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Multiple-scattering approach to band theory

J. S. Faulkner
Department of Physics, Oak Ridge Aationa/ Laboratory, Oak Ridge, Tennessee 37830

(Received 1 March 1979)

Some new developments in multiple-scattering theory are described in connection with the problem of band
theory. Functions that are the logical extension of incoming and outgoing waves are defined for points within
the sphere that bounds the range of an atomic scattering potential. Taking these functions into account, a
multiple-scattering equation for band theory with general non-muffin-tin potentials is derived. This equation
contains terms that were not included in earlier formulations of this problem. A new set of formulas for
calculating the scattering from an atomic potential is introduced. It is shown that, among other things, these
formulas can be used to derive simplified and linearized band-theory equations entirely within the multiple-
scattering framework. Both algebraically and numerically, it is shown that these linearized equations work
well. In particular, for the special case of a muffin-tin potential, they will give exactly the same results as a
fully converged Korringa-Kohn-Rostoker calculation at any chosen energy. Linearized band-theory equations
derived earlier by combining the variational and multiple-scattering approaches are obtained by manipulating
the equations from this study.

I. INTRODUCTION

'The first use of the mathematical technique
known today as multiple-scattering theory to solve
a physics problem was reported in 1892 in a paper
by Rayleigh. ' The major early steps in the devel-
opment of this theory were by Ewald' and Kas-
terin. ' The theory was first used for the calcu-
lation of stationary electronic states by Korringa, .'
It has been developed for many purposes within
the area of solid-state physics by Lax, ' Kohn and
Rostoker, ' Morse, ' Slater and Johnson, ' and
others.

'This paper describes some new developments
in this theory. The problem considered is the
calculation of the electronic states in an ordered
solid, but the methods can clearly be applied to
other problems as well.

Section II briefly reviews the multiple-scattering
formalism and arrive at the form of the equations
that is most useful for the derivations in this
paper. In Sec. III, the Korringa-Kohn-Rostoker
(KKR) equations are rederived in such a way as to
highlight the aspects of these equations to be dis-
cussed.

The first completely new results appear in Sec.
IV, wherecertain functions are introduced and it
is argued that they can usefully be looked upon as
the extension of the incoming and outgoing waves
inside of the sphere that bounds the range of the
potential. A knowledge of the properties of these
functions is very useful in multiple-scattering
derivations. In particular, they are used in Sec. V
in a derivation of band-theory equations for the
case of non-muffin-tin potentials. It is shown that
certain terms that involve these functions were
left out in previous derivations of these equa-

tions. ""
In Sec. VI, a new set of formulas are presented

that are very useful for the calculation of the
scattering from either a muffin-tin or non-muffin-
tin potential. These formulas could usefully be
inserted in the standard multiple-scattering equa-
tions or they can be used to derive simplified and
even linearized versions of these equations.

'The recent interest in linea, rized band-theory
expressions has been inspired by the successes
of the linearized-muffin-tin-orbital (LMTO) for-
malism of Andersen. " More recently, the lin-
earized-augmented-spherical-wave (LASW) for-
malism of Williams et a/. "has had similar suc-
cess. Both of these approaches rely on multiple-
scattering theory results, but they also use the
Rayleigh-Ritz variational method. In this sense,
they can be looked upon as hybrid techniques.

In Sec. VI, I point out that the multiple-scatter-
ing equations can be reformulated so that the in-
coming waves always appear to have the same
energy, E,. From this starting point, using the
quantities introduced in the preceding sections
and making certain clearly defined approximations,
I obtain a set of equations that I call pivoted-
multiple-scattering (PMS) equations because all
of the calculations necessary for a full band-theory
study can be 'done at one pivotal energy, E,. It is
an easy step to go from the PMS equations to a
linearized Korringa-Kohn-Rostoker (LKKR) band
theory by expanding them in energy measured
relative to an a,rbitrary origin, &„, and ignoring
terms of higher order than linear.

The resulting LKKR equations have much in
common with the LMTO and LASW equations, but
they also have some distinct differences. For
example, if a muffin-tin potential is used in the
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II. MULTIPLE-SCATTERING EQUATIONS

In present-day terminology, the multiple-scat-
tering equations are just another way of writing
the Lippmann- Schwigner equation"

Ie&= Ix& G.vie&,

for the special case that the potential may be
written as a sum of potentials

(2 1)

(2.2)

calculations the LKKR equations will lead to
exactly the same results as a completely con-
verged KKR calculation for one value of the energy
which can be chosen at will. These results are
illustrated by a numerical example in which the
bands are calculated for a typical transition metal.
The way that the calculations can be done for non-
muffin-tin potentials is indicated.

In Sec. VIII, I show how the PMS equations can
be manipulated into the same form as the LASW
and then the LM'TQ equations. Since the PMS
equations are derived entirely on the basis of
multiple-scattering theory, a general investigation
of the question as to what advantages should accrue
from the addition of a variational step is made. It
is shown by a numerical example that at least in
the areas covered in this paper, the multiple-scat-
tering equations are sufficient.

The various sections in this paper are more or
less self-contained, so the reader who is pri-
marily interested in one question might go directly
to the relevant section. In my view, however,
the arguments in the different sections support
each other and should be considered as a whole.

shown that this t matrix takes the form

T =gq„, (2.8)

where

(2.9)

and t„ is the t matrix for scattering from one of
the individual potentials

f„=v„(l+ G,t„) .

Defining an incoming wave I(„') by

(2.10)

(2.11)

makes it possible to rewrite (2.6) and (2.9) as

IP) = Ix)+Q G.i. I&'& (2.12)

and

I~.'& = Ix&.QG.f.I~.'& (2.13)

These have been called the fundamental equations
of multipl. e-scattering theory. " They can be used
to describe the scattering of a particle by a
collection of potentials, but they can also be used
to look for stationary states. Korringa' was
apparently the first to do this. Stationary states
occur for the energies at which the t matrix, T
is singular because at those energies the scatter-
ing equations have nontrivial solutions in the
limit that Iy) approaches zero. Another way to
find the energies and wave functions of stationary
states is to set

The operator G, in (2.1) is defined by Ix&=0, (2.14)

G, = lim (E + ia —H, ) '. (2.3)

It is useful to recall that the Lippman-Schwinger
equation has the property that if l)i& is a solution
of

I'4& = G.41('& (2.15)

and look for solutions of the resulting homogeneous
equations. This will be done in the following.

It is frequently useful to define an outgoing wave

by

H. Ix& =~ Ix&,

then
I g) is a solution of

«.+v) le&=&l(&

(2.4)

(2.5)

and rewrite (2.12) in the equivalent forms

(2.16)

corresponding to exactly the same energy, &.
The Lippmann-Schwinger equation is frequently

rewritten in the form

which says that the total solution is the sum of the
outgoing waves from all of the scatterers, or

(2. 17)
lq&

= I»+G.T I»,
by introducing the t matrix

T = V(1+ GOT) .
For the potential defined in (2.2) it can be

(2.6)

(2.7)

the solution is the sum of the incoming and outgoing
wave associated with any scatterer n. It should be
noted that these solutions are valid for all r and
not just the region of space in the neighborhood of
one scatterer. 'They are equivalent because ac-
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cording to (2.13) the incoming wave on a given
site is the sum of the outgoing waves from all the
other sites .

I
0!& =g I 4& (2.18)

These equations can be given concrete form in
the position representation assuming that the po-
tentials v„are local, (r

~
v„~ r') = v„(r)5(r —r'), and

that v„(r) = 0 outside of some bounding sphere of
radius S„. The potential v„(r) describes the scat-
tering due to an atom in our applications, and we
will assume that the position of the nucleus is at
the center of the sphere, 0„. By the standard
methods of scattering theory it can be shown that
when r„= r —B„, and t'„&S„, the solution in the
neighborhood of the nth scatterer may be written
as the linear combination

ti&(E, r) = Q g" (E, r„)d",
L

where

(r, (E, r„)= Y~(r„)j,(o. ~„)

(2.19)

—. in+ Yr, , (r„)k',, (o&r„)Tr,, r, (E) . (2.20)
L'

In this function L stands for the pair of indices l,
m, Yz(r) is a real spherical harmonic, j,(ax) and
h', (o.'r) are spherical Bessel and Hankel functions,
n = ~E, and T~. ~ are the elements of the t matrix
in the angular momentum representation, T",
which describe the scattering due to v„.

