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Electron-phonon interactions in transition metals
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The problem of the electron-phonon interaction in transition metals is approached from the point of view
that nonorthogonal tight-binding representations of the d-band electronic structure are very appropriate in
such materials. Expressions for the electron-phonon matrix elements using this representation are derived.
The quantitative validity of the method is demonstrated by calculating (I'), the Fermi-surface average of
the electron-phonon coupling constant for 4d bcc transition metals and alloys. The variation of (I') in
these materials is understood physically-as arising from the variation of the average Fermi velocity and of the
bond order.

I. INTRODUCTION

The electronic properties of most of the transi-
tion metals and their compounds (TMC hereafter)
are dominated by the d electrons. These d elec-
trons are tightly bound compared to the s-P states
of similar energy and form bands with strong-
atomic character to their wave functions. It has
long been recognized' that the TMC are best des-
cribed with the tight-binding approximation for
the d bands, as a starting point, in contrast to
the free-electron approximation for, say, the
alkali metals.

However, one objection has been that the d
states are not true bound states, but only res-
onances which decay into plane waves outside the
atom in question. ' This is certainly a serious
point for isolated transition-metal impurities
in nearly free-e1.ectron metals. For bulk TMC,
where the direct d-d overlap between the res-
onances on neighbor atoms is large compared to
the s-d hybridization energy, this point is not
significant. The appropriateness of tight binding
for d electrons has continually been emphasized
by Friedel, ' who with his collaborators has shown
that many of the properties of transition metals
and alloys follows naturally from this point of
view.

The use of the tight-binding method for ab initio
band-structure calculations has been hindered by
computational problems in calculating self-con-
sistent atomic wave functions and potentials in
bulk TMC. The augmented plane wave (APW)
and the Korringa-Kohn-Rostoker (KKR) method
of calculations ' are extensively used to calcu-
late electronic structure of TMC. Impressive
understanding' of TMC has been achieved thereby.

Mueller and Hodges, Ehrenreich, and Lang'
have successfully fitted results of such band-struc-
ture calculations for copper by an empirical
scheme in which the basis functions are linear

combinations of the five tight-binding d functions
and a few plane waves to represent the s-p elec-
trons. This led to proofs of the equivalence of the
KKH method to such hybrid schemes. ' lt is worth
realizing for our purpose that these proofs sug-
gest a considerable arbitrariness in the appor-
tioning of the Hamiltonian to the plane-wave block
and the tight-binding block. Also, the angular
decomposition defined with respect to a muffin
tin does not correspond to that in the usual tight-
binding method, which is defined with respect to
atomic orbitals. Therefore a direct comparison
of the parameters in the two methods is not
easily possible.

In recent years there has been considerable in-
terest in calculating parameters determining the
superconducting transition temperature T, of
TMC from first principles. A lot of effort in this
direction has been devoted to extensions"' "of
the APW and the KKR methods to calculate the
electron-phonon matrix elements. We believe that
as with most other properties of TMC, the tight-
binding method for calculating parameters of im-
portance in superconductivity provides, besides
the ease in computation, a clear physical under-
standing of the processes involved.

The easiest way to overcome the quantitative
difficulty in obtaining the tight-binding parameters
is to fit existing band-structure calculations by
tight binding. For tight binding to be a physical
reality rather than merely an interpolation .

scheme, one must explicitly consider the non-
orthogonality of the orbitals. Without nonortho-
gonality the tight-binding parameters obtained by
fitting the band-structure can often be unphysical.
For problems involving electron-phonon interac-
tions consideration of Donor thogonality is vital
since if one starts with an orthogonal basis set for
-electrons in the equilibrium lattice configuration,
it will not remain orthogonal in a distorted lattice.
We shall demonstrate the orthogonality effects
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quantitatively by comparing our results with some
work"' "done with the tight-binding (TB) scheme.

The superconducting transition temperature is
determined by some average phonon frequency
& ~) and 'a dimensionless parameter X." A, is given
by 14

~=i() (O)&lg /~&&q,

where N(0) is the density of states near the Fermi
surface, m is the ion mass, (&u') is a suitably de-
fined average over the phonon spectrum, and (I')
is an average of the square of the electron-phonon
matrix element over the Fermi surface. The quan-
tity (I ) has been deduced from experimental re-
sults for a number of superconducting TMC. It
follows a number of interesting physical trends. ""
It has been possible to understand these trends
qualitatively"' "by analytically solving the pro-
perties of a single nonorthogonal tight-binding
band (NTB) of electrons. To quantitatively test
these ideas and to establish the simplicity and
naturalness of the tight-binding approach to TMC,
we will present here calculations of (I') for a
series of 4d-bcc transition metals and alloys based
on their actual electronic structure.

Before we calculate (I ), we need an expression
for the electron-phonon Hamiltonian. In Sec. III,
we derive such a Hamiltonian in NTB in full gen-
erality. We also clarify in that section the rela-
tionship of our electron-phonon Hamiltonian with
the more traditional Bloch formulation. In Sec.
IV we present our calculational procedure and in
Sec. V our results. We compare them with exper-
iment and with various physical features of transi-
tion metals. We end in Sec. VI with a general dis-
cussion of our results and of previous work on
this problem.

