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Diffusion coefficients of 24sb, ~i3Sn, Ag, and Au in liquid copper
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Measurements of the diffusion coefficient of ""Sb, '"Sn, "
Ag, and ' 'Au in liquid copper are made using

a shear-cell device which provides accurate data. The experimental diffusion coefficient is given by

D, = CD;, where D, is obtained using Enskog's theory and C is a correction factor accounting for

dynamical correlation effects. C is a function of the fluid density and of the relative mass and size of the

solute with respect to the solvent. The data show that among the solutes smaller in size and mass than the

solvent, those of larger mass and smaller size tend to diffuse more rapidly than predicted by Enskog's theory.

For solutes larger and heavier than the solvent, the diffusion coefficient tends to increase with their mass and

size.

I. INTRODUCTION

In view of their prominent role in metallurgical
phenomena such as nucleation and growth process-
es during the solidification of alloys, it is of pri-
mary importance to have a good knowledge of dif-
fusion coefficients in liquid metals. In contrast to
the work done in solids, impurity diffusion has not
been studied extensively in liquid metals because
of the inherent experimental difficulties namely:
(i) diffusion into the container has to be avoided,
which explains why most of the data published in
the literature are concerned with metals of low
melting temperature and of low vapor pressure;
(ii) the control of sample purity is made difficult
by the high reactivity of liquids and the large diffusion
coefficients ot' impurities; and (iii) temperature
and concentration gradients may induce convection
currents so that the experiments must be conduct-
ed in small-diameter samples, thereby reducing
the accuracy of the measurements and increasing
spurious surface effects.

Among the different methods used for measuring
diffusion coefficients in liquid metals, the most
common is the capillary-reservoir technique. ' A

capillary container, sealed at one end, is filled
with the dilute liquid alloy and immersed in a
much larger vessel containing a large volume of
the pure host liquid metal. The profile of the
solute concentration along the capillary, when

fitted to the appropriate solution to Fick's second
law, provides a value of the solute diffusion co-
efficient. Large experimental corrections' must
be made however because of the following points:
(i) solute diffusion occurs during heating and cool-
ing from the diffusion temperature; (ii) large so-
lute segregation may occur during the nonuniform
solidification of the sample, as was emphasized
by Nachtrieb'; and (iii) since the accumulation ot
solute atoms at the open end of the capillary is
usually prevented by stirring the reservoir liquid,

convection currents are induced in the vicinity of
the open end of the capillary. Corrections to the
length of the sample must be made, which lead to
a rather large uncertainty in the measurements.
In the experiments described in Sec. II of the pres-
ent paper, a shear cell is used, eliminating most
of these uncertainties and corrections.

From a theoretical point of view, self-diffusion
and impurity diffusion in liquid metals are qualit-
atively well understood. Enskog' s theory of dense
fluids' has been corrected by Alder et al."to ac-
count for dynamical correlations. Hence the dif-
fusion coefficient D,.of species i in a liquid is usual-
ly written D;= D~C„~, where D~ is the diffusion
coefficient calculated according to Enskog's theory
and C» is a correlation factor accounting for these
correlations. After a computer simulation, Alder
et al. showed that C„~ depends on the fluid density
and on the relative mass and size of the solute
with respect to the solvent. Using this type of ap-
proach; Protopapas et a/. ' have been able to calcu-
late the self-diffusion coefficients of a number of
liquid metals. Despite its phenomenological char-
acter, this theory accounts fairly well for the ex-
perimental values of self-diffusion coefficients
and their variation with temperature.

On a more fundamental footing, the detailed cal-
culations of the velocity autocorrelation function
by Resibois' agree with the computer calculation
of Alder et al. Since most of his work is concern-
ed with self-diffusion however, we shall give in
Sec. IV an interpretation of our results in the
framework of the Enskog theory, corrected ac-
cording to the model of Protopapas et al. for self-
diffusion.