The Wigner reaction matrix" R" is related to
the t matrix

g~ (E, r„)= Z ~, (E, r„)T~, ~ . (2.25)

If follows that the solution, g(E, r), can equally
well be expanded according to (2.19) or (2.22)
a,s long as the expansion coefficients are re-
lated by

I LL' +L' (2.28)

From (2.17) and the expansion in (2.19) it
follows that the incoming and outgoing waves near
the nth scatterer can be identified as

g„'(E, r„)=P Y~(r„)j,(nr„)d~, (2.27)

and

0„'(E, r„)= -Q Y~, (r„)j,, (nr„)X~, ~ C~,
L'

(2.29)

0.'(E, r.) = o'P Y (r.)n, (~~„)C",. (2.30)

This last form is the one that we will use in Secs.
III-IX.

g(E, r„)= in+-Y~, (r„)h',. (nr„)T~, ~d~. (2.28)
L~L

'This is perhaps the most natural way to express
the picture of incoming and outgoing waves from
the scattering theory point of view, but the equiv-
alence of the expansion in (2.19) and (2.22) has
the effect that it is equally proper to write the
incoming and outgoing waves as

I'll TB(i ~qTB) (2.21) III. BAND THEORY FROM
MULTIPLE-SCATTERING THEORY

Another function that can be used to expand the
solution in, the neighborhood of the nth scatterer
as in (2.19),

g(E, r) = gZ~(E, r„)C~z, (2.22)

1s

Zg (E, r„)= nY~ (r„)ri, (n v „)

(2.23)

The quantities that appear in this equation were
identified in connection with (2, 20) with the
exception of the spherical Neumann function n, (nr),
and the matrix X" which is defined as minus the
reciprocal of the reaction matrix

The multiple-scattering equations are particu-
larly easy to solve when all of the potentials v„(r„)
are the same, the scattering centers R„ form a,

Bravais lattice, and the bounding spheres outside
of which v„(r) =0 do not overlap. A simple example
of such a, lattice is pictured in Fig. 1. This is a
reasonable representation of the potential field
seen by an electron in a crystal that has one atom
per unit cell, and the extension to more than one
atom per unit cell is obvious. Inserting the in-
coming and outgoing waves from (2.29) and (2.30)
into (2.18) leads to

-Q YL, (r)j ~, (ur)X~, ~Ct
L'sL

X"= —(8") '.
Using Eq. (2.20) it is easy to show that

(2.24)
= nQ Q Y~(r„)n, (ar„)C~~,

n&0 L

where the superscript has been left off of the

(3.1)
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Mz, I Cr = 0, (3.5)

where

M~. ~(E, k) =X~.~(E)+ B~,~(E, %). (3.6)

This result was first obtained by Korringa4 with
essentially the same derivation that is used here.
In that work, the further assumption was made
that the potentials v„(r) are spherically symmetric
in which case the matrix Xz, ~ becomes diagonal
with elements

a cot'gr&l, I. (3.7)

FIQ. 1. Illustration of a lattice for which multiple-
scattering theory can be applied most easily. There is
one atom per unit cell, and the bounding spheres do not
overlap.

( n elk R~C (3 2)

matrix X defined in (2.24) because all of the scat-
terers are the same. In writing this equation, we
have assumed that the point r is within the central
unit cell but outside the bounding sphere of the
potential in that cell. We have also set C~ =CI,.

'The periodicity of the system can be used to
derive Bloch's theorem, which in the language
being used here takes the form

where g, are the well-known phase shifts of scat-
tering theory.

The spherically symmetric potentials that lead
to (3.7) are usually referred to as muffin-tin po-
tentials. 'The more general potentials used in
deriving (3.6) might be described as anisotropic
muffin-tin potentials because their bounding
spheres cannot overlap and the potential must be
a, constant (which we have chosen to be zero) in
the interstitial region outside the spheres. The
generalization of the band-theory equations to
anisotropic muffin-tin potentials is straightforward
and has been discussed by other authors. "

Equations (3.5) and (3.6) [with the condition
(3.7)] are generally referred to as the KKR equa-
tions because they were derived independently by
Kohn and Rostoker' using the Kohn variational
technique. In this approach, the function g(E, r)
that minimizes the functional

Inserting this into the right side of (3.1) leads to
an expression of the

form+

fz�
(E, r)CI, where

(3.3)

E(d)= f d(E, rl V(r)E(r)dv,

where

(3.8)

Since the Neumann functions have no singularities
except for the points 5„, the f~~(E, r) are regular
within the central unit cell and it must be possible
to expand them in that region in terms of spherical
Bessel functions

y,"(E, r) =Q I', , (r)g, , (or)E,.,(E, k). (3.4)

The development of the mathematical expressions
for calculating the expansion coefficients Bz,.z, (E, k)
in a numerically efficient way is one of Ewald's
maj or theoretical contributions. 'These coeff icients
are called structure constants in band theory, and
formulas for them are available in the literature
for both one atom per unit cell" and several atoms
per unit cell."

Inserting (3.4) into (3.1) and equating coefficients
of the Bessel functions leads to a set of homo-
geneous equations for the C~,

E(r}= d(E, r) —fG,(E, r, r')V(r')d(E, r')dv
(3 9)

is sought. In this particular application, . the
minimization principle plays no role because the
derivation is unchanged if one carries out their
manipulations to obtain a g(E, r) that causes E(r)
to be identically zero. Since this amounts to
solving the Lippmann-Schwinger equation (2.1)
formulated as an integral equation [with y(r) = 0],

d(E, r)= JG (E)v( )d.(E, ', )rd'v , (v ,)())'
it is not surprising that the results are identical
with the ones that a,rise from the multiple-scat-
tering equations (2.12) and (2.13).

The KKR matrix M in (3.5) can be made finite
by ignoring contributions that correspond to an
angular momentum greater than l . 'The dimen-
sion of M should then be (2l ~+ 1)', but there is
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a standard technique that can be used to reduce
it. This is the partitioning technique" in which
the elements of the matrix M that correspond to

0 1 l1 are used to form a submatrix ~11
and the coefficients CL corresponding to the same
l are written as a, column matrix C„while the
elements of M and the coefficients CL that corres-
pond to /= l, + 1, l, +2, . . . , l,„are used to form
M» and C,. Using the elements of M that couple
the small l's to the large ones to form lM» and

M», it is easy to see that (3.5) can be rewritten

(3.11)

2 ™2221 1 ' (3.12)

'These equations are exact and are simply another
wa, y of writing (3.5).

If the scattering is small in the angular momen-
tum channels 1, & l ~ l the corresponding ele-
ments of X«, are much larger than the structure
constants B«, (E, k). Therefore, a good approxi-
mation to (3.11) and (3.12) is

(M„+M„B„M»)C,= 0, (3.13)

C2 —R22M2, C, , (3.14)

where we have made use of (2.24).
'This partitioned form of the KKR equations

makes it possible to find eigenvalues that are very
well converged in E using matrices of dimension
(2l, +1)' rather than (2, +1)'. A numerical
example that illustrates this convergence is shown
in Sec. VIII. The coefficients corresponding to
l, (l » l can then be found from (3.14).

'The wave function can be expressed within the
interstitial region using (2.16) and (2.30) as a
multicenter expansion

the sum over I ' in (3.16). Thus, starting from a
KKR matrix of dimension (2l, + 1)' we have seen
how to obtain eigenvalues that are converged as
well as if we had included E's up to l,„, and wave
functions corresponding to arbitrarily large values
of l.

IV. WHAT'S INSIDE THE BOUNDING SPHERES?

In the derivation in Sec. III, we focused our at-
tention on the interstitial region outside the bound-
ing spheres where the potential function can be
taken to be zero. This is thenormal approach in
multiple-scattering theory because it is in this
region that the incoming and outgoing solutions
correspond to our intuitive picture. It is shown in
this section that there are practical advantages in
constructing solutions inside of the bounding
spheres that are the logical extensions of the in-
coming and outgoing waves. To do this, I consider
solutions of the differential equation

( V'+v(r) E)q(E, r) =0, (4.1)

is a solution of (4.1) if

G(E, r, r') =-n g Y~(r)[j,(ar)n, (ar')

in the central unit cell where v(r) is a single
anisotropic muffin-tin potential.

The solutions of (4. 1) that I want to introduce
are generalizations of solutions that were used by
Jost" in his fundamental studies on scattering
theory. By direct substitution it can be seen that
the function P~ (E, r) that satisfies the integral

0
equation

y, ,(E, r) = Y.,(r)j,,(«)

@Err'e r'
L Er' dv',

(4»

g„(E, r) = n+Y~(r)n, (nr)Cz(E, k)
L n, (nr)j, (nr'-)]Y~(r '), (4 3)

+ n gg Yz, (r„)n, (nr„)e~'"~Cr (E, k) .
r, n&0 (3 15)

From (3.3) and (3.4) it can be seen that the second
term in this equation can be written as a one-
center expansion, so that an alternative form for
the expression is

g„(E, r) = n +Yz, (r)n, (nr) Cz (E, %)

+ Q Yr, , (r)j, , (nr)Br, , r (E, k)C~(E, k) .
(3 16)

The sums over I in these last two equations
correspond to 0 ~ l ~

Em,» but there is no limit on

and the integration is over a region bounded by
a sphere of radius x. Real spherical harmonics
Y~(r) are used in (4.3). It can similarly be seen
that the functions

f~ (E, r)

= Y~ (r)h f, (nr)

G(E, r, r')v(r') f~, (E, r') dv',

I'I.- lrl, (4.4)

are solutions of (4.1) when the integration is
over all space except for the spherical region
described above.
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The function Q«(E, r) approaches Y~ (r)j, (o(r)
in the limit as r approaches zero, and hence

Q~ (E, r) is regular at the origin. The angular
momentum subscript I.p refers to this asymptotic
behavior. In general, the function could be
written

(4.5)

The functions f~,(E, r) become equal to Y~ (r)
x h', ,(nr) as soon as r becomes greater than S
the radius of the bounding sphere. They will
contain many angular momentum components
when r &S, and they will be singular at the origin
except for special values of the energy E.