S,„,. =5„ fori =j. (2.2' )

The tight-binding Hamiltonian matrix H„„(k) can
be constructed in more than one way. The one we
have adopted is

H„„(k)= H'„'„)(k) + H(„".(k) + H(„'„)$), (2.3)

where for a monatomic solid,

(1) — (1)
+nm +in & fm & (2.4)

where

0",„', = d'r, *.„r T, +V r -R, , r

f d'~y;. „(r)V(r-R,. )(,, (r) (2.4')
J

[the first term in (2.4') is often referred to as the
one-center terms, and the second is referred to
as the crystal-field term];

One next assumes that it is possible to find local-
ized orbitals P,.„(r) centered at site i with quantum
number n that bear one-to-one correspondence
with the wave functions of the isolated atom. [ln
a more sophisticated version, one can include in
the potential energy in (2.1), terms associated
with interstitial sites and likewise define self-
consistent interstitial orbitals. We do not include
such refinements in this paper. ] The orbitals at
the same site may be taken to be orthogonal, but
an orbital at one site is in general not orthogonal
to an orbital at a neighboring site:

I

(2.2)

II. ELECTRON-PHONON MATRIX

A. Nonorthogonal tight-binding formalism

H'„" „(k)=~ g H'„' ~,„exp(ik ~ R„),
Rgj,

II) )„= d r ~]. r T,+ V r —R;

(2.5)

To establish the notation, we shall briefly sum-
marize the essentials of the nonorthogonal tight-
binding (NTB) approximation for electronic-band
structure. In its simplest form, one starts with
the assumption that the Hamiltonian for the elec-
trons in the solid can be written as

+ V(r —R,.)]y,.„(r) (2.5')

(the crystal-field term and H'„"„are often referred
to as the two-center terms), and the three-center
terms are defined by

H~ =T~ +Q V(r —R) ), (2.1) H'„'„'(k) =~ g H",„' ~„exp(ik ~ R„.), (2.6)

where T, is the kinetic-energy operator, and
V(r —R& ) is the potential energy associated with
the ion at the lattice site i. Here V(~-R, ) is re-
garded as a self-consistent potential including the
effects of screening, and exchange and correla-
tions in some parametrized one-electron fashion.

II',*',„= g f d'r(;. (r).
l&fo j

x [T, +V(r —R, )](t)~„(r) . (2.6')

The eigenvalues Z» are given by
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i a„„$)—S„„(k)E„,i =0. (2 7)

The stationary states (Bloch waves) are given by

The equation of motion for l'(t) is
e

i4 =H'C, (2.17)

g, „(r)= Q exp(ik R,-)A„„$)y,.„(r), (2.8)
1

where A is the eigenvector matrix given by

for any Hamiltonian H'. Due to the motion of the
ions, the tight-binding Hamiltonian and overlap
parameters will in general alter, and we write
that

aA = SAZ,

A~SA =&,

(2.9)

(2.10)

I
Him& jn Him& jn Him& jn' . &

~im. jn
= ~im, jn+ &~i . jn

(2.18)

(2.19)

where I is the identity matrix. A thus defined is
not unitary. Sometimes Eq. (2.9) is written as

where 6H and 5S are the changes due to the per-
turbation. On substituting Eq. (2.15) for C'(i) in
Eq. (2.17), multiplying both sides by Pf„(r, f),
and integrating over r, we get

S-"HS-"A„=A„E, (2.11)
~ P S,'.„,.C,„= g II',.,„C,.„. (2.20)

where A„are unitary matrices. The relation be-
tween A and A„ is

A = S-'~'A„ (2.12)

At g-x/2 (2.12' )

B. Scattering-matrix element

c(&)=p c»(t)~;„(t) . (2.13)

In the absence of the perturbation, Q„(t) has the
time dependence exp(-iE»t). We choose a repre-
sentation in which in the presence of the perturba-
tion Q„(t) is given by

~k„(t) = Q y, „(r, t)exp(i%. R, )
11l

&& A „„(k)exp(- iE-„„t ), (2.14)

where P,.„(rt) varies with time on the scale of
the perturbation, i.e., at the phonon frequency.
We can also write C'(t) in terms of the P,. (r, t),

@(f)=g 0;„(r,t)C,„(t) . (2.15)

C,.„(t) are related to C»(t) by

We wish to calculate the matrix element g~
kv, k'v '

for scattering from an electronic state k'p, ' to a
state kg, , when the ions are displaced from their
equilibrium position in the nth Cartesian direction.
We will now derive g. . . by the method of time-
perturbation theory.

A general time-dependent state C(t) in the
presence of the perturbation can be written as

im& jn

In obtaining (2.20) we have'neglected a term
Q,.„(r, t) in comparison with C,-„. As mentioned
earlier, the time dependence of Q(r, t) are on the
scale of the phonon frequencies and is negligible
compared to the time scales of C, , which are of
the order of electronic frequencies.

