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4kF response function in the Tomonaga model
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%'e calculate the 4k„response function for a one-dimensional Fermi gas using a model containing an off-

site interaction V of the Tomonaga form. The approach of Dzyaloshinskii and Larkin extended by Fogedby
is employed, and the result is consistent with those of Emery and those of Lee et al.

I. INTRODUCTION actions:

Recently, the experimental observation' ' of the
4k~ scattering in tetrathiafulvalene- tetracyano-
quinodimethane (TTF-TCNQ) has aroused a great
deal of interest. Although many of the other ex-
periments on TTF-TCNQ have given results con-
sistent with a weak coupling theory, this observa-
tion of 4k~ cannot satisfactorily be understood
from such a theoretical framework. ' In fact, cal-
culations by Emery4 and by Lee, Rice, and
Klemm' (LRK) indicated that the 4k' response can
only be observed if the interactions are strong,
or are at least of intermediate strength. How-

ever, if the interactions are not weak, then the
Fermi surface is smeared out at k~, s 7 and thus
the single-particle picture of interaction fermions
appears to break down. Although Emery has per-
formed a correct calculation of the 4k~ response
function for intermediate coupling using the tech-
nique of Luther and Emery, ' this approach has to
date not been universally accepted or understood.
In order to give some check on Emery's results,
LRK summed the leading parquet graphs, which
gave a result consistent with Emery's expanded
to lowest order in the interaction strengths. How-

ever, their approach is only valid for weak-inter-
action strengths, and thus does not serve as a
reliable check in the intermediate-coupling-
strength regime. We remark that the results
we expect should depend in an essential way upon
the strength of the interaction, and may also de-
pend somewhat upon the form of the interaction
chosen. In order to give a check on Emery's re-
sult for intermediate-interaction strengths, we
shall calculate the 4k„response function in the
Tomonaga model, which may be performed
exactly by standard methods of many-body theory.

II. MODEL

H =Ho+H~,

where

Hp 'Ek P' OktyQkg

is the free-particle Hamiltonian, and

a, =-,' g V,n, n, . . (3)
ij

is of the off-site Hubbard form, where a,, (at, )
annihilates (creates) an electron, on the ith site
with spin o.=+1, a„=L '~'Q, e'"a,„.wher. e L is
the length of the chain, s is the lattice spacing, p,

is the Fermi level, and n, =5~,a~,a,, is the total
number operator for electrons on site i. In Eq.
(3), V, is assumed to be slowly varying with j,
and the long-range part of the interaction is pre-
sumed to be the most important.

Equation (3) may be written in Fourier space as

H~ —
21 z ~k&k&-. ~ (4)

where

III. 4kF RESPONSE FUNCTION

Since we consider only excitations near the
Fermi surface, the free-particle spectrum may
be linearized, and we may obtain

H = vz Q k(a q,aa a2q a2~)

(5)

Since we are interested only in the long-range part
of H„ the sum over k in Eq. (5) may be restricted
to

~
k~ &A, where the cutoff A «k~, and k is mea-

sured relative to k~.

We consider the Tomonaga Hamiltonian for
electrons on a single chain with off-site inter- and

ks
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&,=&~ P (V, [p, (&)p,(-&)+ p, (-&)p.(&)]
1 Since the spin-up operators do not interact with

the spin-down operators, . we have

+ V.(p, (&)p.( &)—+ p, (&)p, ( &)-9,
e

P, (12)=G, , (12)G, , (12),

where

(14)

where the indices 1 and 2 refer to different sides
of the Fermi "surface, " and where we have
allowed the interactions between electrons on

the same side (V,) and on opposite sides (V,) of
the Fermi surface to be different for generality,
but Eq (4). has V, = V, =V, G=Q/V, .