The usefulness of the functions ((((I (E, r) and
Lpf~,(E, r) stems from the fact that the integral

equations that they satisfy, (4.2) and (4.4), are of
the Volterra form, whereas the I.ippmann-
Schwinger equation (2.1) leads to an integral
equation of the Fredholm form" (3.10). The
existence and properties of these solutions of
the Volterra equations is manifest, whereas the
Fredholm equation is more difficult to deal with
mathematically. A useful technique for studying
the solution of the more complicated equation is
to relate them to the solutions of the simpler
one. It was for this purpose that Jost introduced
functions similar to P~ (E, r) and f~ (E, r) for theLg
special case of spherically symmetric poten-
tials. "

The functions f~~ (E, r) are linearly independent
solutions of (4.1) and hence it is possible to
write any solution as a linear combination of
them, in particula, r

+f~ (E, r)bI ~ (E)] . (4.6)

g'(E, r) =QQ (E, r)b '
Lp

may be written

(4.V)

Convenient expressions for calculating the coeffi-
cients QL Lp and b» are discussed in Sec. V,
but it can be shown for the special case of spher-
ically symmetric potential that

a~ I, (E) = 2) (a)bi, i bi,i (E) = 2( (a)5~,i
where g', (n) are the well-known Jost functions~~

of scattering theory.
The coefficients a~ ~ (E) and b~, ~ (E) may be

looked on as elements of matrices a and b. If
bL'L, is an element of the inverse of b, then the
function

where the matrix whose elements are S~,~(E} is

S=ab '. (4.9)

Defining a matrix 7 by

T = (i/2n)(S —I),
and a function J~(E, r) by

J (E, r) =-,' [f' (E, r) +f (E, r)],
we can write

(4.10)

(4.11)

Z~(E, r) = c(N~(E, r) -g J~. (E, r)X~,~(E), (4.13)

where the matrix X is the negative of the inverse
of the Wigner reaction matrix R defined in (2.21).
The function N~(E, r) is defined by

N~(E, r) = (1/2i) [f~(E, r) f~(E, r) ], —(4.14)

and it becomes Y~(r)n, (or). This is clearly the
extension of the function defined in (2.23) to values
of r that falI within the bounding sphere, and the
relation in (2.22) is now true for all r. The ex-
tension of the incoming wave is -g J~, (E, r)Xz~(E)

L'

Clearly, J~(E, r) = Y~(r)j, (n )rwhen r is outside
the bounding sphere. Comparing (4.12) for such
r with (2.20), it can be seen that the matrix T
is the on-the-energy-shell t matrix that was
introduced in Sec. II. Similar arguments show
that S is the s ma.trix that can be used in an al-
ternative description of the scattering.

The interesting point about (4.12) is that the
coefficients that must be used to couple the solu-
tion J~(E, r) and f~(E, r) to obtain the physically
acceptable solution g~(E, r) are just the elements
of the t matrix that are normally only used in
connection with coupling the incoming and out-
going waves in the asymptotic region. This fact,
coupled with their asymptotic behavior leads me
to claim that J~(E, r) is the logical extension of
the incoming wave into the region inside the
bounding sphere, and f~(E, r) is the extension of
the outgoing wave.

From the point of view of the person who is
primarily interested in solving differential equa-
tions, what is accomplished by scattering theory
is to produce a set of coefficients such that two
functions that are singular at the origin [f~ and

f~ in (4.6) or J~ and f~ in (4,12)] can be combined
to obtain a function that is regular at the origin.

In the same manner as in (2.23) we can intro-
duce the solution
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J~. E) r X~.l E C~

=o g N, (E, r„)e""C, . (4.15)
n/0 L

The derivation of the KKR equations for anisotro-
pic muffin-tin potentials goes through just as
before, but the function f~(E, r) defined in (3.3)
must be written

f~ (E, r) =Q J~, (E, r)B~,~(E,k), (4.16)

where r is inside the bounding sphere. The
multiple-scattering equations are true for any

r, so it must be possible to derive formulas
from them without such a requirement as r being
outside the bounding sphere. Indeed, Eqs. (4.16)
and (4.15) lead to exactly the same expression for
the KKR matrix as has already been written in
(3 6) .

The physical implication of (4.16) is obvious in

retrospect. The outgoing solution from the nth
lattice site illustrated in Fig. 1 is given by the
function

f~(E, r) = nNI (E, r„) . (4.17)

When r is outside any of the other bounding
spheres, for example, the one in the central cell,
this outgoing solution must be a linear combina-
tion of the solution defined in (4.11) and (4.4),

and of the outgoing wave is nNz(E, r).
The condition (2.18) that an incoming wave is the

sum of outgoing waves from the other sites can
now be used to write an equation of the form (3.1),
but dropping the condition that the point r must
be outside the bounding sphere,

In other words, the outgoing or incoming waves
propagating through a lattice such as the one
illustrated in Fig. 1 must be expanded in terms
of the solutions of differential equation (4.1) when

r is inside one of the bounding spheres, and not
solutions of the Helmholtz equation that is ob-
tained by setting e(r) =0. This observation has
not been emphasized in previous discussions of
multiple-scattering theory and has implications
that appear to have been overlooked.

V. NON-MUFFIN-TIN POTENTIALS

When the bounding spheres outside of which
t!(r) =0 are nonoverlapping as shown in Fig. 1,
we have seen that the KKR equations follow from
the multiple-scattering equations whether we use
the considerations of Sec. IV or not. Suppose
that v(r) WO within the shaded areas shown in

Fig. 2. A bounding sphere is indicated by the
dotted line in that figure, and clearly the spheres
associated with the different cells will overlap.
The solutions N~(E, r) and J~(E, r) must be used
within the entire region surrounded by the
sphere, not just the shaded region, in order for
the incoming and outgoing waves to be related
by the asymptotic form of a scattering matrix
such as the inverse of the reaction matrix in
(4.13).

We can still use the condition (2.18) to write
an equation just like (4.15), but we cannot use
the ordinary structure constants of KKR theory
in an expression for f~(E, r) like (4.16). This

f1(E, r) =Q ZI, (E, r)BI,I (E) . (4.18)

The coefficients B~,~ are just the ones that may
be used to expand the singular solution Y~(r„)n, (o.r„)
in terms'of the nonsingular ones Y~(r)j,(o.r) when
r is in the central cell

Y~(r„)n, (nr„) =gY~. (r)j,.(ox)BI,, ~ .

These coefficients can be shown to be

(4.19)

Bgg g —47fl g$ C I ~ IB~ ~ ~ (QR+) Yg~ ~ (R+)
gt ~

(4.20)

I

B~.~(E, k) = B~,~(E)e' '""'.
nW

(4.21)

where Q~, ~ are Gaunt factors. The connection
between these coefficients and the structure con-
stants is formally

FIG. 2. Illustration of a lattice for which multiple-
scattering theory becomes more difficult to apply. The
potential functions have nonzero values within the
shaded regions, and the bounding spheres indicated by
the dotted line will overlap.



19 MULTIPLE-SCATTERINC APPROACH TO BAND THEORY 6193

expression relies on the fact that the coefficients
B~.~ in (4.18) can be found by considering the
transformation properties of solutions of the
Helmholtz equation. Then, formally, B~,~(E, k) is
given by (4.21) although it is necessary to go to
the paper by Ewald to get a rigorous discussion
of this equation. For the case shown in Fig. 2,
an expansion like (4.18) can be used only for cells,
n„such that their spheres do not overlap the one
associated with the central cell.

The problem for the nearest-neighbor cells is
to find a set of coefficients B~,~ such that

nN~(E, r„)= Jz.(E, r)B~,~(E),
L

(5 1)

for r in the central cell. Such coefficients
exist, but it appears that it would be very diffi-
cult to find them. It would require not only the
calculation of the off-diagonal elements of the
reaction matrix R~, ~(E) but also the solutions of
the integral equations (4.4) for many values of r.
They will, of course, depend on the potential
v(r), and it therefore follows that the nice separa-
tion between atomic scattering and structural
quantities in the ordinary KKR is lost when non-
muffin-tin effects are properly taken into ac-
count.

In an earlier discussion of this problem, Wil-
liams and van Morgan~ obtained a set of KKR
equations just like the ones for anisotropic muf-
fin-tin potentials, (3.5) and (3.6), except that the
reaction matrix is evaluated at the bounding
sphere that will overlap its neighbors like the
one shown in Fig. 2. From the point of view of
the present work, the error in this derivation
arose in assuming at a certain stage [Eq. (2.10)
in Ref. 9] that Z~(E, r) = Y~(r)j, (nr) and N~(E, r)
= Y~(r)n, (nr) in the region outside the shaded
area but within the Bounding sphere. In a later
study, Ziesche eliminated the assumption about
N~(E, r), but he still assumed Z~(E, r) = Y~(r)j, (nr)
in that region [Eq. (2.10) in Ref. 10]. Ziesche
was thus led to a critique based on questions
about the convergence of the equations used in
translating the solutions of the Helmholtz equa-
tion, rather than the more general problem of
finding the B~,~(E) in (5.1). He emphasized the
point that the treatment of outgoing waves from
neighboring sites must be handled differently from
the others, but his near-field corrections differ
from the ones that arise in the present work. The
conclusion that I arrive at is that the problem of
carrying out a rigorous multiple-scattering cal-
culation for potentials that cannot be put in the
form of anisotropic muffin-tin potentials is more
difficult than it appea, red to be in previous dis-
cussions.

Perhaps the most straightforward way out of
this difficulty is simply to ignore the near-field
corrections and do the calculation that was sug-
gested by Williams and van Morgan. For rea-
sonably close-packed systems in which the non-
muffin-tin corrections are not too large, for ex-
ample most metals or ordered metallic alloys,
it should work rather well. This is because the
functions J~(E, r) and N~(E, r) must link smoothly
to their asymptotic forms at the radius of the
bounding sphere so they must be nearly equal to
Y~{r)j,(nr) and 1~(r)n, (nx) for some distance in-
side the sphere. Their singularities at x=0 are
not too serious because it is not usually neces-
sary to consider such small values of z. Certain
test calculations on systems of the type described
here indicate that the approach has promise. '
It will be shown in a later section that the new
computational schemes"" that have been put
forward with the idea of simplifying non-muffin-
tin calculations (among other things) make an
assumption that is equivalent to ignoring the
near-field effects at the start, so they can never
give a better approximation except by happen-
stance.