From Eq. (2.16) we get

C;„=+A „$)exp(ik R;)

&&exp(-i Eqq t)(Cqq —iEkpCqq) . (2.21)

(2.22)

In deriving (2.22) we have dropped a second-order
term proportional to 5SC compared to the rest,
which are all first order in the perturbation.

The preceding development has been quite gen-
eral and provides the scattering matrix for elec-
tronic states for any perturbation which alters the
Hamiltonian and overlap matrices. Now we
specialize to the case of phonon perturbations.

C. Electron-phonon matrix element

Substituting (2.21) in (2.20), using the eigenvalue
equation (2.9), multiplying on the left by A~ and

using the normalization. (2.12), we get the desired
equation of motion for CT, &.

iC~ „-—Q Aq„(k)[5ii„„(k)A„pi$')
m&n

- ~Sm. @»nj @')ET
p ~Ck p

C, (t)=Q exp(i%. R;)A„„(k)

x exp(-iE-„„t)C»(i) . (2.16)

To do this, we must consider the variation of the
elements of H and S with the deviation u,. of par-
ticle i from the lattice site R, . The one-center
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term in (2.4') is not altered as the distance be-
tween the atoms is varied. For the crystal-field
terms we can write

+im' in = i f .~@im in' ui uf

9
f ~ Of

if

where we have noted that the crystal-field term
depends implicitly on the lattice site j as given by
(2.4'); for the terms in H"',

and polarization X and e-z is the matrix element in
q

the n Cartesian direction q the corresponding
polarization vector. Using (2.27) in (2.24), (2.26),
and performing the indicated summations in (2.22),
we get

e

Ckp '

p ~:', x +$p. k'p' Ck'p' ( T&-k'. x) &

where g, i is the desired electron-phonon ma-
kp, k P

trix element

5HP', &„=V;, „H,",.„(u, —u,. ),
and for the three-center integrals

(2.24)

and y„"„(k)and y„„$')are the Fourier trans-
forms of

(V~HI~ ~ )I Ek e. lan, Jtr ) )

7 „"„(k')=g (V„H,.„„.„-Z-„V„S,.„,„)

+V, , „H",„',.„~ (u, —u, )] (2.25)
&& exp(ik' R,, ) . (2.30)

where we have again noted that JI',." f„given by
(2.6') depends implicitly on another set of sites
labeled l.

For the variation of the overlap integral we only
have a two-center like term. Therefore

(2.26)

The V operator in Eqs. (2.23)-(2.26) is to be under~
stood as a functional derivative, since we desire
the total renormalized change in the Hamiltonian
and overlap matrix elements to linear order in the
atomic displaeements. In general due to the atom-
ic displacements, the self-consistent atomic poten-
tial and atomic wave functions are altered by
screening, correlations, and exchange variations.
These effects a,re assumed to be included in the
definitions (2.23)-(2.26).

The one-center, two-center, and three-center
contributions in general yields expressions for
the electron-phonon matrix element that are of
different functional form from each other. Since
the calculations reported in this paper neglect the
crystal field and the three-center contributions
(as being small), we give here the results for the
contributions II'" alone.

We write the atomic displacements in terms of
(dimensionless) normal coordinates u, ~

This asymmetry in the definition of y$) and y(k')
is due to our nonunitary A. matrices. For calcu-
lations of (I'), where both states k and k' are at
the Fermi energy, Zz in (2.30) is replaced by
E~, and we need not concern ourselves here with
this peculiarity. Note that for nonoverlapping s
state orbitals, (2.29) reduces to the result of
Baristic, Labbe, and Friedel. "

D. Bloch formulation

Most of the work on electron-phonon interac-
tions in simple metals is based on Bloch's ex-
pression for the electron-phonon matrix elements.
It is of some interest to compare the results de-
rived above with this expression expressed in
tight-binding form. Bloch's expression ean be de-
rived by time-dependent perturbation theory,
much as was done above but with a different basis
set. The difference lies in keeping the localized
functions P,„(r) time-indePendent even in the
presence of the perturbation. One then obtains in-
stead of Eq. (2.22)

i C„„=—Q A+~(%)5X„„$,%')A„„(%')Cq.„,, (2.31)

where

63C.„(k,k') = P (y., ~6g y„, ) expIi $ -k')-R, , ],

qX, qX
cx $q ~ Ri

q, X

(2.27)
(2.32)

where aqua is the displacement for a wave vector q where 5II is the change in the total Hamiltonian
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due to the perturbation.
The difference between the two expressions

(2.22) and (2.31) is that the shift of the orbitals
due to the perturbation is being explicitly con-
sidered in (2.22), while it is not in (2.31). Since
the two expressions are derived merely with
different basis sets, they must be equivalent.
The change in the electronic wave function for a
given perturbation must be the same, but only if
the scattering to all possible final states is sum-

med over. Using (2.31) will in general require
summing over a larger number of higher states
to build up the change in the wave function with the
perturbation than (2.22). If however, we are con-
cerned with energy conserving transitions, i.e. ,