II. EXPERIMENTAL PROCEDURE

In order to avoid most of the drawbacks present-
ed by the capillary-reservoir technique, a shear
cell has been constructed to determine the diffu-
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FIG. 1. Schematic rep-
resentation of the shear
cell: (1) intermediate disk
with radioactive alloy;
(2) filling reservoir: A,
configuration of the cell
during the heating of the
system; 8, the radioactive
isotope is put into contact
with the long capillary; C,
at the end of the diffusion
run, each capillary is
sectioned into 20 beads.

sion coefficients of radioisotopes in liquid copper
(Fig, 1). The cell consists of a sta, ck of 20 disks,
4 mm thick and 42 mm in diameter, in which two
holes of 1.5 mm in diameter are bored. The mech-
anical arrangement of the system makes it possi-
ble to rotate the disks with respect to one another,
from outside the furnace. A typical experiment
proceeds as follows.

(a) Both capillaries are initia. lly filled with a,

solid rod of pure (99.99F/0) copper supplied by the
Materials Research Corp. Two short pieces of a
dilute alloy of copper with the radioactive solute
are inserted in two holes bored in an intermediate
disk located in the middle of the stacking. During
the initial stage of the experiment, no contact is
allowed between this alloy and the long capillaries
of pure copper.

(b) When it is appropriately filled with pure cop-
per and the radioisotopes, the shear cell is intro-
duced in a furnace and heated with a graphite re-
sistor under helium atmosphere. The tempera-
ture gradient along the cell is smaller than 2 K
cm '. Therefore no thermally induced convection
currents are expected in the capillaries, as the
critical gradient is about 500 Kcm ' for the geo-
metry used iri the present experiment.

(c) When the desired temperature is obtained in
the furnace, the intermediate disk is rotated from
outside the furnace until a perfect contact is en-
sured between the thin layer of radioactive alloy
and the two halves of each capillary. This opera-
tion accurately determines the beginning of the
diffusion run.

(d) At the end of the diffusion run each disk is
rotated with respect to its neighbors; this opera-

tion takes place at the diffusion temperature and
determines the end of the diffusion run. Hence
each capillary is sectioned into 20 beads which
are subsequently extracted from the disk and
whose radioactivity is measured using a standard
NaI- Tl analyzer.

The theoretical solute concentration c„(x, t) along
each capillary is given by the solution to Pick's
equation

Bc c&8

~X

in an infinite medium, with the initial condition

c„(x,0)=c e(xw h)I'1-e(x -h)), (2)

III. EXPERIMENTAL RESULTS

In order to investigate the influence of the pa-
rameters pertaining to solute atoms (mass, size,
valence, etc.) on their diffusion coefficient in cop-
per, a systematic program of measurements has
been planned. The diffusion coefficient of some
impurities belonging to the copper, silver, and
gold series of the Periodic Table have been mea-
sured in a fairly large temperature range. In

where 2h is the thickness of the intermediate disk
in which the alloy of initial concentration co is in-
serted, and e(x) is the step function.

The diffusion coefficients of radioisotopes in
liquid copper are obtained by a least-square fitting
of the experimental concentration profile to the
solution of Eq. (1):

~c I
0-x& t 8+x(, t) = 22L e f ~ ~+erf~

Dt& I, Dt g
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TABLE I. Diffusion coefficient of Ag in liquid Cu.

1423 1463 1523 1610 1721 1825 1925

t (103 sec)

D(10 cm sec )

7.2
3.42
3.45

7.2
3.65
3.70

7.8
4.48
4.49

1.8
4.76
5.15

3.6
5.95
5.97

7.0

2.4

7.65

TABLE II. Diffusion coefficient of Sn in liquid Cu.

T {K) 1383 1515 1548 1666 1773

t (10 sec)

D(10 cm sec )

7,8

2.85
2.92

6.6

4.00
4.10

5.52

4.38
4.48

3.00

5.51
5.57

3.60

6 ~ 11
6.12

2.70

7 ~ 56
7.90

TABLE III. Diffusion coefficient of Sb in liquid Cu. ,

V (K) 1373 1413 1443 1473 1513 1573 1613 1673 1718 1773 1838

t (10 sec)

D(10 cm sec )

2.7 2.7

4.08 4.15 4.92 4.42 4.90
4.12 4.23 4.54 4.97

552 560 635 669 720 730
6.26 6.85 7.85

3.6 3.6 1.8 3.6 2.7 2.7 1.92 3.6

TABLE IV. Diffusion coefficient of ~ ~Au in liquid Cu.