A possible approach to a more rigorous treat-
ment of the multiple-scattering equations would
be to construct the bounding spheres so that they
do not overlap, as illustrated in Fig. 1, and then
include the part of the potential function that is
outside the bounding spheres, v,„,(r), in the Ham-
iltonian Ho which is used in (2.3). The Green's
function Go(E, r, r') will then describe the propa-
gation of an electron through the potential
v,„,(r) rather than through fr'ee space. Of course,
the solutions of the Helmholtz equation could no

longer be used to describe the waves in the i'nter-
stitial region. This approach has not been used
in any serious way to my knowledge, but the idea
can be used to explain what might appear to be
a serious inconsistency in this discussion.

In an apparent contradiction to the remarks in
this section there exists a type of potential func-
tion that cannot be forced into the form of a sim-
ple anisotropic muffin-tin potential but for which
the multiple-scattering equations can be used to
derive easily solvable band-theory equations.
This is a potential in which there are several
bounding spheres in each unit cell. It would
arise in the description of an ordered compound
or even a crystal structure like hcp that has
more than one atom per unit cell.

The resolution of this apparent contradiction
is illustrated in Figs. 3(a) and 3(b). Suppose we
first use the simple KKR equations to calculate
a Gp(E r r ) which describes the propagation
through a lattice that contains one muffin tin per
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0 0 0

0 0 0

0 0 0

in spherical coordinates Y~(r)j, (or) and YJ.(r)n, (or).
If we could replace these with solutions in coor-
dinates that are commensurate with the shape of
a Wigner-Seitz cell, then the potential functions
would only have to be bounded by nonoverlapping
signer-Seitz cells and the problem would be
solved. It is not clear how this could be achieved
at the present time.

As I pointed out, the direct calculation of the
B~.~(E) in (5.2) will be difficult, but the necessary
mathematical tools for doing it have been devel-
oped in this section and in Sec. IV. This could
become a useful approach in future developments
of high-precision band-theory techniques.

A final point concerning the non-muffin-tin
problems should be emphasized. %'e have been
assuming that the constant value of V(r) in the
interstitial region, the unshaded region in Fig. 2,
is zero. %e could assign any value to this con-
stant potential, V„, and the parameter n would
become the square root of F. —P„. If the boun-
daries of the shaded regions expand to fill the
interiors of the unit cells, the volume of the in-
terstitial region mill be zero. The results of
any band-theory calculations must then be inde-
pendent of V,„. This point appears trivial, but
it is the basis for many of the derivations in
later sections of this paper.

VI. CALCULATION OF SCATTERING MATRICES

FIG. 3. Simple lattice illustrated in (a) may be
combined with the one in Fig. 1 to obtain the complex
lattice in (b) that has two atoms per unit cell.

In Sec. IV, it was shown that the t matrix of
scattering theory can be written in terms of the
matrices a and b whose elements are the coeffi-
cients that appear in the expression (4.6) for
Q~ (E, r). Inserting (4.9) into (4.10) and the re-
sult into (2.21) leads to the following expression
for the Wigner reaction matrix:

E = —(I/io)(a —&)(a+5) '. (6.1)
unit cell as shown in Fig. 3(a). This Go is then
used in a calculation for a potential function like
the one indicated in Fig. 1. The resulting solu-
tions mill then describe the electronic states in a
crystal with the potential function shown in Fig.
S(b). Of course, in practice it is not necessary
to go through this step-by-step process to solve
the problem as the KKR equations for such com-
plex lattices are well known. "

The point to this discussion of complex lattices
is to shorn that the difficulties inherent in going
beyond the anisotropic muffin-tin potential are
quite real and cannot be brushed aside by in-
voking this counterexample.

Of course, the reasons that spheres play such
a central role in this discussion stems from the
use of the solutions of the Helmholtz equation

It follows that the problem of. calculating any of
the scattering matrices comes down to the cal-
culation of the coefficients al, l, (E) and bl, ,r, o(E).
]3y taking the Wronskian of p~ (E, r) with f~, (E, r)
and passing to the limit that z ~oes to infinity it
can be shown that

ag (I 0(E)

=51(~ —in h) nx FL r)n r ~ E, r) d'e,
(6-2)

bI,~ (E)

L(LO g L ) ) Lo r dS ~

Since the spherical harmonics Y~(r) are real it
is clear that
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QL gJ ~L, gp ~ (6.3)

If we define matrices c = -Reb and s = Imb so
that

b=c+i s

it is clear that the matrix X= -8 ' which we
have been using can be written

(6 4)

X= ucs-'. (6.5)

CLLp + sl Qr Il r)v r
Qp Epr dv

(6.6)

and

)

The elements of the matrices c and s are, from
(6.2)

The constant, A„could be evaluated using scat-
tering theory, but is plays no important role in
this discussion. Inserting (6.13) into (6.5) leads
to the standard expression for X~~, for muffin-tin
potentials already quoted in (3.7).

Probably the most useful formula. s for c» and

s» are obtained with the help of certain auxilliary
functions JL (o.'I r) = I'L (r)Z, (o!,r) and NL(c(, r)
= I'L(r)N, (o.', r) that are obtained by solving a
rather strange- appearing eigenvalue equation.
Let us write the potential v(r) as the sum of a
spherically symmetric part v, (r} and a nonspheri-
cally symmetric part v(r)

v(r) = v, (~)+ v(r) . (6.15)

Then ZL(o.', r) is defined to be a solution of

sJ.I,p=~ ~i nx Yi r)v (6.7)
[-V'+ v, (r)pL(a, r) =Ed) ZL(o'. , r), (6.16)

v(r)ALO(E r) =()) + E)ALO(E r} (6.8)

into (6.6} and (6.7) and using Green's theorem. If
the integral is extended to the radius S of the
bounding sphere, it can be shown that

and

C.L, =&S'[ni &LL,l (6.9)

(6.10)sLLO [fj r ALLO]

where QLL (E, r) is defined in (4.5) and the square
0

bracket indicates the quantity

(6.11)

evaluated at r = S.
For the special case of muffin-tin potentials

ALL, (E, &) = 0&(E, &)eLL,

and the previous equations can be written

(6.13)

These equations could be used in their present
form to calculate the scattering matrix. The
Volterra equation (4.2) can easily be solved to
find pL (E, r) in the region within which v(r) g 0,
and the integrals (6.6) and (6.7) carried out. This
process can be converted into essentially the
same computational technique as the one suggested
by Williams and van Morgan. ~

The equation for c«and s~~ can be put intoLLp
another form by inserting

which is regular at the origin and satisfies the
boundary conditions

Z)(o', S) =j,(nS}, ZI(o', S) = j'( oS), (6.17)

at the bounding sphere. There arve many such
functions corresponding to different eigenvalues
E, , but we will choose a particular one in our
later applications using a criterion that will be
obvious in context. The function NL(c(, r) is a
solution of

[ &'+ v-, (~)QL(u, r) =E",N, (u, r), (6.18)

that is regular at the origin and satisfies the
conditions

N, (a, S) =n, (nS), N((o(, S) =nI(MLS). (6.19)

++ ~L+ rvr L, (6.20)

Similar arguments applied to the other function
lea,ds to

c =(N—N)crf N (v, ,r)d(dr)dv, ,

'The eigenvalues are functions of E = u' and could
be written E, (E) a,nd E", (E).

The boundary conditions (6.17) make it possible
to replacej, (c(r) with J, (o!,x) in (6.10). Using the
differential equations (6.16) and (6.18) and applying
Green's theorem in reverse leads to

v = (N , —N)tvf dv(tr'r)d, ( r)dvN,

cLL =d4g cos)7)eLL r sLL =d4, sin'I}$'5LL r (6.13)

where g, is the scattering phase shift that can be
calculated from

+Q Ng &, r & r I, E r dv. (6.31)

coty) [n~, &, V[—j„&,1, (6.14)

a result well known to band-theory practitioners.

'The integrals are over the volume of the bounding
sphere. Since the functions NL(c(, r) and ZL(n, r)
will later be used in connection with an approxi-
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mate band theory scheme" in which connection
they have been given the name augmented spherical
waves (ASW) it should perhaps be emphasized that
Eqs. (6.20) and (6.21) are exact.

The only connection that ASW's have with the
energy E is through the conditions (6.17) and (6.19).
In principle, it does not matter which of the allow-
ed eigenvalues and cor responding eigenf unctions
are used in (6.20) and (6.21.), but in practice, it
would probably be a good idea to use the E, and
E", closest to E.

In Secs. VII and VIII, these equations will be
used to discuss several approximate schemes in
band theory, but they could be made the basis of
a very serious calculation of the scattering ma-
trices. 'The method proposed here is to find just
the diagonal part of Qz (r), Yz, (r )Pz,z,(E,r), by
solving (4.1) with the approximation v(r ) =v,{r).
The function &f& z z (E, r), which may more simply
be called Q, ,(E, x), is thus obtained merely by
solving a radial differential equation rather than
the integral equation (4.2). It must be normalized
so that it approaches j, (nr) as r approaches zero,
but of course it has no preset value atx=s. We
then get the approximate equations

szz —(E, —E)n

M, ,, (E, k) =X,', ,(E,)+B,,,(E„k). (7.1)

The matrix X~(Eo) describes the scattering from
the shifted potential

theory. 'This section shows how the resulting
equations can be used for very precise calculations
with very little computational effort. Section VIII
compares this formalism with the ones that include
a variational step in some detail.

The basic observation that leads to the simplified
equations is the one that was made at the end of
Sec. V: if the boundari:es of the interstitial region
in which the potential V(r) is taken. to be a constant,
V„„are allowed to expand until they coincide with
the cell boundaries, then the band-theory calcu-
lation must not depend on the choice of V„,. This
simply follows from the fact that the volume of the
interstitial region has shrunk to zero.