=e„t ~ as in transport theory or in the calcu-kp k p
lation of (I'), the two expressions are identical.
This may be proved as follows. Taking the differ-
ence between (2.22) and (2.31), we get

am
jn

= (Egq -Egiqi) Q Ap (k)e '" ~(5Q; iP)„)e'" ' "~Aqi„(k') .
gm
jn

(2.33)

From the discussion above, we conclude that
arguments" against the applicability of Bloch for-
mulation to TMC are incorrect. It is however
true that Bloch formulation is not as convenient
for d electrons as it is for nearly free electrons.
An improvement on our work would be to treat the
electronic structure in a hybrid scheme —plane
waves for s and p electrons and tight binding for
the d electrons. A hybrid scheme for the electron-
phonon interactions can then be developed using
the Bloch formulation for interaction of s, and p
electrons with phonons and the method presented in
Sec. IIC above for the d electrons. We have found

however that s and p electrons contribute so little
to (I ), and even to the phonon spectrum, in
transition metals compared to the d electrons,
that the admittedly crude treatment of s and p
electrons by tight-binding introduces little error
in the final results. This, however, may not be
true for transition metal compounds like NbC,
Nb, Sn, etc. , where the contribution of the s-p
orbitals of carbon, tin, etc. , may be significant.

—[A" (k)S(k' )A $' )]qqi v", ,},
(2.34)

where v-„ is the zth component of the electronic
velocity in the state%ad and q

' is the product of
the lattice constant and the logarithmic derivation
of the typical tig'ht binding matrix element with
distance. Equation (2.34) leads to simple analytic
results for (I') which have the right qualitative
behavior. We have also found that (2.34) is a very
good recipe for locating phonon anomalies" in
TMC merely from a knowledge of the band struc-
ture.

III. EXPRESSION FOR &I2)

The quantity (I') is defined as

E. Approximate electron-phonon matrix

For a tight-binding s band, the electron-phonon
matrix elements can be expressed in terms of the
electronic velocities. '5' " For multiple d bands,
it is also possible to do so with some seemingly
drastic approximations. The derivation is given in
the Appendix. We have found in our calculations,
that the results using the approximate derived in
the Appendix are valid far beyond the range its
derivation would suggest, due possibly to a can-
cellation of errors in physical quantities like (I')
which involve averages in k space. The result of
the Appendix is

(3.1)

With maximal use of symmetry, it is possible to
express (3.1) in terms of single Fermi-surface
integrals provided we use the expression (2.29)
for gkv k v

l e neglect the crystal field and
three-center contributions to electron-phonon
scattering. The crystal-field terms themselves
are smaller than the two-center terms by over a
factor of five and we expect their derivatives also
to be smaller. The three-center integrals are
usually over an order of magnitude -smaller than
the two center integrals.
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With (2.29), we obtain

(2')=2 g d, v, D, — P C „C„"„),
myna

(3.2)

where

(3.3)

(3.4)

, =[D(2)d,)-'P f " [A„„%)[',
Py m k))

D=[)y,(D)d, ) Z J „-" I,A.v y (kl
py +pm k)) )2

pation of one orbital is dominant one finds approxi-
mately (I') - (v~)a, where a defined above is a
measure of bond order, being greater than 1 for
antibonding states and less than 1 for bonding
states. Note that (v~) also reflects the bonding
or antibonding character of the orbitals at the
Fermi surface, being larger for the latter.

IV. PROCEDURE OF CALCULATIONS

The calculations proceed in the following stages.

c' =[2I(o)(-' g f, 2, A"„A,„y",
I. m vrf,

(3.5) A. Fitting the band structure to obtain nonorthogonal

tight-binding parameters

Here l refers to the irreducible representation of
the cubic group with dimensionality d, . Thus d,
=1, d~=3, d, =3, d, =2. In (3.2}—(3.5) m and m'
are summed over orbitals belonging to a given /.
The second term in (3.2} is smaller than the first

, by the Schwarz inequality and turns out in our
numerical calculations to be, in fact, about two
orders of magnitude smaller. The first term has
a simple physical meaning: a, measures the frac-
tional occupation of the lth orbital at the Fermi
surface and D, the total normalized scattering out
of the 3th orbital.

The first term in (3.2) follows simply from not-
ing that the Fermi-surface integral,

I mP m 4 ~mm
V)~I

etc. To derive the second term, we have used
that

C" ~ f I
-

I

A 'A "y""(k)
m@ Vg~

A~ "A+"y" ~ k
mN vip

and that C .„ is real.
The advantage of the form (3.2) is that all the

integrals need only be done in —,', of the Brillouin
zone for a cubic lattice.

The above results differ from those in ortho-
gonal tight binding (OTB) because the term EVS
is missing in OTB and because in NTB A'A1,
Z,d a, O 1. In NTB for bonding states one finds
a=- d,a, &1, for antibonding states a&1.

