating the Fourier trans-

formed quantity on the right-hand side of Eq.
(2.40). Using Eq. (2.32) and partitioning the ef-
fects of defects and normal sites, we get

Q e'"'P,. (l, u
j
1„0)

=P e"'R,. (l, u
j
1„0)

1

~(e"'(u)+ 5,; .. .[C,(u) C"'(u)]],

where d denotes the location of defects in the lat-
tice and the primed summation is over defects in
one of the equivalent groups of defects (denoted by
fd]): this allows for several defects in the re-
peating group. The calculation of the equilibrium
occupation probability is performed in the k = 0,
u-0 limits [see Eq. (2.40)]. In this limit, the
above expression reduces to

g e"'P,.(l, u j I„O)

x Q C(0. '(u)+ 0g [O,(u) —C(,"(u)]
jj' jj u)

x [R„,(K, u((„,0)e '"' ]0 „g,.),
(2.39)

where K is in the first Brillouin zone of the defect
snperlattice. To evaluate (E"„(t))for all times one
must replace R,,'(K, u

j 1„0)by

=R,„(k,u j 1„0)

x C' u +Q 4'&u —Ci' u

Consequently, for any intexnat state j
P, „=lim uR, .,(k = 0, u

j 0, 0)
g~p

X e")u + n C, u —C"' u
[ffJ

(2.41)

(2.42a)

y-1 8-1 0t -1
2Tr 27rg R,, SC„+~ —,ff, +p —,
2'tCee —,u

i 1„0),,

where we have followed an analysis similar to that
in Eq. (2.15). The evaluation of Eq. (2.39) in the
long-time (diffusion) limit, i.e. , u-0 (f-~) can
be simplified considerably, as shown in Sec. IV.

(iv) The equilibrium occupation probabilities for
occupying internal state j in any unit cell is given
by

P —= lim gP (l,. t~ 1„0)g
f -woo

=((eu u QP, „((, ((„0)g„)
u~o 1m

=lim [uP,,(k=0, u
j 1„0)], (2.40)

where g is the initial probability of occupying in-
ternal state m, and in the last equality we have as-
sumed that in the long-time limit the effect of the
initial state vanishes and Z g = I (an exception
to the above are systems characterized by infinite

The probability of occupying a, defective internal
state d (i.e. , an internal state on a defect site) is
given by .

P", '= n lim[uR, ,(k=0. , u
j
0, 0)eR(u)]. (2.42b)

The probability of occupying a normal internal
state is given by the difference between Eqs.
(2.42a) and (2.42b), P& „—P',"'„. Detailed bal. ance
relations can be obtained by taking ratios of equili-
brium probabilities of occupation.

(v) Finally, the double Fourier transform of the
probability Z;, P, ,(r, t j 0, 0)g, , a. veraged over all
initial internal states and summed over all final
internal states can also be calculated leading to
the scattering law S(k, ~) as discussed in Sec. VI
of the following paper.

B. Comparison of the internal-state- and
defect-renormalized-propagator methods

We have previously presented a continuous-time
random-walk formalism capable of treating sys-
tems with internal states and defects. ' However,
that method, while straightforward, becomes cal-
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culationally prohibitive for small defect concen-
trations. Consequently, the new defect-renor-
malized-propagator method offers distinct advan-
tages. To demonstrate the difference between the
two methods we evaluate the position variance for
motion on a one-dimensional defective lattice,
using both methods.

Consider a 1D lattice composed of two types of
sites (1 and 2) arranged alternately and spaced a
distance I apart [see Fig. 1(a)]. The two types of
sites are distinguished by their waiting-time dis-
tribution functions

a~ at -y be bt- (2.43)

( o
@(I,t) = 2ae" ~l P+

—.
' be "(5, ,+ 5, ,)I-

0

(2.45)

Since there is no bias in the system, we obtain for
the variance o2(t) [see Eq. (2.39) for a system with
two internal states and no defects, i.e. , A=o]

o'(f) = «'(f))

where a and b are the rates of leaving site 1 and
site 2, respectively. Hence we obtain [see Eq.
(2.9)]

(2.44)

(i.e., nearest-neighbor transitions only, with
transition probability —, to each side), where here
and throughout the paper when the argument of
the 5 function, appearing in the transition matrix,
changes by one this implies one lattice spacing I
of the mathematical random-walk lattice. In ad-
dition, we note that the Fourier transform variable
k is defined in units the lattice spacing of the ran-
dom-walk lattice [e.g. , in Eq. (2.50) k represents
kL].