The freedom to vary V«, can be used to arrange
matters so that the energy of the incoming wave
is always the same, E,. If the energy would

hange from E, to E, then i.t is brought back to
the reference value by adding &=E —E, to V«, .
This is equivalent to subtracting & from the po-
tential v(r). Neglecting the near-field contribu-
tions to the structure constants that were described
in Sec. V, the KKR matrix for a general non-
muffin-tin potential thus may be written

r'J, (nr)&zz(r)p, ,(E,, r) dr,

and

cz, z, = (E, —E)n r'N, ,(n, r)P, (E, r) d~6zz,

where

v ~z (r) = Yz (r)& (r)Yz, (r) dO .

(6.22)

(6.23)

(6.24)

v (r)=v(r) —&o(r), (7.2)

where o(r) = 1 if r is inside the unit cell and o'(r)
= 0 otherwise. The structure constants Bz,z (E„K)
are just the ones used in (3.6). It should be
emphasized that this reformulation would be exact
if we had not left out the near-field corrections.

The most useful form for the matrix X~(E,) is
obtained with the help of the c and s matrices in
the form that they take in (6.20) and (6.21). Al-
though the results are independent of the precise
way that the function &a(r) is subtracted from
v, (r)+&(r), perhaps the easiest way is

VII. PIVOTED MULTIPLE-SCATTERING
EQUATIONS AND LINEARIZED KKR

v~ (r) = v, (r) + & (r),

(7.3)
Up to this point, the usefulness of the quantities

derived in Secs. II-VI has been described within
the context of the standard multiple-scattering
approach. Following the work of Andersen" there
has been a recent trend toward the introduction
of approximations which somewhat reduce the
precision of the calculations but allow them to be
carried out much more rapidly. 'The derivations
of these techniques all involve the addition of a
variational step. In this section, it will be shown
how the quantities derived above can be used to
obtain a simplified band-theory technique entirely
within the framework of multiple-scattering

szz, (E,) = [E~z(E,) —E,]n, jz(n„r)g~z(E„r)dv

—(E —E,)n, o(r) Jz(n„r)gz~ (E„r)dv

+ n, g~(n „r)&(r)P~~ (E„r)dv, (7.4)

That is, the shift is associated with the non-
muffin-tin part of the potential, and thus the
quantities Ez(E, ), Z, ( rn), E, (E,), and N, ( nr)

are unaffected. Then (6.20) and (6.21) become
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and

r . ,(E,) = [E", (E,) —E [a,fE (a„r)d „(E„r)dr

—(E —E,)a,f a(r)E, (a„r)dr (E„r)da
0

+ &0 NL &p r & r ~~ Eo, r (7.5)

six =(Er E)I', (E, Z-o)5ii +Uzi (E, E,), (7.7)

The function Qz~ (E„r) is the solution of (4.1) ob-
tained by solving the integral equation (4.2) for
the potential v~(r)

Equations (7.4) and (V. 5) are still exact and no
further approximation has been made if they are
used in (6.5) to calculate the X~z,'~(Eo) for (7.1),
but it is useful to make approximations to simplify
the calculations. A11. three of the integrals in each
of these equations are over the volume enclosed
by the bounding sphere, but the functions o'(r) and
v(r) are zero outside the unit cell. Let us split
the difference and change the range of integration
of the first two integrals to the region enclosed by
the signer-Seitz sphere and remove the function
o(r) from the second integral. Further, the off-
diagonal elements of Pz~(E„r) should be ignored
as in the argument that Oled to (6.22) and (6.23). It
is easy to see that when the exact shape of the unit
cell is ignored, the function (}I)~~(E„r)become
1'z (r)P, (E, r'), the solution of (4.1) for the original
potential v, (r) that corresponds to the energy E.
'The combination of these approximations leads to

and

I[ (E, E„)= I[ (Eo)[1+So[(E —Eo)],

I", (E, E,) =If (E,)[1+C', (E —E,)],

(7.13)

(7.14)

where I~[(E,) = I~[(E„E-,), S', is the logarithmic
derivative of I, (E, E,) evaluated at E = E„while
I", (E,) and C', are defined similarly.

The KKR matrix of (7.1) can now be written

Mz, z(E, fp)

(E", E) [1+C', (E E,)]
(E —E) [1+S (E —E )]

+ Bz, z (E„k), (V.i5)

It is much easier to calculate the elements
X~~, z, (Eo) for use in (7.1) from (7.7) and (7.8) parti-
cularly as it turns out that the integrals in (7.9)-
(7.12) may easily be parametrized. If these in-
tegrals are calculated for a number of energies
and fit to a power series i.n &, the only sizable
terms are the constant and linear terms.

In order to clarify the preceding discussion,
calculations for an actual potential function have
been made. A muffin-tin potential has been chosen
so that the eigenvalues could be compared with the
values obtained from ordinary KKR equations. The
potential describes paramagnetic nickel, but it
can be looked upon as just a. typical transition
metal.

For this example, the integrals U~~~ (E, E,) and

Uzz, (E, E,) are zero. The integrals. in (7.9) and
0

(V. 10) were carried out and it was found that they
could be written very accurately a.s

c~zz = (E", —E)I", (E, E,)5zz + U~s~ (E, E,) . (7.8)

The first set of igtegrals has become

where

p[ =I[ (E.)~Ii (Eo) (7.16)

If (E, E,) = n, re, (n„r)p, (E, r) dr,
0

(7.9)

and

((' (E, E„)=a,f «'E, ( „)& r («)da, («E, «)d«,

lV

I", (E,E,) = n, r'N, (n„r)P, (E, r) dr, (7.10)
0

where W is the %igner-Seitz radios. The second
set is

S
Uz~z (E, E,) =- n, r'Z, (n„r)viz (r)P, (E, r) dr,

This is a special case of the pivoted multiple-
scattering (PMS) equation. Clearly the matrix in
(7.15) is exactly the KKR matrix for E= Eo and all val-
ues of k when the potential is of the muffin-tin form.
The errors introduced by the approximations made
so far will thus be a minimum at the pivotal energy E„
and will increase as

~

E Eo~ gets lar-ger. PMS equa-
tions can be written down for non-muffin-tin po-
tentials, but they will be discussed later. 'The

PMS equations are interesting because obtaining
them is the major step in deriving linearized KKR
equations, and it will be seen that they have other
uses as well.

Using the same partitioning technique that led
to (3.13), it is easy to write the elements of the
PMS matrix a,s

where the elements vz~ (r) are written in (6.24).
In the following, E~ and E", refer to E~[(Eo) and

Es[(Eo).

(E~ E)[1+C', (E —E,)]MI'I. Ez E)[I „So(E E )]
oP[5I' I z Ir'

(V. iV)
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where

(E', E)[1+S',„(E E,)]
L L 5 L r.'L"

(
N E)[1 Co (E E )]

1
0 I"I '

&OPr„
(7.18)

In these equations l and /' may take on the values
~ ~ ~

& l1 while ~ is l] + ~y ~/+ 2y ~ ~ ~ ) ~~gx
'The PMS matrix may be put into a linearized

form by multiplying through on both sides by the
denominator of the diagonal term in (7.17), ex-
panding the result in powers of E, and neglecting
terms beyond the linear term. That is

M~z, ~ = (E~ —E)[1+S', , (E — E)] Mir,

x (E~ E)[1+So(E —E,)], (7.19)

is, to terms linear in E,

Mr, r
= H~, ~(k—) —EOz, q(k). (7.20)

The symmetric matrices H~~, ~(R) and O~~, ~(k) de-
pend only on k and the parameters in the PMS
equation. They play the role of the Hamiltonian
and overlap matrices from a variational calculation
although 0'(k) need not be positive definite.

'These matrices will arise again in Sec. VIII, but
as a basis for a linearized band theory they
suffer from two defects.

The first defect is that the determinant of the
matrix M' is clearly zero whenever E is equal
to any of the Er, and these zeros are spurious in
the sense that they do not represent eigenvalues.
The linearized eciuation (7.20) will thus yield some
true eigenvalues of the system but they will also
give as solutions some of the spurious roots. For
some choices of E, the E, are outside the range
of the bands of interest, but in general these
spurious roots are a problem.

The second defect arises in the linearization
process. In general, the coefficients of E',
E', . . . in the expansion of the elements in (7.19)
are of the order of one, so (7.20) is only true
when the magnitude of E is rather small, in our
.example less than 0.2 in appropriate units.

This second defect can be gotten around by
noting that E appears in (7.17) only as the dif-
ference between two energies. It is, therefore,
possible to introduce an energy parameter &„ about
which the expansion will be made. If we introduce
the new variable Er =E.

r
—E r =Er — a

Ep @ then the expansion can be made in
powers of E —E„which can be made small by a
proper choice of E„.

'The problem of spurious roots can be eliminated
by multiplying only on the left by the denominator
of the diagonal part of (7.17) rather than on both

sides before expanding to obtain

M . = [E", (E——E„)][1+C', (E -E„—E,')]5,
+ [E(~ —'

(E —E„)][1+ So(, (E —E„—Eo))C~, ~
(7.21)

where Cz, z is given in (7.18). It is a straightfor-
ward matter to multiply out these functions and
collect the terms that are independent of energy
and the coefficients of (E —E„) to write

M~~, ~
=—H~. ~(k) —(E —E„)Or, ~(k) . (7.22)

).0

~ o.s-
z
LLJ

p I

0
r

0.5
Jx

FIG. 4. Comparison of PMS values for the energies
for various k (dots) with the results of an E~=4 KKH
band-theory calculation for a paramagnetic nickel
muffin-tin potential. The vectors k lie on the line that
connects the center of the fcc Brillouin zone (I') to the
midpoint of the square face (X). The energy is in
dimensionless units and must be multiplied by 0.89755
to obtain values in rydbergs.