For a qualitative discussion, we may use the
approximation (2.34) for y(k) in terms of the
electronic velocities. If the occupations of the
various orbitals at the Fermi surface are very
similar, one finds approximately

(1')-(v')-=g f d /v;gf dvv=,v'„,

the average squared Fermi velocity. If the occu-

We determine NTB parameters by fitting to the
self-consistent calculations" of band structure for
Nb. We have used a set of nine basis orbitals s,

ling parameters to the nearest and next-nearest
neighbor were used. In general this leads to 44
parameters; 4 orbital energies, and 10 coupling
parameters, each for the nearest and next-nearest
neighbors arid for H and S. In practice, we have
limited the number of parameters by imposing
certain relations between the parameters, as is
often done by theoretical chemists. For al1. the
d-d parameters we impose that the overlap param-
eters be proportional to the bonding parameters.

S(ddt) =K H(ddt), q = o, w, 5.
with the same constant K„which is treated as a
fitting parameter Simila.rly, S(ppq) =K H(ppq},
for q= o, p. Further for the s-p, s-d, and p-d
parameters we require that

(spo) = (sso x spa)'i'

(pdo) = (ppox ddo)'~', etc.

We have determined all the nine disposable d-d
parameters from a least-square fit to the purely
d-like eigenstates at I'(I'», I'».), H(H», H»,),
N(N„N, ) and along the directions 4(4„&,.},
G(G,), and Z(Z, ), which can be expressed analyti-
cally. The remaining eight disposable s and p
parameters are then determined by a least-square
fit to the energies of 10 k points along the sym-
metry directions. All the parameters are given in
Tables I(a)-I(c). Our band structure agrees well
with that of Ref. 18; the rms error is 0.15 eV.
Both the band structures are exhibited in Ref. 17,
Fig. l.

Our determination of the parameters involving
the s and p orbitals is not tobe taken too seriously;
tight binding is certainly not valid for them. How-
ever, they are not important for the average elec-
tron-phonon matrix element in the Fermi surface
for materials in which the d density dominates
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TABLE l. (a). Atomic orbital energies for (in By) our NTBS fit. For comparison, the QTB
values of Ref. 26 are shown, referring to the same zero energy as our values. Note that the
crystal field splitting E« —E„, is only half in NTBS than in OTBS. (b). First-nearest-neighbor
bond energy and overlap parameters for our NTBS calculation. For comparison we give the
corresponding values calculated from Herman-Skillman atomic orbitals and potentials. Also
shown are the values of Ref. 26. Since in Ref. 26 the two-center approximation was not used,
we have calculated the two-center terms from those given there by a least-squares fit. (c).
Second-neighbor bond energy and overlap parameters for our NTBS calculation. Also shown

are the Herman-Skillman atomic values and those from Ref. 26.

En
E
E~e

NTBS

0.13
0.412

-0.222
-0.262

OTBS
(Ref. 26)

0.198
0.535

-0.137
-0.212

(b)

H (Ry)

NTBS Herman-Skillman
H (Ry) S

OTBS
(Ref. 26)
H (Ry)

SS
SPO

sdo
ppa
PP7r

pd7r

pd7r

ddo
dd7r

ddt

—0.108
0.112

-0.104
0.115

-0.022
-0.017

0.041
-0.100

0.078
-0.014

0.0
-0,010

0.010
-0,065

0.012
0.068

-0.026
0.071

-0.055
0.010

-0.216

-0.072-

-0.117
0.104

-0.027

0.501
~ ~ ~

0.087

0.082
-0.106

0.038

-0.75
0,107

-0.098
0.147
0.012

-0.120
0.028

-0.095
0.040
0.010

(c)

2nn

BE
(RV)

NTBS

OV

Herman-Skillman
BE
(RQ OV

OTBS
(Ref. 26)

ss
SP
sd
pp
pp
pd
Gd

dd
dd
dd

-0.043
0.074

-0.056
0.129

-0.029
-0.096

0.026
-0.072

0.024

0.068
0.095
0.059
0.132
0.030
0.082
0.022
0.051

-0.017

-0.177

-0.064

0.070
0.057

-0.013

0.42

0.089

0.064
0.070
0.021

-0.047
0.092

-0.049
0.159
0.0

-0.075
0.0

-0.056
0.0
0.0

nea. r the Fermi surface. This is true for all the
materials we consider, except those for which the
Fermi level lies near the bottom of the big dip in
the density of states; this occurs aroundNbp 3Mop 7.

B. Determination of the Fermi surface

The rigid band model is assumed valid for, the
4d metals and alloys of the bcc structure. The
Fermi energy is determined from the density of
states by electr'on counting and the wave vectors
at the Fermi surface for a given number of elec-
trons/atom is determined. To determine the Fer-
mi surface, we work in 4, of the Brillouin zone,
which is divided into 512 tetrahedra. The tetra-

hedral method of Hath and Freeman" is adopted.
The centers of the tetrahedra at the Fermi surface
are determined; the rms velocity ~v-„,

~

for each
band, the eigenvectors A „(k ) and the surface area
associated with each such point is also calculated.
The Fermi-surface parameters are given in Table
II.