T {K) 1373 1406 1473 1523 1603 1663 1673 1728 1823

t (103 sec)

D(10 cm sec )

6.9 6.5 7.2 7.5 7.2 7.5 6.9

3.34 3.45 3.80 4.-39 4.95 5.20 5.40 5.33 6.53
3.36 3.46 3.86 4.40 4.97 5.20 5.85 6.71

TABLE V. Values of the exponent~ and of coefficients A and & for the diffusion of Sb in

liquid copper, according to Eq. (4), in the temperature range 1356-1700 K.

A (cm sec K ")
B (cm2sec ~)

2

6.42 x10 6

-1.99 x10 4
8.2 x10-4

-7.38 x10 5
2.65 x10-"

-1.09x10 &5

2.38

1.3 x10 ~ -0.192
0 1.78 x10 4
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Tables I-IV we report measurements of the dif-
fusion coefficient of '" Ag "'Sn, "Sb, and "'Au
in liquid copper, from 13V3-1900 K. For each
run, the values of the diffusion coefficient mea-

. sured in the two independent capillaries are given,
showing that the reproducibility of the experi-
ments is fairly good.

The temperature dependence of the diffusion co-
efficient D can be expressed through different
laws. As D increases relatively slowly with tem-
perature, this temperature dependence can be
represented by different power laws in the tem-
perature range explored. In Table V, for in-
stance, we report calculated values of A, B, and

n leading to good fits of the experimental data for
'"Sb in Cu to a power law of the type

In order to make a comparison between the dif-
fusion coefficients of the four isotopes investigat-
ed in the present work, we write the impurity dif-
fusion coefficient as

B=A'(T —T )+B',

where T = 1356 K is the melting temper. ature of
pure copper and we give values of A and B' in
Table VI for "~Ag '"Sn, "Sb, and "'Au.

In Fig. 2 our experimental results are compared
with those given by Henderson and Yang' for the
self-diffusion coefficient in liquid copper, by

E jima and co-workers' for Sb and Ag and with the
data obtained, by Kado and Ohno' for Ag. Although
the diffusion coefficients obtained in the preceding
investigations are of the same order of magnitude
as those obtained in the present work, the marked
discrepancy between the different data can be
tracer] to the difference in the experimental tech-
nique used to measure D. Since our experimental
method is free of many of the drawbacks of the
capillary-reservoir technique, we shall use our
results in the following discussion.

IV. INTERPRETATION OF THE EXPERIMENTAL RESULTS

The discussion of our experimental results will
be based on the following scheme.

(i) From the theory of transport phenomena in
dense gases and liquids derived from the Enskog
theory, ' we can get a crude estimation of the dif-
fusion coefficient D,~ of an impurity in a liquid
metal.

(ii) It is well known however that dynamical cor-
relations, which are neglected in this estimation,
play an important role in determining the diffusiv-
ity of a given atom. These correlations, usually
calculated using molecular dynamics, depend on
the density of the fluid and on the mass and size
of the solute relative to solvent atoms. These
correlations are expressed as the ratio C of the
true diffusion coefficient to the diffusion coef-

p(10 cm'/s ) P (10 cm'/s)
Ii

7 ~

6.
5 ~

D.
I

D.
I

4 Sn

T ('K) T( K)

P (10 cm'/s)

7 r

i, P (10 cm'/s)

6 r

5 ~

4 ALI

3 ~

1400 1600 1800 '?400 1 600 1800 T('K)

FIG. 2. Experimental data obtained for the diffusion coefficient of Ag, Sn, Sb, Au, .plotted against temperature [solid
line (a)]. D& is the Enskog diffusion coefficient corrected for density tEq. (12) in the text]. Curve (1) represents the
experimental data published in Ref. 10, curves (2) and (3) correspond to data of Ref. 9, and curve (4) refers to the self-
diffusion coefficient measured in Cu (Ref. 8).
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ficient obtained using the Enskog theory. There-
fore we calculate DE and thus obtain an experi-
mental. value for the correction factor C.