According to our CTRW-internal-state method, '
we divide the lattice into unit cells each of length
L =2l [denoted by dashed lines in Fig, 1(a)], with
two states 1 and 2 in each unit cell (called the in-
ternal states). Next we construct the transition
matrix

in the long-time limit will be independent of the
choice of the initial occupation probabilities of the
internal states g, and g, . Performing the indicated
operations, Eq. (2.46) yields (as f -~)

o'(f) =-'(L')[.b/(. +b)]f. (2.48)

l, n j+1 l, n j-j.j «oo

&& [g,(u) —g"}(u)]R(nj, u) . (2.49)

After Fourier transforming over /, we obtain, in
the diffusion limit u-0 and for small k,

R(k, u) =}R"'(k,u)

—(1/n)[g, (u) —g"'(u)] coskJ ', (2.50)

where the perfect-lattice propagator R"' is given
by

To compare to Eq. (3.14) in Ref. 2 we note that
here a(b) is the total transition rate for leaving
site l(2) where there A =2a (B=2b} is the total
rate.

If we consider now a 1D system in which for
each n- 1 sites of type 1 we have one site of type
2 and these are placed periodically, the unit-cell
dimension will become I.= nl. Correspondingly,
there would be n internal states in each unit cell.
If n is large, we- are confronted with nx n matrices
of large order.

In contrast to the above method, in the renor-
malization procedure state 2 is considered as a
defect, and instead of working with n && n matrices,
the elements we use are scalars. We consider the
case shown in Fig. 1(b) and choose gt'}(t) = P, (t)
[given in Eq. (2.43}]as the perfect-lattice waiting-
time distribution function, and P, (t) given in Eq.
(2.43) as the corresponding function characterizing
the defect. Again, we consider nearest-neighbor
transition only, i.e., p(1) =p(—1) and p(ill&1) =0,
and let t -~ (diffusion limit). Equation (2.11)
yields (starting at I,=o, t=o)

R(I, u} —P P(I —I')q"'(u)R(I', u)
l'

=(-f)'& ' g,k. [I-~(k, u)l.'lb=o
mn

R"'(k, u) = [1 —P'(u) cosk] '.
Using Eq. (2.39), we find

(2.51)

where

x a (a}}}„), (2.46)

(2.47)
(I/(a+ u) 0

!

C'u =

O I/(b+u)~

and }It(l, t) in Eq. (2.45) has been Laplace and
Fourier transformed In Eq. (2..4'I} the result

o',(t) = l'ftt, (2.53)

which is the perfect-lattice result. The above
demonstrates the feasibility of the calculation via

o'(f) = nl'tab/[a+ (n 1)b]. —

For L = 2l and n = 2 this reduces to the previously
derived result [Eq. (2.48)]. Note that when n-~
(vanishing defect concentration) or when sites 1
and 2 are indistinguishable (a= b),
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I

a/2 h
-&2r

b/2

T T T'
IQ/2 Ct/2 IG/2

wg
b/ ~b/

I

~ ~ . ~ ~
' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~

t l I

I

FIG. 1. (a) A 1D random-walk lattice with two alternating states is shown. The distance between sites 1 and 2 is E,
and the unit cell (dashed lines) has length 2&. The total rates of leaving states 1 and 2 are a and b, respectively. The
pr'obabilities of going to the left or right from states 1 or 2 are ~. The lattice may represent the centroid positions of
a dimer performing a 1D "channeled" motion on a crystalline surface [e.g. , W dimer on a W(211) surface (see Fig. 6
in paper II (Ref. 10)], or a 1D ordered, alternating two-component system. The random motion is solved by two
methods. First, the lattice is treated as having two states per unit cell and a 2 &&2 Green's-function propagator is de-
rived. An alternative approach treats state 2 as a periodicallyoccurringdefect, and a defect-renormalized scalar
Green's-function propagator is derived. (b) The defects (state 2) are now spaced a distance nl apart. 'In the text, it
is shown that the defect-renormalized-propagator solution is much simpler than the g && pg matrix internal-state approach.