C. Calculation of y" „(k)

We express the transfer and overlap integrals,
II, and S, ,„, in terms of the bond parameters
of Table I by the tables given by Slater and Kos-
ter." We analytically take the derivatives of the
expressions in terms of the three cartesian co-
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TABLE II. Lattice constants and Fermi-surface parameters for the 4d bcc transition
metals and alloys.

Electron/atom
Lattice constant

(a-u) E+P,y) N(0) (By ~)

(v2)
& 10 (cm/sec)

4.75
5.00 (Nb)
5.20
5.40
5.60
5.80
6.00 (Mo)
6.25

6.30
6.225
6.165
6.110
6.050
5.990
5.935
5.860

-0.333
-0.323
-0.313
-0.300
-0.282
-0.250
-0.218
-0.193

33.75
22.94
20.56
15.015
6.7
5.9
6.7

11.61

0.213
0.259
0.328
0.348
0.626
0.606
0.568
0.387

0.853
0.864
0.874
0.888
0.873
0.911
0.964
1.033

ordinates. This leaves only the radial derivative
to be numerically determined. The physics of the
radial derivatives is rather interesting and we
discuss it in some detail.

The radial derivatives. Ideally, the radial de-
rivative should be evaluated by calculating the
variation of the Hamiltonian and overlap integral
between a given pair of atoms as the distances
between them is varied keeping all the other
atoms at their equilibrium lattice sites. Such a
calculation would be extremely hard. An alter-
native method is to calculate the self-consistent
band structures for a few different periodic lattice
configurations, and to fit the results with tight
binding. One can then examine how the radial
derivative varies with the configuration, and there-
by estimate the many-body effects on the radial
derivative and thus on the' electron-phonon matrix
element.

However, band structure calculations with dif-
ferent lattice structures are not available for the
transition metals. The best thing at hand is the
self-consistent band structure of bcc Nb" at the
equilibrium lattice constant and at 5% smaller
lattice constant. We have evaluated the radial
derivative of the Hamiltonian and overlap inte-
grals by fitting these band structure results and
assuming the integrals vary exponentially. This
procedure determines the exponents to an accuracy
of only about 10%.

We have also evaluated the radial derivatives
by calculating them from Herman-Skillman wave
functions and potentials. These results are within
20% of those calculated from the fitted band struc-
ture. This indicates that renormalizations, etc. ,
are corrections only of this order.

The one shortcoming of the above reasoning is
that in both methods of calculation, the configura-
tions examined leave the atoms concerned locally
neutral. We may, however, argue that we would
not expect the wave-vector dependence of the elec-
tron-phonon matrix element to be affected signifi-
cantly by renormalization effects (through their

effect on the radial derivatives) if the susceptibility

is not significantly q dependent. This quantity has
been evaluated for the bcc transition metals" and
in fact satisfies this criteria well.

To go back to the procedure of our calculation,
with the radial derivatives at hand either from the
fitted band structure or from Herman-Skillman
atomic calculations, we can Fourier transform
to derive y „(k) given by (2.30).

D. Calculation of (I'&

With the Fermi surface information and the de-
rived y" „(k), we have complete information of
the integrands in (3.2). The integrals can all be
done over 4, of the Fermi surface and the results
multiplied by 48. The Fermi surface program de-
veloped by Rath and Freeman" is used.

V. RESULTS AND DISCUSSION

We have calculated (f2) for the 4d bcc system
ranging from an electron/atom (e/a) ratio of 4.5

to 6.5. 'The results and the experimentally de-
duced values are shown in Fig. 1 and Table III.
Considering the 10%-20% uncertainty in both sets
of values, the agreement may be regarded as very
good. In the results shown in Fig. l, the value of
the radial derivative is calculated from Nb Her-
man-Skillman wave functions and potentials and
the alloy lattice constants. Actually the values
of the derivatives derived from Mo Herman-Skill-
man wave functions and potentials at Mo lattice
constants are about 15% larger than those from Nb

Herman-Skillman wave functions and potentials
at Nb lattice constant. This means that the de-
creased lattice constant of Mo overcompensates
the reduced atomic size of Mo. Had we calculated
the results with the derivatives derived from
bandstru. cture for Nb the agreement for Nb would



6188 C. M. VARMA, E. I. BLOUNT, P. VASHISHTA, AND %. WEBER

N)
H

~ H

20-

10-

20— 0.4

0
d)
(/J

E
C3

CO

O

A~

V

0 I I

5.0
l

6.0
I '0'

0 I

5.0
e/a

6.0 .

Mo

have been even better, If we scale these deriva-
tives with changing e/a ratio with the same factor
as the derivatives from atomic wave functions and
potentials, the overall agreement improves over
that shown in Fig. 1. This however would be
stretching the point a bit.