We now wish to calculate the 4k~ response func-
tion. Emery4 argued that the 4k~ response could
arise in second order from an electron-phonon in-
teraction involving two electrons. Thus the appro-
priate response for small U is a linear response
to the four-body operator

e(xt) = y„(xt)q„(xt)qt, (xt)gt, (xf),

where g, , (xt) [g~, (xt)] annihilates (creates) an elec-
tron on the i = 1, 2 branch with spin up (down) at
position x and time t. Therefore the linear 4k~
response may be written~'

G,,(12)=Z,. '(0~ Te "3 3$,,(1)(i)~,(2) ~0), (15)

where s = +1. We now note that Dyson's equation
can be solved exactly' to give

G, (12) = G', ,(12)exp( 1j( d3[G;.,(13)

—G",.(23))3;(3)),

where

G';, (12)=(0~ Tg;,(1)(';,(2)
I
o)

(18)

Z,. =exp --,' dld2b', . 1 m', 12 b',. 2 (18)

is the noninteracting single-particle Green's func-
tion for an electron moving in the ith direction with
spin s. The partition function Z,. may be written
as

12 = (OITe " ' '6(1)nt(2)l 0)
X4~, ( ) —

&0
~

fP'PP/Q
~0)

where T is the time-ordering operator, 1 and 2

refer to different positions and times, and we
have used the matrix notation analogous to that
of Fogedby' for H„

V, V,

(8) where

i)';(12) = —.
' g (o ~TP;, (1)P;,(2)

~

o) (19)

is the unperturbed polarization function. Writing

m', 0

V~ V,

(9) (2.;
(20)

and it is understood that we integrate over mo-
mentum and time in pVp. Following Fogedby, '
who extended the work of Dzyaloshinskii and
Larkin" to calculate the two-body correlations
functions, we write

K(12)=

11,(12) 0

0 -K, 12

(21)

(b I
e""'/'Z, Z,P,(12)P,(21) I b)

}/43)i2 (b I
eibv()/~Z Z I b)1 2

(10)
where

K, (12)bi( = Q [G',,(13)—G',,(23)]bt(3) (22)
where

z,.-=(0
i
Te *"'io)

. .. [0)/b),

where b is a Bose operator.

P,.(12)=Z,. '(0
~

Te "i'~if, , (1)g, , (1)(i)', , (2)

x(';, (2) ~o),

where we have used the property'

(0
~

Tei M

~

0) (b
~

e bMb(0
(
Te ib-'-

(12)

(13)

and repeated indices are integrated over, we may
write the 4k~ response function

= G„(12)GG„(12)GGG,(21)GGG, (21)

(b [exp[—,'ib Vb + ,'b "(-ir)b'+ iK(12)b'—][b)
& b le~[-,'ib Vb + —,'b'(-~)b']

f
b)

e

We observe that Eq. (23) is remarkably similar to
the analogous equation for the 2k~ response func-
tion, differing only by a factor of 2 in the K matri-
ces due to both up and down spins, and there are
four unperturbed Green's functions instead of two.
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Since both spin directions are included in a sym-
metric fashion, the spin degrees of freedom do
not enter explicitly into our final result for X4, .F
Thus the 4k~ susceptibility can be thought of en-
tirely as a charge-density wave, unlike the 2k~
"charge-density-wave" response function, which
depends on both charge- and spin-density degrees
of freedom.

The matrix element in Eq. (23) may be readily
evaluated' to give

(12) G02(12)/02(12) ei )((12) D/f (12) /2

where

model. Thus it appears that insofar as the back-
scattering can be neglected, the Luther-Emery
technique of representing a fermion field by the .

exponential of a boson field gives the correct a-
symptotic behavior for the four-body as well as
one- and two-body correlations functions.

We note that our approach might be extended to .

include parallel-spin backscattering to all orders
by including bosonlike spin-density operators in
8,. The anti-parallel-spin backscattering can
only be treated in perturbation theory, using this
approach.