Clearly the Harniltonian and overlap matrices that
arise from this process are asymmetrical.
Operationally this poses no difficulty because the
numerical procedures for diagonalizing a system
like (7.22) go through essentially as fast as the
ones for a, system like (7.20) for the relatively
small matrices involved. There is a mathematical
possibility that these procedures could lead to
complex eigenvalues, but this does not occur in
practice.

The unlinearized PMS equations can now' be seen
to take on an added significance. 'The zeroes of
the determinant: of the matrix M(k) whose elements
are defined in (7.15) are the best values that can
be obtained for the eigenvat. ues of the system from
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linearized KKR equations as long as the pivotal
energy E, is not changed. In principle, it would
be necessary to diagonalize the equations many
times using different values for E„, but it will be
seen in the numerical example that satisfactory
approximations to the PMS eigenvalues can be ob-
tained using two or three values for E„. An ap-
proximation that is adequate for some purposes
can be obtained using only one E„.

The PMS eigenvalues for the paramagnetic
nickel muffin-tin potential that I have used as an
example are compared in Fig. 4 with the results
of an l,„=4 KKR calculation. Partitioning was
used in the PMS equations, as in (7.17), but the
KKR eigenvalues were obtained without partition-
ing. All of the energies quoted in connection with
this example are in dimensionless units. 'They
must be multiplied by 0.89'7 55 to obtain energies
in rydbergs. In these dimensionless units the
pivotal energy E, is 0.6.

'The PMS eigenvalues agree with the ones from
the KKR calculation to four figures for energies
sufficiently near to 0.6. It is clear from Fig. 4
that the PMS eigenvalues are quite accurate over
the whole range of energies considered. The rms
deviation of these eigenvalues from the KKR eigen-
values is 0.0068.

'The parameters calculated from the nickel po-
tential for the PMS equations are shown in Table
I. It is clear that spurious roots arising from
E, =0.7572 and E, = 0.5619 would cause problems
if we did not use the asymmetrical formulation of
(7.21) and (7.22). The error involved in replacing
the ratio p, (E, Eo) =I", (E, E,)/I, (E, Eo. ) with the
approximation p', [1+C', (E —E,)]/[1+S', (E —E,)] is
less than one percent at both E= 0.01 and E=0.90
except for l = 2 for which the linearized prediction
is about five percent too high at either end of the
range. It follows from this that the relatively
large error in the PMS eigenvalue corresponding
to the X4, symmetry does not arise from this

approximation since this state is mostly s and P.
It presumably reflects the neglect of near-field
corrections on the Bz, z(E„Tc) and the replacement
of the actual cell boundary with a%igner-Seitz
sphere.

In Table II, I list some of the eigenvalues I cal-
culated from the KKR equations and the PMS
equations. I also, list some of the eigenvalues I
calculated from the linearized KKR equations of
(7.22) for E„=0.6, 0.4, 0.3, and 0.2.

Of course, when E„=E,=0.6 the LKKR equations
will yield the same eigenvalues as the PMS and
hence the KKR equations for energies near 0.6.
The errors increase for eigenvalues that are
farther away, reaching a maximum of about 0.1
at the bottom of the band. If the band theory pro-
gram is being used for a calculation that requires
great accuracy only in the neighborhood of some
energy, say the Fermi energy, then the best
choice of E, and E„would be the Fermi energy
and one diagonalization will be sufficient.

Overall, the rms error of the eigenvalues from
the LKKH calculation with E„=0.6 is 0.0272 rela-
tive to the PMS eigenvalues and 0.0266 relative to
the KKR eigenvalues. These errors can be reduc-
ed to 0.0072 and 0.0088 by doing two diagonaliza-
tions using E„=0.3 as well as E„=0.6. 'The rms
errors could be reduced still further to 0.0048 and
0.0081 by doing diagonalizations at values of E„of
0.2, 0.4, and 0.6, but this would not be useful in
most cases.

It is possible to get a good feeling for the errors
caused by the linearization process by comparing
the PMS eigenvalues in 'Table II with the ones cal-
culated from the LKKR. Roughly, the errors be-
come significant when the magnitude of E -E„
exceeds 0.2.

There seems to be no advantage in using more
than one pivotal energy Eo for a fcc structure like
the one in this example, but for a more open
structure there might be.

TABI E I. Parameters for the PMS equations calculated from the paramagnetic nickel muf-
fin-tin potential edith Eo= 0.6, in dimensionless units.

EJ

I", (Eo)

c'
i~(Eoi

s,'
0

0.7572

4.1783

0.0169

0.1143
—0.0848

-0.2358

-0.1991

0.5619

1.8703

-0.0097

—0.1218

0.0071

-0.1545

-1.364

-0.0168

0.6015

-0.0185

-0.6989

0,0010

-1.5110

-19.16

0.4500

4.5234

-1.4600

-0.3122

0.0263

-0.3441

-55.49

0.5125

7.3183

-27.2400

-0.2402

0.0317

—0.2634

-859.0
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TABLE II. Eigenvalues for the paramagnetic nickel muffin-tin potential calculated for
various values of k lying on the line & that connects the center of the fcc Brillouin zone to the
midpoint of the square. face.

)KKR
PMS

Ep = 0.60

LKKB
Ep = 0.60
Ep= 0.60

LKKB
Ep = 0.60
E~ = 0.40

LKKB
Ep = 0.60
Ep= 0.30

LKKB
Ep = 0.60
E =0.20 ~KKR

k = o.oo
F(

r»,
P =0.25

k = 0.50

k = 0.75

k =100
X(
Xg
X4s

X2
X3
X5

P.0188
0.6840
0.5977

0.0837
0.6622
0.6165
0.6925
0,5740

0.2526
0.6301
0.6680
0,7133
0.5194

0.3743
0.7494
1.8503
0.7320
0.7345
0.4679

0.3810
1.5186
0.9593
0.7435
0.4474
0.7637

0.0271
0.6834
0.5979

0.0928
0.6619
0.6163
0.6920
O.5747

0.2591
0.6298
0.6674
0.7136
0.5213

0.3735
0.7404
1.6642
0.7309
0.7338
0.4718

0.3714
1.3655
0.9282
0.7426
0.4522
0.7622

-0.0670
0.6799
0.5979

0.0217
0.6598
0.6161
0.6878
0.5742

0.2164
0.6293
0.6650
0.7072
0.5159

0.3283
0.7315
2,0480
0.7241
0.7267
0.4547

0.3168
1,6320
0.9288
0.7349
0.4281
0.7533

—0.0087
0.6499
0.5769

0.0694
0.6315
0.5926
0.6574
0.5574

0.2529
0.6061
0.6368
0.6761
0.5119

0.3729
0 ~ 6984
2.0350
0.6939
0.6956
0.4680

0.3781
1.6440
0.9285
0.7039
0.4501
0,, 7234

0.0089
0.6270
0.5552

0.0827
0.6089
0.5707
O. 6346
0.5366

0.2586
0.5859
0.6148
0.6536
0.4937

0.3703
0.6762
2.0220
0.6725
0.6736
0.4531

0.3740
1.6390
0.9275
0.6821
0.4369
0.7026

P.0201
0.6005
0.5288

0.0902
0.5824
0.5445
0.6082
0.5108

0.2581
0+621
0.5891
0.6276
0.4693

0.3581
0.6513
2.0060
0.6480
0.6482
0.4304

0.3585
1.6280
0.9253
0.6571
0.4151
0.6789

0.0188
0.6846
0.5988

0.0837
0.6635
0.6179
0.6932
0.5758

0.2526
0.6328
0.6700
0.7140
0.5214

0.3744
0.7541
1.8681
0.7332
0.7349
0.4689

0.3811
1.5193
P.9695
0.7436
0.4476
0.7639

A rather different approach to solving the PMS
equations in the form they take in (7.21) i.s to note
that they are essentially quadratic in E. Higher
powers of E arise in the expansion of the denomi-
nator times the second term in (7.18), but that
whole term is small in general. 'Therefore, rather
than linearizing the PMS equations about several
values of E„, it might be better to quadraticize
them about o.ne value. The numerical procedures
for taking advantage of this form of the equations
are not as available as they are for linearized
equations, but we are investigating this approach.

with the developments in this paper it turns out
to be easier to first establish the connection with
the LASW and then the LMTO.

The ASW method is a Rayleigh-Ritz variational
calculation based on a particular choice of basis
functions, Ci(r). When the point r is in the
neighborhood of the nth scatterer,

(8.1)4~(r) = n,N~(n „r„),
where n, = v E, and Nr (n, r) is the function intro-
duced in Sec. VI. The function 4 ~(r) is defined to
be given by the combination

VIII. COMPARISONS WITH PREVIOUS WORK
4~(r) =g Zr, . (ao, r)Br, l (EO),

L'
(8.2)

The first band-theory technique that was linear-
ized in the sense in which that term has been used
in this paper is the LMTO technique of Andersen. "
The LASW technique of Williams et al."came
later, but for the purposes of making a comparison

when r is, for example, near the scatterer in the
central cell. The function Z~(a, r) is the other
ASW introduced in Sec. UI. The coefficients
I3z.z(E) are given in (4.20). The Bloch sum of
these trial functions
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xL(r) =P e ".e",(r), (8.3) (E", —E)
ML L, i~J' Ei OP ~L, I.

is then

XL r*-V'+vox Xki r dv=HL L (8 6)

are given by

XL(r) = ~,NL (uo, r) +g JL. (uo, r)BLL(,E0, %),
(8.4)

because of (4.21).
It should be pointed out that the relation (8.2) is

simply part of the definition of O'L(r) and does not
follow from mathematical necessity as does the
relation between the NL(E, r„) and JL(E, r') in
(4.18) and (4.17).