the defect-renormalized-propagator method in
contrast to the difficulties encountered with the

'-previous internal-state method. %'e emphasize
that in both methods only the assigned waiting-
time densities p, (riormal sites) and lIl, (defect
sites) are needed to solve for the evolution of the
system.

It is interesting to observe that, to first order
in the concentration of defects c=1/n, an expansion
of Eq. (2.52} yields

C'(t) = p'(t)(1 C[(p /p )ea ~k'ikll —1]}

particle, using (i} the renormalized-propagator
method and (ii) the internal-state method.

(i) The mean position of a particle starting at
the origin at t=0 is defined as

(l(t)) = P l r(l, t E0, 0) .

The expression for the positional moments in the
long-time limit given in Eq. (2.39) reduces in this
case (n=1 and t, =0) to

&l(t)&=- &' C"'(.) -[~„(.)-C"'(.)]1
n

+ O(c'), (2.54)
X —g jp, gg (2.55)

where the transition rates a and b are written in
an activated form. The above result is similar to
the effective diffusion constant in a system con-
taining randomly placed defects, when treated in
the average- T-matrix approximation. "

As an additional example consider the biased mo-
tion of a particle on a 1D periodic lattice of spac-
ing t composed of two types of sites (1 and 2) with
sites of type 2 separated by a distance (n —1)l
[see Fig. 1(b)]. These sites are characterized by
the waiting-time distributions ltl, (t) and iIl, (t) given
in Eq. (2.43). For simplicitly we will allow only
nearest-neighbor transitions, with probabilities
p and q=1-p for transitions to the right and left,
respectively. In the following we will demonstrate
the calculation of the mean position (l(t)) of the

where

O"'(u) = (a+ u) ', C,(u) = (5+u)-'. (2.56)

Using Eq. (2.24) for R(k, u) with D(k, u) as defined
in Eq. (2.17), we obtain

R(u, u) =([R"'(u,u)]-' -(1/n)
li (5c kt &e at)--
~ (peikl+ e-ikl)}-l (2.57)

R(0)(p u) 1 ge at(peikl+qe ikl)--(2.58)

Substitution of Eqs. (2.56)-(2.58) in Eq, (2.55)

The ideal-lattice propagator R"' is given [see Eq.
(2.12)] by
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yields

«(t)&= [ab/(a+ b)](p —q}n&t. (2.59)

(2.60)

Using Eq. (2.39) with Q=O, n= 1, and the matrix
C(u) as given in Eq. (2.47), we obtain

(2.61)

The above yields, in the long-time limit, where
the result is independent of the choice of initial
occupation probabilities of the internal states g,
and g„

(2.62)

This result is equal to that obtained in (i}by means
of the renormalized-propagator method when the
systems considered are made equivalent by setting

2 ~

III. PROCEDURE

To facilitate the use of the method, we outline
in the following the main steps in its application:
SteP 2'. Examine the allowed configurations of the
migrating species on the lattice, including internal
states, and map these onto a periodic lattice with
the smallest possible unit cell. SteP 2. Label the
allowed transitions into and out of a normal unit
cell. Similarly, label all transitions involving the
periodically placed defects. Stej 3. Find the di-
mensions (n, P, y) of the defect superlattice unit
cell [volume V~—= Q '= o.Py(l„l, f,), in 3D]. Stej 4..
Construct the transition matrixes +"'(I, t) and
4(I, t) for normal and "defective" transitions [see
Eqs. (2.5) and (2.9)]. Subsequent steps involve
these matrices (of order m && m, where m is the
number of internal states in each unit cell}, and

Obviously, when there is no bias of the motion,
i.e., when p=q= —,', «(t)& vanishes. "

(ii) We turn now to the evaluation of «(t)& via
the internal-state method. Here we consider sites
of type 1 and 2 to alternate, corresponding to m= 2
in (i). The unit cell for the random walk is of
length I = 2l and contains two states, sites 1 and
2.