We have also plotted, in Fig. 2, the variation of
(vr) and a~(v&) with e/a to test the validity of the
approximation discussed at the end of Sec. III.
Here a„ is the bond order of the d bond; a„=3a,
+2a, . The general trend of a~(v~2) is similar to

FIG. 1. Calculated values of (I2) for various electron/
atom ratios in the 4' bcc transition metals and alloys
compared with the empirical values: O. 6 denotes the
best values calculated to data by the rigid muffin-tin
method, Ref. 24. Also plotted is the calculated N(0) (I ) .

Nb e/0 Mo

FIG. 2. (vz) and a (vz) for various electron/atom
ratios in the 4P bcc transition metals and alloys com-
pared with the calculated (I ) . Note that the variation
in (I ) is generally proportional to that of the product
of bond order z and the average-squared Fermi velocity.

that of (I ). This proportionality is very interest-
ing and has a simple physical interpretation. The
electron-phonon matrix elements are large when
small lattice displacements cause relatively large
changes in electronic energy. This requires that
the relevant electronic states have rapid variation
in their energy with wave vector, i.e., a l.arge
velocity. The dependence of (P) on the bond order
a~ reflects the fact that the antibonding states
have rapid variation in the wave functions in the
interstitial regions and are therefore more sensi-
tive to lattice displacements than the bonding
states. (A part of this effect is of course already

TABLE IQ. Average electron-phonon matrix element calculated here and compared with
the empirical values calculated by other methods. (a) From Ref. 27, (b) Ref. 24, (c) Ref. 25,
{d) Ref. 24, (e) (It) calculated with OTB parameters of Ref. 12, (f) this work; OTB values
were obtained by putting V'S= 0 and A= 1.

Electron/atom
(I')

empirical calculated here
0')

{OTB) (muffin-tin)

4.75
5.00 (Nb)

5.20
5.40
5.60
5.80
6.00 (Mo)

6.25

18.6
20 0

7.8
9.1

9.5
8.8

10.1
12.0

16.0
22.8

21.6'
16.5'

21.0'

8.7
9.3'

15.5



19 EI ECTROX-PHONO% INTERACTION S IX TRANSITION% MET@I, S

contained in the electronic velocities. )

We have also decomposed the contributions to
(I') in order to study the importance of each or-
bital. We find that by far the strongest contribu-
tion in the range between Nb and Mo comes from
t,~ orbitals. The main reason for this is that this
orbital is dominant by a factor of 3 over e and, in

general, by even more over P and s. Only in the
region e/a&6, the e~ orbital admixture becomes
approximately equal to the t,~. The terms D, and

D, are of the same order of magnitude, i.e. the
d-electron-phonon coupling is of the same strength,
irrespective of the orbital character. 'The s and P
electrons contribute little to (I2) because there is
only a small admixture of s-p orbitals near the
Fermi surface in most of the e/a range between
Nb and Mo, and because both the radial and the
angular parts of ~H and &S are smaller than for
d orbitals. Similarly, the s-d and P-d hybridiza-
tion effects are unimportant for (P). All this is
best seen by the results of a calculation where all
VH „and &S „are set equal to zero unless both
m, n refer to d orbitals. We then get (I')~ = 0.8I'.
We conclude that the principal mechanism for the
strong electron-phonon coupling is the- strong
coupling to lattice displacements of the d electrons.

A further point of interest is how our results
differ from those obtained by OTB. 'There are two

differences in the NTB electron-phonon matrix-
element compared to OTB. First, the term &&&S

is about 30/0 of VH and tends to cancel it. Second,
the orbital coefficients &„are not normalized to
1 as in OTB, but vary from ~A ~'= 0.8 in bonding
states near e/a=3 to ~A ~'- I near e/a=7. The
results for (P) with OTB are given in Table III
using parameters of Peter et al." These are
about twice as large as the experimental results.
There has been some other work based on tight-
binding methods by Birnboim and Gutfreund. "
'These calculations are, however, done with a
model band structure rather than a realistic band
structure, and therefore cannot be usefully com-
pared with the present results.

A lot of effort"'"" has been directed toward
calculating electron-phonon interactions in TMC,
starting from electronic states that are decompos-
ed in an angular momentum representation around
each atom, as is done in the APW and the KKH

schemes. This general approach was initiated by
Hopfield, " who started with the conception that
superconductivity is an atomic property; therefore
a basis set with an angular momentum decomposi-
tion around an atom should be a good starting
point. He showed that A, is proportional to the P-
(and f-) wave contribution to the density of states.
Later more precise work" "has shown that
Hopfield erred in the interpretation of his derived

expressions, and what is relevant for X in this
formalism is the P- and f-wave electronic density
at one atom when looked at from a neighbor1 This
proof would seem to us to have damaged the basic
premise of the work which sought to understand
superconductivity on an atomic basis. presides, it
is not very helpful to learn that (I2) is proportional
to the f-wave electronic density at one atom when

looked at from the other; this latter quantity has
no clear physical meaning, nor does one know how

it varies from element to element or structure to
structure.