For a muffin-tin potential the elements of the
Hamiltonian matrix

EN E EN E
+ (Ez EN )+ (Ez EN) L'L

+ +Li Lii ~g E~ o L"Lp
gu l" E" +oP l"

(8.11)

if we assume that E is approximately equal to
E, for /=0, 1, . .. , /, and E is approximately equal
to E, for / = /y+ 1 /y + 2 '

/ In this equation,
we have ignored products like (E", —E)(E",. —E),
(E", —E)(E~„—E), or (E, —E}'. Carrying through
this philosophy, for /=0, 1, . . ., /„ we will replace
$,(E„r) with N, (n„r) in the integrals that are
used to obtain p', from (7.16). For I = I, + I, I,
+2, . . . , I,„we replace $,(E„r}by J,(n„r) in
those integrals. Using (8.9) it can then be shown
that within these approximations

HL; I, $) = no(N&&E~i6L L

+ [o!0(N,,Jg. &E,, + a, (NZ~, &E", )BL,L

+QBL L-Ef- &J L &BL -L. -

'The integrals

(8.6)
and

/=0, 1, . . . , /, ,

I/o'. ,p', = (J',&(E~ —E", ),
/=/, +1, /, +2, . . . , /, „.

(8.12)

(8.13)

and

(Ã~) f Y N~ (Qt Y) dY
0

(8.7)

W

&J',&
= r'J, (o.„r)'d~,

0
(8.8)

(No,J,&
= 1/(E~ —EN ) . (8.9)

Inserting this into (8.6) leads to ASW equations
essentially identical with Eqs. (29) or (A13) of
Ref. 12 except they do not contain the so-called.
combined corrections which will be discussed
later. 'The elements of the overlap matrix

XL (r)*XL(r) d~ =OL. L, (8.10)

may be obtained from (8.6) by setting E~ and E",

equal to unity.
These matrices should be compared with the

symmetrical Hamiltonians and overlap matrices
in (7.20). I et us forget for the moment about the
derivatives S, and C, and carry out the multiplica-
tion indicated in (7.19). It is convenient to pre-
and post-multiply by (E, —E)/(E~ —E", ) rather than

just E~ —E. The result may be simplified to

should be over the central unit cell, but are
normally taken over a Wigner-Seitz sphere. By
an application of Green's theorem, it can be shown
that

Inserting these expressions into (8.11) leads to

ML L=no&N'r&(Er -E)6L L+lno&Nr Jr &(Ei'-E}

+ n, (NQ, &(E", —E)JBL,L

+g BL L-&JL-&(El- E)BL-L~-
I n

(8.14)

Clearly, the Hamiltonian and overlap matrices
that arise in the ASW approach are the energy-
independent terms and the terms that multiply
minus E in this matrix. It is also easy to see how

the energy can be replaced by E -E„as in the
PMS equations by reinterpreting E, and E~ as
E~' and E", .

The only remaining difference between this
approximation to the PMS equations and the ASW
is that the summation index I." ranges only over
I"= I,+1, I, +2, . . . , I,„ in (8.14). Thisdifference
is typicalof the difference in formulas arrived at
by partitioning a multiple-scattering result and
those obtained by a variational approach. This
point will be discussed in more detail below, but
the extra terms have relatively little effect on the
final calculations and one could just arbitrarily
extend the range of summation.

By the set of approximations and maneuvers
outlined above, it is possible to start with the
PMS equations and arrive at the basic ASW equa-
tions.

The MTO equations" are obtained by making a
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further approximation. Andersen introduces a
function P, (E„,r) that is a solution of a radial
equation

[-D'„+v, (r) —E„]P, (r) = 0,
with D„' the usual operator

(8.15)

D„' = r-' —r' —+ l(l+ 1)r-'.
dr (8.16)

and from this it follows that

(8.18)

where the function Q, (r) is obtained by taking the
partial derivative with respect to energy of P, (r)
point by point. It is a solution of the inhomogeneous
equation

The only boundary condition on this function is
that it is regular at the origin so it can be calcu-
lated for any energy E„. 'The function is normaliz-
ed within the Wigner-Seitz sphere

(8.17)

j Dt I 0 &/(& ) &N(&
(8.21)

1+~i ~i (~~)
r co

The functions on the right of (8.20) and (8.21) are
not eigenfunctions of the radial equation like true
ASW's, but the expectation value of their energy
can be interpreted as an approximation to the
eigenvalue

n, (N', )(E", E„)=-n,'(N,
i

D„'+v, (r) E„iN, ),
(8.23)

or

'The way the fitting parameters a, (o.,), &ui(o.,), and
u", (o', ) have been inserted in these equations is
for convenience in writing the answer we will ob-
tain. Using (8.17) and (8.18) it follows that:

a'(N', ) = a, '(1+ (u", (P',)),
2

(8.22)

[-D„'+v, (r) —E„]P,(r) = P, (r) . (8.19) n N2', ) (E", —E„)= a, '(P . (8.24)

In the MTO approach the radial functions that
enter the theoretical development are all expanded
as linear combinations of Q, (r) and Q, (r) in a sort
of functional 'Taylor's series expansion, retaining
only the first two terms.

I et us express the functions that appear in the
AS% development as such a 'Taylor's expansion,

n,N, ( or) —= a, (n, ) '[P, (r) —&o", (o'o)$, (r)] (8.20)

Sim ilarily

(J',) (E~ —E„)= a', (o~,

and an analogous argument leads to

a,(N,J,) (E~ —E„)= &u~/(&u~ —&u", ),
and

(N g )(EN E ) &By(~J' E)

(8.25)

(8.26)

(8.27)

Multiplying through the matrix in (8.14) on both
sides by a, and using (8.22) through (8.27) leads to

„2 ~, , ~;, -(E- .)(1 +i ~p(4'r)) ~", -( — .)( + i~)(4'r)) i

a, , Mz, .ia, =[to", (E —E„(1+-uP, g l6vr, + z ~ +
(dr

e,„-(E—E„)(1+(u, „(&f&,',.))x ar BL, Lar + ar, BL,L- ~r- ~ »'" '" ar„BL„LarL'' (dg„—(di„
(8.28)

The pivotal energy. E, is always zero in the MTO
approach. Passing to the limit, we can identify
the quantities that appear in Andersen's M'TO

equations.

lim a,. (n, )B~,~(E„Tc)a,(n, )=S~r r, .
Qp«p

(8.29)

Carrying out this operation on (8.28) and picking
out the usual terms leads to Eqs. (4.9) and (4. 10)
of Ref. 11 for the Hamiltonian and overlap matrices
of the LMTO formalism for the case DL = -l —1.

One difference between the MTG approach and
both the PMS and ASW approaches is that in the
latter all of the essential calculations are carried
out foI E:Ep and the transf orm ation of the energy
variable to E —E„ is trivial. In the MTO, at least
in principle, the functions $, (E„,r) and p, (E„,r)
must be recalculated for each choice of E„. The
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approximation being made is that the functions on
the left of (8.20) and (8.21) can be approximated as
indicated for any E„.

The manipulations that I have gone through have
produced what Andersen has called the important
matrices of the LM'TO formalism. " They are the
results obtained in the most straightforward way
by the application of the Rayleigh-Ritz variational
method to the MTO or ASW trial functions, but so
calfed combined correction terms must be added
to them in actual applications. The derivatives
C', and S', were ignored in Eq. (8.11). It is easy
to see from Table I that this is not a good approxi-
mation. These quantities can be included in the
discussion, and they will lead to terms analogous
to the combined corrections of MTO or ASW theory.
Some tedious and not very informative algebra
leads to the result that, as with the more import-
ant terms described above, the proper manipula-
tions of the PMS equations lead to results that are
similiar to but not identical with the ones obtained
from the other approaches.

It is clear that the asymmetrical Hamiltonian
and overlap matrices used in the calculations in
Sec. VII have no counterpart in the MTO or ASW

approaches. 'The reason for this is that Eo in the
MTO formalism is always zero while in the ASW
calculations reported" it was -0.01. The E, are
very small or negative for such values of Eo. With
the other approximations that are made the
spurious zeros that arise from them are probably
not too noticeable in the results since they lie
outside the range of the bands of interest. It is
expected on this basis that the ASW equation de-
rived for positive E,[(A13) of Ref. 12] would have
a rather small region of convergence.

For the muffin-tin potential and fcc structure
used in the numerical example in the preceding
section the l =4 KKR calculations are exact to
within the significant figures reported. The PMS
equations lead to those same results at @0 and
are seen to diverge from the exact results very
slowly as ~E —E,

~

increases. From this point
of view, the further approximations that must be
made to obtain the ASW or MTO equations will
not be helpful. 'The addition of actual non-muffin-
tin terms in the potential is also quite easy within
the PMS framework, although the approximation
being made is more apparent than it is in the other
formalisms.

It should be obvious that the derivations in Sec.
VII were inspired by the very real successes of
the MTO and ASW formalisms. There is a signi-
ficant difference in the philosophy of the various
derivations that is worth investigating, however.
'The question is whether it is better to add a
variational step or to stay within the multiple-

Rs~, ~ = -(1/n) tangf 5~, ~. (8.31)

In order to appreciate what this means it is best
to look at some actual calculations.