The transition matrix 4'(I, t) is similar to the
one given in Eq. (2.45) except for the inclusion of
the bias, and its Fourier and Laplace transform
is given by

5
(p e'"+q))b+u

their discrete Fourier (Eq. Al) and Laplace trans-
forms, @'o'(k, u) and 4'(k, u). SteP 5. Using Eqs.
(2.12), (2.27), and (2.28), construct the propagator
matrices 8+'(k, u; z) and R(k, u; z) andthe defectma-
trix D(k, u;z) [see Eq. (2.28b)]. Step 6. Perform
the matrix inversion indicated in Eq. (2.27a), de-
riote the determinant of the matrix by 4, and the
matrix of cofactor s by M, [i.e. , B(k, u; z) =M/&;
see Sec. IV].

Depending on the desired application, various
quantities can be calculated as follows: Step 7.
Calculate the positional mean and variance using
Eq. (2.39); in the long-time limit one may use Eqs.
(4.7) and (4.8), respectively. Equation (4.9b) is
used if the mean vanishes. Equations (4.12) and
(4.13}are employed if there is only one state per
unit cell. Step 8. Calculate moments for the num-
ber of steps and time it takes to reach a site, and
equilibrium probabilities of occupation from Eqs.
(2.33) and (2.34). SteP 9. Calculate the scattering
law S(k, ~) [see Eq. (6.5) in the following paper).
Stej 20. When possible [i.e. , when the number of
unknown transition rates equals the number of re-
lations from the calculation of diffusion moments,
detailed balance relations, and S(k, v)], individual
transition rates can be expressed in terms of ob-
servable quantities, thus allowing the determination
of individual activation energies and frequency fac-
tors.

IV. CALCULATION OF MEAN AND VARIANCE:

SHORTCUTS

While the procedure given in Sec. III is valid at
all times, the calculations simplify considerably
in the long-time limit. We introduce here certain
shortcuts in calculating the positional mean and
variance in the diffusion limit as t -~. This
analysis will save quite a bit of time when there
are several internal states per unit cell. Also
this analysis applies when periodic defects are
present and the defect-renormalized propagator
is used in the long-time limit [Eq. (2.28}]. All
the calculations involve the matrix 8$,u}=M/&
[see Eq. (2.28a} and Step 6 in Sec. III]. The mean
is given by (say, in the x direction), for the initial
cell Y, =0,

(4 1}

where

4„(u}= C",,'(u)+ Qg [4'„(u}—C",,&(u}]
d

[see Eqs. (2.32) and {2.35)]. Since the initial in-
ternal state which occurs with probability g& does
not affect the result in the diffusion limit (except
for systems with infinite mean waiting times), we
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can write, since 4 is diagonal, 96 9M $ 92M

9&„9k„& 9k'„

In the diffusion limit (u - 0, i.e. , f -~)

(4.4b)

=-ig ''Tr 4

Similarly,

9'R
(I2(f))„=-2-' Tr C

t
]

k~o

(4.2)

(4.3)

lim u '&= &0+u+y+. . . ,
Q«0

where &, is independent of u. Thus

lim u"6 "= rV,
"[I—nu&, /40+ O(u')].