A. Enskog's diffusion coefficient D;

The hard-sphere model has been developed by
Protopapas and co-workers to calculate self-dif-
fusion coefficients in a number of liquid metals, '
shear viscosity coefficients of pure liquids" and

of binary alloys. ' The starting point of the cal-
culation is the Enskog approximation, extended to
binary hard-sphere liquids by Thorne. '"" As in
our experiments n,. the number density of solute
atoms, is very small with respect to n„ the num-
ber density of solvent atoms, the diffusion co-
efficient B,~ of the solute is given by

u7. "

where p, =m, m, /m, +m, is the reduced mass, c,
and 0, are the hard-sphere diameters of solute
and solvent atoms, respectively, o, , =-,'(o,.+o,),
and g„(o,,) is the value of the pair-correlation
function g, ,(z) for different atoms evaluated at
contact of the hard spheres. Therefore in a bin-
ary mixture we have to evaluate c„o„andg, ,(o „)
in order to compare Eq. (6) with the experimental
data.

In the theory of Protopapas and co-workers, the
hard-sphere diameter 0 is chosen as an average
distance of closest approach of the atoms in the
fluid. As the temperature increases, the energy
of the collision increases and o decreases accord-
ing to the simple law

v =og1-0.112(T/T„)'i']

In this expression, 7.' is the melting tempera-
ture and pp is the distance at which the interatom-
ic potential assumes its minimum value; in prin-
ciple oo can be chosen to give a good fit to the first
peak of the structure factor" as measured by x-
ray or neutron scattering. Using a simple model
to calculate o, Protopapas and co-workers show
that in a pure metal a reasonable value of oo is
given by

0 o
= 1,0878' i',

where n is the number density of the liquid at its
melting temperature. According to this model, we
calculate the hard-sphere diameters o, (T) and.
v, (T) of pure solute and pure solvent and we as-
sume that these (functions of T) remain unaltered
after alloying.

Owing to the lack of an experimental determina-
tion of g„(0,,) in the binary alloys investigated in
the present paper, we must evaluate this quantity
using a specific model. In liquid mixtures, Ber-

TABLE VI. Coefficients A' and 8' defined in Eq. {5)
for the diffusion of Ag, Sn, Sb, and 9 Au in liquid
copper.

Ag Sn 2 Sb ~Au

A'{10 cm sec K ) 85
B' {10 5 cm sec «) 2.87

12.0 8.2 7.3
2.73 3.82 3.11

B. Correction factor to the Enskog diffusion coefficient

The discrepancy between D,. and the experimen-
tal data ean be traced to many-body correlations
in the liquid phase. These correlations have been
shown by Alder and co-workers, 4' using molecu-
lar-dynamics simulation, to depend strongly on
the density of the fluid and on the relative mass
and size of the solute with respect to the solvent.
Therefore, we write the diffusion coefficient of
species z in the solvent as

D; =D, C(v/vo, AM, bc),
'where v/v =rW/6y„EM=I& -m, and hc =o,. -c .