A very attractive looking expression" has been
derived to calculate A. from the above approach,
which expresses (I') in terms of phase shifts of

various angular momentum components. In prac-
tice to calculate with these expressions, the

assumption of the rigidly moving muffin tin" is
used to evaluate the electron-phonon matrix ele-
ment. Questions have been raised about the im-
portance of the interstitial region, '""neglected
in this approximation, and of ways to properly
screen" the rigidly moving muffin tin. " 'The most
careful of the calculations" using this approach,
however, agrees as well with the experimental
results as our calculations.
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APPENDIX: APPROXIMATE ELECTRON-PHONON MATRIX

An approximate expression for the electron-
phonon matrix element can be derived. which, we

have found, is useful far beyond the range its
derivation would suggest.

We first start by noting that

V& 0 (k)= ~/ R&&„H „(5&&)e p(ik '
ling) (Al)

and compare it with the Fourier transform of the
derivative of the Hamiltonian matrix entering in

(2.30), i.e. , with,

H„„(5(~)exp(i% '5,~). (~2)
0

Now Va&&,H„„(R&&) can in general be written as a
sum of the radial and of the angular derivatives,

The radial derivative of H „(R„)for localized or-
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bitals can be written

V„~ H„„(R,q) = (R,~/r „)H „(R,q), (A4)

where ddo, ddt, and ddt are the bond-parameters for
a given pair of atoms at a distance ~R

~

and I, m,
and n are the direction cosines of one with respect
to the other. 'The result of taking the angular de-
rivative is

H„„~,= (1 —2l ')n(ddt "—dd5)
ang

+ m'n(1 —4l')(3dd5 —4ddm+ dd6) .
(A. 5)

Let us now use (A.4a) and (A. 5) in (A. 1) and (A.2),
respectively. On performing the sums over near-
est neighbors, the k dependence in both expres-
sions will be the same since it comes from the n
index common to (A.4a) and (A. 5) for the nearest
neighbors, (A.4a) yields

(8/v 3 )[s (ddt —dd5) + g'(3ddo —4ddp+ dd6))

where x „ is the characteristic fall-off distance of

H„„(R,&) with R,z If. we ignore the angular deriva-
tive for the moment and insert (A.4) in (A. 2), we
note that the 0 dependence of (A. l) and (A. 2) is
identical. If we further make the assumption that
r „ is dependent of m and n, which is not a bad
assumption if we confine our attention to the d
orbitals alone, we conclude that the two express-
ions (A. l) and (A. 2) are proportional to each other.

Now, consider the angular derivatives. The
length parameter introduced in taking the deriva-
tive is now ~R,& ~

' rather than r '„, the k depend-
ence of (A.3) from the angular derivative is the
same as that of (A. l), but the magnitude of the
derivative is not proportional to H„„(5,&). This
is shown by an example. Consider, for instance
II„,and its derivative with respect to x.

(R„/ iR i)H„„,„,= [I's(ddt —dd5)

+ I'm'n(3ddo' —4ddm+ dd5)],
(A.4a)

The angular derivatives are however smaller by
a factor r „/ ~R

~

which is typically about 0.3.
Further the difference of typical terms like (A.6) .

and (A. 7) is generally small compared to the
radial terms. We may therefore roughly approxi-
mate (A. 2) by q'V&, H „(R), where q is of the order
of the geometrical mean of the lattice constant and
typical exponential fall off of the d-d Hamiltonian-
matrix element. We can similarly approximate
(A. 2) with S instead of H by q2V& S„„(k). The
electron phonon matrix element is then (2.29) with

y„„(k) approximated as

y„„(k)=q'[V~, H „(k) —E~V~ S „(k)]. (A. 8)

Now consider

(A. 9)

Using (A.8), (A. 9) is equal to

q'(v~, [A'(%)S(k)A (k')],„
+(E~ [A'(k)VS(k)A$')]„„,].

+ E~„[VA'(k)S (k)A (k')]„~,
[VA'—(k}H (k)A (k')]~„). , (A. 10)

gg„q, „.= q'[vf„[A'(k)A(k')], „,
—[A'(R)A $')]„„,vg. ~, ) . (A. 12)

We expect the first term to be generally much
larger than the rest. 'The rest are important only
in regions of strong hybridization. If we restrict
our attention to scattering at the Fermi energy,
the second term is zero. If we keep only the first
term in (A. 10) and make a similar approximation
for the term involving y„„(k' ) in g-„„-.„., we have

gg„,g. „.=—q'iv) [A'(k)S~A(k')]„

—[A'(&)S $')A(k')]„„,v~, ~, ). (A. ll)
If nonorthogonality effects are neglected, one gets
the even simpler result:

&& cosjg„a cosk„a sinjg, a,
while (A. 5) yields

( /v83 )[,' (ddt —dd6—)——,
' (3dd(r —4ddm+ dd6)]

x cosh„a cosk„a sink, a .

(A.6)

(A. 7)

With this approximation, we can go a long way
towards evaluating (I') analytically. The results
are discussed in Sec. III. We have also found that
(A. ll)-(A. 12) are a very good recipes for locating
phonon anomalies in transition metals merely
from a knowledge of the band structure.
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