Q 0

(4 6)

(4.6)

where r =x, y, z. In additi. on,

9R 1 8& 1 9M
8jlg„42 9$„™6 9g„

92R 2 96 ~ $ 9 b
g3 9y ~ Q2 9/2r r r

(4.4a)

All other functions X(k, u), besides &(k, u), that
we will encounter have the behavior

lim X(k, u) = X, + uX, +. . . .
Q«0

In the following, subscriptsO, 1, .. . are used as
in the above expression. 'Thus we write

96 -3lim (l(t)), =limlim (-f)Tr2 ' -u '&,' (M4&), +u '4, ' . — 4, +2u '&,'&,
i

(MC),
t«eo f «(} Q«0 0 0 9&r)o

M4 u 'g MC)

Performing an inverse Laplace transformation,
we have

lim (l(f))„=lim ifLO Tr(M 4)0+ const,86
g«oo ~-O»r 0

where x=(x,y, z). Consequently it is seen that we

need not work with the full expressions for 4,
Bb/Bk, M, 4, etc. , but only their limits as k and

u approach zero. In practice this is a great
simplification. The expression will further sim-
I&iffy when we show that bo ——Tr(MC)0 during our
analysis of the variance.

For calculating the variance, we find

86 86 86'
—&im &&(i»,'= i&md i'&, '$ —

&

r&i(M oo &'&+2i -»i~&'
~ &

r~lM@)&j'+ &t''
4 86 8~ BM

x[Tr(MC)0] + 604 „Tr(MC)0 Tr(M@), —603 „Tr —
4&0 Tr(M4&)0

2 96
lim (I (f)),= -lim Z ' lim 2u 360~ Tr(M4&), —6u 2b, ,604 Tr(M@)0
g«oo k«0 Q«0 0 9a„0

+4u 40 Tr MC 0

86 8 b
+2u a~3 Tr MC, —u b,q2, Tr MC'

08k„0 9k„0

2 2a ' Tr

Thus
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o,'(f) =-«'(f)), —«(i)&,
'

k„ k„ k„ . k„, (4 8)

(l(t))„=limit Ao'
~0

' ek. )0
If there is no bias, then

(I(i)),= ~ , (4.9a.)

where C is zero or a constant of the order of the
lattice spacing (depending on the initial internal
state), and as i-~

o,(t) = lim i&,~-0», )P
(4.9b)

When there are no internal states 8 is a sca-
lar and ~ is not introduced, thus modifying our
analysis. Consider, e.g., a random walk in 1D
with a group of N defects which are repeated
periodically with spacing y. The random walker
leaves a normal site with rate A, and the ith
type of defect with rate A&. Thus

where n, o
= Tr(MC)0 has been noted as being nec-

essary for the t terms to cancel. So one need
not calculate the matrix M, but only the scalar
Ap inste ad. This can now be used to simplify the
expression for the mean as t-~ to
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APPENDIX A: PARTIAL DISCRETE

FOURIER TRANSFORMS

(A1)

2'Ir

fl)) =(22)-' f ".
0

f$)e '"' c% (A2)

Consider first a 1D lattice and define the partial
Fourier transform

f „(k)-=g f(yf +n)e'~'&'+"'
g

—wOO

(A3)

We define the discrete Fourier transform [Eq.
(A1)] and its inverse [Eq. (A2)] on a,n infinite
lattice of dimension d as

f(k)= g " g fK)e'"''
~ ~d)O g ~220

1 1 1 1
limO(u) =—+-

A y&& A., A

Now

limR(k, u) = 1 — cosklA.-o A+&

——gcosdl( ' —
)

and we find

(4.10)

(4.11)

Using Eq. (A2) we obtain

f, „(I)
2'tr

(22) ff(l!')8''" ' """"'dl!'

2'Il'

f()d)2(2 —2'+
)

dd'
0

=-' g f((2. 2w™),
y ~ ( y

(A4)

(A5)

lim (I(t)) = ilim 2 ' l-im ' 4(u)
sR(k, u)

g~ ce Ao up

=ltZ 'lim[4(u)] ',
I 0

where I =imp(k)/Sk~2. , [(see Eq. (2.5)]. In a
similar manner when (l(t)) =0 we can find that

(4.12)

o'(i) = lim 3 'f/4(u) .
ce 0

(4.13)

Thus in this case the calculation involves only
4'(0). The above analysis holds in.higher dimen-
sions with (l) and o replaced by (tj, and o2, and

E and E' replaced by E„and l „'.