In the correction factor C, it is possible to
separate the variation with density which we write
C,(v/v, ) from the dependence on the mass and size
of the solute atom C,(hM, b v). In pure fluids,
C, (v/vo) has been extensively studied by Alder
et aE.4 who show'ed that C, varies very rapidly w'ith

v/vo in the high-density region, relevant to liquid
metals. In view of the very large dilution of the
alloys used in the present work, we may assume
that C, (v/vo) for the alloy is correctly approximat-
ed by the value obtained by Alder for the host met-
al at the same temperature. Actually, w'e used
the interpolation formula given by Bertucci and
Flygare' to calculate C,:

C, —= —3.5 —
i

+ 13.45 ——11.V2.v. v)' v)
&o &o i ~o]

tucci and Flygare' make use of a phenomenologi-
eal radial distribution function at contact which is
a linear combination of g'„ taken from the scaled-
particle theory" and g,"., given by the Lebowitz
solution of the Percus-Yeviek equation for mixed
hard spheres. " In the present paper we prefer to
use the expression of g, , given by Protopapas and
Parlee, ' relevant to infinite dilution:

(2-y,) 1 2c; —(y,
—

gls( ks) (2+y )(1 )3 ys

where y, =&mn, o', is the packing fraction of the pure
host metal. This expression of g, , is shown in
Ref. 12 to satisfy almost exactly the Carnahan-
Starling equation of state for binary hard-sphere
liquids.
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FIG. 3. Ratio D&/D& of the measured diffusion coefficient D& to the coefficient D& corrected from Enskog's theory for
density effects.

Using Eq. (8) to calculate o, for each atom of the
binary mixture, we obtain o,(T) and a,.(V') from
Eg. (V), g„(a„)from (9), and the diffusion coeffi-
cient

D,
' =D',.C, (v/.v,) (12)

corrected by C, from the value D,. given by the En-
skog theory.

The calculated values of D,.' are given in Fig. 2

for the four solute atoms Ag, Au, Sn, Sb and com-
pared with the experimental data. This compar ison
provides an estimation of the correlations due to
the fact that the diffusing species are different
from the solvent in size, mass and chemical na-
ture. In order to study these correlations we re-
port in Fig. 8 the ratio D;/D;=C2(BM, ba), where

L),. is the experimental value of the diffusion co-
efficient and D,'. is calculated using Eq. (12), in the
temperature range 1356-1823 K, corresponding to
the density range v/vo = 1.5V—1.V5. The following
contributions to C2(AM, ho) are exhibited by Fig.
3.

(a) C, increases with the mass of the solute
atom. A similar dependence of the dynamic cor-
relations on the solute mass has also been ob-
served by molecular dynamics by Alder et al."
(for solutes of mass smaller than that of the host
metal) and by Toukubo et al."in Lennard-Jones
fluids. Qualitatively, it is easy to understand
this effect since at large densities, the correla-
tions are dominated by the backscattering effect.
The larger the mass of the diffusing species, the
smaller the backscattering. The diffusion coeffi-

cient of solute atoms of larger mass than the sol-
vent is therefore larger than one would expect
from a pure Enskog theory, even corrected by
the factor C, of the host metal.

(b) C2 increases with the size of the solute atoms,
their mass being kept roughly constant [C2(Sb)
& C,(Sn) &C~(Ag)]. While this dependence of C2 on
cr is the reverse of the dependence found by Alder
et gi."for impurities smaller than the solvent, it
is in igreement with the results obtm. ned by Tou-
kubo et a)."in Lennard-Jones fluids. It is plaus-
ible to argue that solutes of large size may favor
the onset of the hydrodynamic regime of the dy-
namical correlations. In order to confirm this
point, it would be very interesting to perform
molecular-dynamics calculations on hard-sphere
systems with solute atoms larger than the sol-
vent.

V. CONCLUSION

We have reported measurements of the diffusion
coefficient of some solute atoms in liquid copper,
using a shear-cell device which provides accurate
data. From a comparison between experimental
data and theoretical calculations based on hard-
sphere models, two correlation regimes are ap-
parent, namely, (i) fo'r particles smaller in size
and mass than the solvent, the predictions of the
computer simulation are in agreement with the
experimental data, i.e., solutes of large mass
and, small size have a tendency to diffuse more
rapidly and, (ii) solutes larger and heavier than
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the solvent diffuse faster than predicted by En-
skog's theory. The observed effect increases
with the difference in mass and size of the solute
relative to the solvent. In order to understand

this point, it would be very interesting to perform
computer simulation calculations on such sys-
tems.
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