Figure 5 shows the results of a calculation of

I I I I jlllI I I I I I IIII I I I I I IIII I I I I I IIII I I I I IIIII I I I I I le

I I I I I I I II I I I I I I I II

&o' ~o'

I I I I I I I II I I I I I I I II I I I I I I III I I I I i I I I

&O' &O' &O4 &O'

ENERGY (Ry)

I"IG. 5. I'hase shifts, g„calculated for an aluminum
muffin-tin potential as a function of energy in rydbergs.
The solid lines are the q& from (6.14) and the dotted
lines are the q, calculated with the Born approxima-
tion. Note the logarithmic energy scale. The magni-
tude of the phase shift for a given energy decreases as
/ increases from its minimum value of zero to its
maximum of four,

scattering formalism when deriving simplified
band-theory equations. This question is not well
posed from a mathematical point of view, but we
have shown by example that it is not necessarily
better to add such a step. Perhaps some further
remarks on this question will be helpful.

'The most frequently quoted authority for the idea
that the inclusion of a variational step will bring
improvements to the multiple-scattering equations
is a paper by Andersen and Kasowski" (AK) in
which an early version of the M'TO formalihms
was compared with the results of a KKR calcula-
tion. The conclusions were that both the conver-
gence of the eigenvalues was improved and the
wave functions were more accurately represented.
From the point of view of a KKR practitioner the
version of that theory that was considered by AK
is a highly simplified one. In particular, it did
not include the partitioning or treatment of the
wave functions described in Sec. III.

Indeed, it has already been pointed out by
Williams'4 that the AK equations for a muffin-tin
potential can be obtained by replacing the phase
shifts in the matrix R» in (3.13) with their Born
approximation values and then extending the sum
from l" =0 to l . That is, the matrix in (3.13)
is replaced by

(8.30)

where
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I I I I IIII[ I I I llllli I I I I lllli I I I I lllli I I I llllli I I I IIIII

Ch
2

I I I I I IIII I I I I I I III I I I I I IIII I I I I I IIII I I I I I IIII I I I I I III

~oo io'io-' &o' &cP io4 &o'

ENERGY (Ry)

FIG. 6. d-phase shift g2 calculated for a copper
muffin-tin potential as a function of energy. The Born
approximation g& is shown with a dotted line. Note the
logarithmic energy scale.

the phase shifts for an aluminum muffin-tin po-
tential over a very wide range of energies. 'The

logarithmic energy scale should be noted. 'The

phase shifts all go to zero for very high energies
and they have the values near zero energy that
they should have by Levinson's theorem. It can
be seen that the Born phase shifts indicated by the
dotted lines in this figure become really good
approximations only for energies in the range of
10000-100000 Ry. The Born approximation is not
too bad at low energies for large enough l because
the behavior of the phase shifts is dominated by
the asymptotic form of their energy dependence
which the Born approximation gets right. For
lower values of /, however, the approximation is
not good even if we ignore the additive multiples

TABI E III. Eigenvalues for various muffin-tin potentials calculated for k= (0.0, 0.0, 0.5).
The truncated KKR results are the zeros of the determinant of the matrix in (3.6) with ),„=2
for Nb and Rb and )~» =1 for Al. The partitioned KKR results are obtained from the matrix
in (3.13) with/~, „=4 and l&

——2 for Nb and Rb and)&=1 for Al. The calculations of the results
labeled Born made use of the first two terms in (8.30), while the Andersen-Kasowski (AK)

calculations made use of all three, the values of &,„and )& being the same as above. The er-
rors relative to the KKR eigenvalues calculated with )~„=4 appear below the approximate
eigenvalues. These errors are calculated from (8 ~ 32). The dimensionless energy units used
in this table can be converted to rydbergs by multiplying the Nb, Rb, and Al values by 1.0173,
0.3423, and 0.6741.

)KKR 4
KKR

partitioned AK
KKR

truncated

Niobium

Rubidium

Aluminum

0.4683

0.5288

0.6862

0.7872

0.9549

0.0674

0.2615

0.3030

0.3763

0.3817

-0.0825

1.0989

1.1606

0.4683
4.3
0.5292
2.2
0.6863
0.5
0.7870

-1.1
0.9552
7.6

0.0674
0.0
0.2617
2.9
0.3034

12.2
0.3763
0 4
0.3820

10.9

-0.0822
10.2
1.0993
0.6
1.1954

52.9

0.4684
17.4
0.5334

30.7
0.6898

31.3
0.7919

32 ' 7
0.9568

39.3

0.0674
-41.7

0.2603
-28.6

0.3024
-19.8

0.3753
27 0 7
0.3813

1302

-0.0822
10.2
1.0988-

-0.1
1.2052

67.9

0.4684
21.7
0.5332

29.9
0.6898

31.3
0.7918

32.2
0.9567

38.1

0.0674
-41.7

0.2601
& —32.7

0.3020
-33.5

0.3752
-29.8

0.3811
-19.9

-0.0823
8.7
1.0973

1.2021
63 ~ 2

0,4686

0.5436

0.6974

0.8016

0.9598

0.0675

0.2660

0.3062

0.3802

0.3846

' -0.0798

1.1690

1.2263
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of m. Another case for which the Born approxima-
tion must be bad at low energies is illustrated in
Fig. 6. 'The l = 2 phase shift for a copper muffin-
tin is plotted there. This potential has a d-scat-
tering resonance at about 0.3 Ry that appears as
a rapid rise in the phase shift that clearly cannot
be reproduced by the Born approximation. 'These
calculations demonstrate that the Born approxi-
mation will be particularly bad at low energies
for /=0, 1, and 2 when dealing with a transition
metal and 0 and 1 for a nontransition metal.

'Table III shows the results of KKR calculations
done with l „=4 and l,„=l, where l, = 2 for Nb

- and Rb and /, =1 for Al. The values shown are
calculated with the various approximations that
have been described. Since the eigenvalues cal-
culated with l /y &&y are uniformly larger
than those for / ~=4, E4, the deviation of any
approximate eigenvalue from E„8, is given as
a percent of the error introduced by simply
truncating the KKR matrix,

'
&& 100/g.X (8.32)

The results designated as partitioned were ob-
tained using just (3.12). The ones called Born
were obtained from (3.12) but replacing the phase
shifts for /y+1 /y+2 . , l with their Born
approximation values. 'That is, using the first
two terms in (8.30). Finally, the AK results are
gotten by extending the sum in the partitioned term
over all /, the full matrix in (8.30).

It can be seen from Table III that, as claimed,
the AK eigenvalues are an improvement over the
t'runcated KKR. However, the eigenvalues would
have been slightly better if they had not included
the last term in (8.30), and much better results
are obtained using the actual phase shifts in a
partitioned KKR calculation rather than the Born
approximation.

From the point of view of multiple scattering it
is surprising that the AK eigenvalues are as good
as they are. 'The resolution of this dilemma was
also indicated by Williams et a/. " Since the Born
approximation matrixg, is bracketed by the KKR
matrices M„, it does not make much difference
what is in it.

'The purpose of these numerical studies is not
to attack the Andersen-Kasowski theory which is
no longer used in any case. 'The calculations show
that improvements in multiple-scattering results
obtained by introducing a variational step can
sometimes be more apparent than real. 'They
also justify an earlier assertion in this section,
that it does not matter very much if the sums in
a partitioned term are extended to low l.

I do not claim to have answered in general the

question of whether Rayleigh's variational method
needs to be brought to the aid of one of his other
inventions, the multiple scattering method. I do
claim, however, that simplified and linearized
band-theory equations with very desirable features
can be found without that step.

IX. CONCLUSIONS

'The multiple-scattering theory will never play
as central a role in quantum physics as does the
Rayleigh-Ritz variational method or the Rayleigh-
Schrodinger perturbation theory, but there are
cl.asses of problems for which it is uniquely well
suited. I hope I have demonstrated that the .singu-,
lar functions described in Sec. IV are a useful
addition to this theory. 'These functions were in-
troduced and discussed from a different point of
view in a previous publication. "

'The usefulness of the PMS equations and the
linearized KKR should be obvious from the ex-
ample shown. 'The fact that these equations yield
exactly the same results as a completely converg-
ed KKR calculation at any one energy is very
attractive to those of us who have been utilizing
the constant-energy- search KKR method. " By
choosing the pivotal energy to be the Fermi ener-
gy, . we can reap the advantages of a linearized
band theory without introducing unacceptable
errors into the calculations of the states on and
near the Fermi surface.

One of the avenues of research I hope to see
pursued is the development of techniques to take
advantage of the fact that the PMS equations are
almost exactly quadratic in the energy.

It will be interesting to see how effective these
equation are in dealing with non-muffin-tin po-
tentials. Of course, the linearized KKR should
work at least as well as any of the other linearized
band theories for this case. A point to bear in
mind is that although the calculation of the near-
field corrections to the structure constant might
be too time consuming in the usual band-theory
approach, it should be possible to calculate them
for one or two energies. 'This would be one way
to improve the calculations if they are not satis-

factoryy.

Finally, it is interesting to consider how these
methods might be used in coherent-potential-
approximation (CPA) calculations on alloys. The
atomic sphere approximation (ASA) idea of
Andersen" has already been used in this connec-
tion, "but it was not too helpful. The structure
constants were only calculated at one energy but
the equation for the self-energy had to be solved
iteratively for many energies. Since this process
requires many Brillouin zone integrals, the rela-
tively small amount of time saved on structure
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constant calculations is unimportant. It is for
this reason that the muffin-tin CPA equations are
now solved without this approximation. " If the
parameterization of the reaction matrix that leads
to the PMS equations could be used to reduce the
number of energies at which iterations must be
carried out, there would be a considerable saving
of time.
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