D=--i[~+(iV) '] ' (25)
IV. CONCLUSION

is given in Fourier space by
I

V,
"'"

Q7 + k
~2 k2

D(k(o) =
aP —v'k'

( V2

(28).. .k /(
(d —k

where

v= [(1+V )' —V']'/' (27)

m=1+ (V', —V', )/V, , (28)

V,. = V,./7(, and we have set v~ = 1. For k, (d «A,
we therefore obtain

y„(xt) = (x' —v't') '",
where

(30)

&+ Vi+ V2

Thus, for q=4k~, the 4k~ response behaves as

(32)

for & «A.
We note that Eq. (32) is consistent with the re-

sult of Emery if we set Vy —0 and V —V-2U, in
his notation. The quantity V, is equivalent to g4
in the usual Fermi-gas notation, and we have ne-
glected the effect of backscattering, which in
Emery's calculation did not effect the 4k~ function
in an essential way. Equation (32) is also consis-
tent with the lowest-order parquet-graph result of
LRK, if we expand y to lowest order in V, =g„
set V, =0, and neglect the backscattering in their

X,4)()~ k & 1 + Vy V2 v 1= 8m'
02g02
1 2

(29)

Taking the Fourier transform, we obtain the fol-
lowing behavior for x, vt » A:

We have calculated the 4k~ response function
exactly within the Tomonaga model, without using
the "bosonization" procedure employed by Emery
to represent the fermion fields in terms of Bose
operators. The procedure we have used is that
employed by Fogedby for the two-particle response
functions, and is exact for the simple model we
have chosen. Although real systems also contain
backscattering, an exact treatment of that prob-
lem does not as yet appear to be possible. How-
ever, from the approaches of Emery4 and Lee,
Rice, and Klemm, ' it appears that the 4k~ func-
tion can only diverge for at least intermediate-
strength forward scattering, ' we believe that the
model we have considered contains most of the
essential physics with regard to the question of
the divergence of the 4k~ response function.

In a real system, there will also be additional
other types of interactions, such as electron-
phonon interactions and interchain coupling, which
may cause the effective interaction strengths to
be temperature dependent. The latter in particu-
lar give rise to an effective backscattering (or
on-site) interaction that changes sign as the teni-
perature is decreased. ' Thus there may be a
crossover from 4k~-dominant behavior at high
temperatures to 2k~-dominant behavior at lower
temperatures (but still above the three-dimen-
sional transition). This picture is discussed
in more detail elsewhere. "

ACKNOWLEDGMENTS

This work was carried out while the authors
were participants in the Joint Research Group in
Condensed Matter Physics of the Joint U.S.-
U.S.S.R. Commission of Scientific and Technolog-

l

ical Cooperation. The authors would like to
thank L. P. Gor'kov for suggesting the work; and
the Aspen Center for Physics for the hospitality
which it has extended to members of the group.



6122 R. A. KLEMM AND A. I. LARKIN 19

This research has been supported in part by a
grant from the National Science Foundation in
support of the Joint Research Group, and one of

us (R. K.) has been supported in part by the U.S.
Department of Energy, Division of Physical
Research.

J. P. Pouget, S. K. Khanna, F. Denoyer, R. Comes,
A. F. Garito, and A. J. Heeger, Phys. Rev. Lett. 37,
437 (1976).

~S. Kagoshima, T. Ishiguro, and H. Anzai, J. Phys. Soc.
Jpn. 41, 2061 (1976).

3Although weak-coupling explanations for the 4k+ re-
sponse have been proposed by M. &cger and J. F riedel
[J. Phys. (Paris) 38, 241 (1977)7 and by P. Bak (pri-
vate communication), they cannot explain the tempera-
ture dependence of the relative intensities of the 4k+
and 2k+ responses.

4V. J. Emery, Phys. Rev. Lett. 37, 107 (1976).

5P. A. Lee, T. M. Rice, and R. A. IQemm, Phys. Rev.
B 15, 2984 (1977).

6D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304
(1965).

~H. Gutfreund and M. Schick, Phys. Rev. 168, 418 (1968).
A. Luther-and V. J. Emery, Phys. Rev. Lett. 33, 589
(1974).

BH. Fogedby, J. Phys. C 9, 3757 (1976).
I. E, Dzyaloshinskii and A. I. Larkin, Zh. Eksp. Teor.
Fiz. 65, 411 (1973) [Sov. Phys. JETP 38, 202 (1974)].

' R. A. Klemm, Phys. Rev. B (to be published).


