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We present a conceptual model and calculational procedure for the study of the electronic structure of
metallic compounds. The model consists of spherical atoms compressed into finite volumes appropriate to the
solid. The model involves no adjustable or experimentally derived parameters. All contributions to the total
energy (other than the Madelung energy) are obtained from independent compressed-atom calculations.
Interatomic interactions enter the calculations through the electronic configuration (the distribution of the
valence charge among s, p, d, etc., states) and boundary conditions which give the atomic valence levels a
finite width. These environmental constraints, which specify the state of the compressed atoms, are obtained
from energy-band calculations. For the latter we introduce a new method, which we call the augmented-
spherical-wave (ASW) method to stress its conceptual similarity to Slater’s augmented-plane-wave (APW)
method. The ASW method is a direct descendant of the linear-muffin-tin-orbitals technique introduced by
Andersen; when applied to pure metals, it yields results which closely approximate those of the much more
elaborate Korringa-Kohn-Rostoker calculations of Moruzzi, Williams, and Janak. The combined ASW
compressed-atom procedure is tested on ‘(i) the empty lattice, (i) the pure metals Na, Al, Cu, and Mo, and
(iii) the ordered stoichiometric compounds NaCl, NiAl, and CuZn. Finally, we demonstrate the utility of the
procedure by using it to study the anomalous tendency of Ni and Pd (as compared to their Periodic Table
neighbors Co, Cu, Rh, and Ag) to form hydride phases. We have calculated the total energies of the six
pure metals and their monohydrides. The total energy differences exhibit the anomaly and an analysis of
quantities internal to the calculation reveals its origin.
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I. INTRODUCTION

This paper represents a contribution to the con-
tinuing effort to interpret the properties of con-
densed matter in terms of the properties of the
atomic constituents. Recently there has been much
activity in the development of empirical corre-
lations between properties of solid compounds
and those of either the free-atom!'™ or pure-
metal*® constitutents. The work presented
here is complementary to the empirical approach;
our calculations require only the atomic number(s)
as input, and the connection with bonding proper-
ties is utterly explicit. This explicitness is, how-
ever, both an advantage and a disadvantage: since
our model exhibits bonding properties similar to
those of real solids, it certainly contains the in-
gredients required for the simple intuitive picture
of bonding that are sought by both approaches. Un-
fortunately, the elaborate computational link be-
tween input and output mixes, in a frequently ob-
scure way, ingredients which are crucial with
those which are less important. With these ad-
vantages and disadvantages in mind we have en-
deavored here to structure the nonempirical cal-
culation of binding properties so as to cleanly sep-
arate intra- and interatomic contributions. We
have additionally tried to “narrow the interface”
between the intra- and interatomic parts of the cal-
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culation, that is, to condense into as compact a
form as possible the information exchanged be-
tween the intra- and interatomic aspects of the
calculation as the total process is iterated to self-
consistency.

This work would not have been contemplated
were it not for two recent developments in the
theory of metals. First, it was shown® that a new-
ly developed general theory of electronic struc-
ture, the local-density approximation,” provides
a sufficiently accurate description of electronic
exchange and correlation to permit the totally non-
empirical calculation of metallic binding proper-
ties (equilibrium lattice constant, cohesive ener-
gy, and compressibility). Second, an approximate
calculational scheme was proposed by Andersen®
which, if sufficiently accurate, would make feas-
ible for a wide range of metallic compounds cal-
culations of the type performed for pure metals
in Ref. 6.

The paper is organized as follows: Section II
describes the formalism we have developed for the
analysis of metallic binding. Section II A discusses
the physical considerations which lead to the form-
alism. SectionsII B, IIC, and IID describe our treat-
ment of the interatomic aspects of the problem.
Sections IIE and II F describe the construction of
the electron density and the calculation of the total
energy and the hydrostatic pressure; this develop-
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ment builds on the work of Pettifor.® Section III
describes the results obtained when the formalism
is applied to systems for which the results are in
some sense known. The applications discussed in
Sec. III extend from the purely mathematical
“empty-lattice” test through studies of pure trans-
ition, simple and noble metals, where the results
can be compared to both experiment and previous
calculations. Section III concludes with a study