where the summation is over all integral values of
m (positive and negative) such that k+ (2@m/y)
a[0, 2m). Equations (A3) and (A5) can be easily
generalized to higher dimensions, say, d, to
yield

(y, x xy.) 'Q"
my

( 2im 2' md

flak,

+,. . . , k
y yd (A6)

For a finite lattice of dimension d (the number
of lattice points being N, x x N~ the discrete
Fourier transforms are defined as
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1F
N~

f%)= g ' ' g f%)e'"'
lg=&

(Av)

where
(X~ ]. 2'S,(z, u) =Q 1 —(I)'o) (u)cos K+

Q (B7)

and
N1 Ng

f tI) = (N, x ~ ~ ~ x N, )~ g ~ ~ ~ g f$)e '"'
+~= 1 S~ =1

(As)

where k, = 2vS, /N;, & = 1,.. . , d and S,. = 1, .. . ,N, .
For the partial discrete transform

Ng Ng

2'S,(K, u) = g 1-g(0'(u)cos~z+

x cos~z+ 2'
n

[R' '(k u)] '= 1 —(C)"' (u)cosk

=1 —acosk/(a+u) .

(BS}

(B9)

)& ~ik'(y1l1 ' '
y„ l~ ) (A9)

APPENDIX B

In this Appendix we evaluate analytical expres-
sions for the probability propagator R(z, u) given
in Eqs. (2.23) for the 1D system described in Sec.
H B. The defect matrix D{k,u) [see Eq. (2.17)]
for that model with the waiting-time distribution
functions ((o'(t) =ae " and g, (t) =be ", [see Eq.
(2.43)], is given by (the spacing between neighbor-
ing lattice points is normalized to unity)

D(f, f', f) =~q(t) [-,'(6.. .+, + 6..
~ . ,)],

~y(t) =q.(t) —0"'(t),

(Bl)

(B2)

and its Fourier and Laplace transform is given by

D(k, u) = a(I)(u) cosk,

weobtain thesameresult asinEq. (A6), exceptkcan
only take on the N, x ~ ~ ~ x N„values in Eq. (As).

The evaluation of the sums in Eq. (B6) proceeds
in a manner similar to that used by Montroll" for
a similar case. First we write

2
S,{Z,u)=- &,&

xg ef (X+2&j/f}f)

(ei(++ ~J)()') P)(e'&++2~&)'~) 1/~)
(Bloa)

where A is a solution of the equation

A ' -4 (2/() + 1 = 0 . (B10b)

). 2 t( ei(If+2))J/a)i)
s, (K, u)=(A- —

I
—„,

(

~- $(IC+ 2&j/ n)P
+ n I

~

A
(B11)

For definiteness we choose the smaller root

A =(1/q) -[(1/y)'-1]"
=1+u/a —[(u/a)(2+u/a)] ' ' . (B10c)

Expressing the right-hand side of Eq. (B10a) in
partial fractions and expanding the denominators,
we obtain

~here

b a u(b —a)
(u) =

b+u a+u (b+u)(a+u) (B4) l ("'"'~ )~ —1=(++1)0 „—1,P ggCf
j=0

(B12)

We now interchange the order of summation in
Eq. (Bll) and use the relation

R(K, u) =W '(Z, u)V(Z, u),

W(z, u) =[R( )(K,u)] ' —o) 'D(K, u)

(2.23a)

—n-'[R&'&(Z, u)]-'~ic (u)S, (Z, u), (B5)

V(z, u) =1++ 'ag(u)

x [S,(z, u) cos(K) —S,(K,u)],

Assuming that the particle starts at l o
= 0 at time

zero, we can write the propagator R(K, u) in Eqs.
(2.23) as

X 1x (Q 1) „~ —„)

where

1-X 1-X

X = e' /A, X = e '" /A

which yields the result

1 g+Q
S (K u)=2 A. ——

1 a

(B13)

(B14)
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A similar calculation leads to

(B15)

Substitution of Eqs. (B13)and (B15) into Eqs. (B5) and (B6) yieLds the final expression for R(K, u) in Eq.
(2.23a).
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