of the cohesive properties of compounds chosen

to represent different types of bonding; here, the
only comparison available is with experiment.
Unlike Section III, where our objective is the cre-
ation of a body of evidence intended to provide an
empirical indication of the accuracy of our meth-
odology, Sec. IV provides an example of the type
of analysis for which the methodology was devel-
oped. In Sec. IV we attempt to answer the ques-
tion: Why do Ni and Pd form hydride phases,
while their Periodic Table neighbors (Co, Cu, Rh,
and Ag) do not? We first demonstrate that our
mathematical model exhibits the same behavior
seen in measurements on the real materials
(which are unfortunately disordered and nonstoich-
iometric). We then look “inside” the model to
identify the physical origin of the anomalous be-
havior of Ni and Pd. Finally, in Sec. V we offer
our conclusions regarding the overriding question:
Can such ab initio calculations play a useful role
in the search for simple intuitive ways of under-
standing the cohesive properties of complicated
and often not well-characterized systems?

II. CALCULATIONAL FORMALISM—-AUGMENTED-
SPHERICAL-WAVE METHOD

A. Physical 'considerations underlying our approach

As the introduction indicates, one of our basic
objectives in this work is the separation of intra-
and interatomic aspects of metallic cohesion. In
Secs. IIB~IID we are concerned with the inter-
atomic aspects, the way in which the properties
of the individual atomic constituents-are coupled.
The constituent atoms are, of course coupled by
the wave (Schrddinger) equation; the electronic
states of condensed matter are not confined to in-
dividual atoms; in general, they extend throughout
the entire system. We shall see, however, that a
different point of view is possible: We synthesize
the true, extended states out of states that are
locally atomic in character. The occupation of the
extended states according to the rules of Fermi
statistics implies the occupation (in general frac-
tional) of the states associated with individual
atoms. In this way we are led to the notion of an
atom as it exists in a condensed phase.

As we shall see, the atom as it exists in a solid
requires rather little information for its specifica-
tion. The question naturally arises: Must we per-
form an elaborate energy-band calculation in or-
der to obtain this limited information? This ques-
tion has been answered in several ways by differ-
ent authors. Even the need for a wave-mechani-
cal coupling between the atoms has been challen-
ged by a series of authors, who have attempted to
obtain the required environmental information
from Thomas-Fermi-like theories.® ' !! In this
approach, the interatomic interaction between
atomic cores, which are described wave mechan-
ically, is mediated by an electron gas, which is
described non-wave-mechanically.

This type of procedure is still being developed,
and the limits of its applicability and accuracy
are not known at this time. We have opted against
this approach in the present work, because it is
difficult so see on the basis of existing work how
several important effects of an apparent inter-
atomic origin are not lost in such treatments; we
have in mind, e.g., level broadening, covalent
interactions and the connection between the chem-
ical environment of a given atom (crystal struc-
ture, e.g.) and its electronic configuration (the
distribution of valence electrons among s, p, d,
etc. states). The connection between crystal
structure and electronic configuration is the basis
of the Engel-Brewer theory of crystal phases'?;
if our theory is to provide any theoretical insight
into such empirical correlations the wave-mech-
anical coupling of atoms must be retained in some
form. .

There are other alternatives to the full-blown
band-theoretical treatment of the interatomic
coupling. For example, -Pettifor® uses an assump-
tion of nearly-free-electron behavior for non-d
electrons together with a canonical-band® descrip-
tion of the d-electrons to obtain the required
specification of the atom in the solid. Much has
been learned® '3 from these assumed forms for
the electronic configuration and, in particular, its
volume dependence, but a physical effect is ig-
nored in such treatments, which is known'*' ° to
make a significant contribution to cohesive ener-
gies, namely the quantum-mechanical mixing of
d states and non-d states or s-d hybridization.!¢
We have therefore opted for a treatment of the
interatomic aspect of the problem which is more
elaborate than that given by canonical band con-
cepts. ’

Energy-band calculations represent a large com-
putational effort, particularly when compared with
the limited amount of information we extract from
them for the calculation of cohesive properties
(see Secs. IIE and II F), and we remain hopeful that
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an alternative to them will be found. We feel,
however, that there is presently no alternative
which meets our needs in this regard and proceed
now to a description of the procedure we have
developed for efficiently performing the band-
theoretic interatomic coupling.

B. Energy—indepéndent basis sets and core orthogonality

The objective of the augmented-spherical-wave
(ASW) method is the approximate, but efficient,
determination of the eigenfunctions ¥(F, €) and the
eigenenergies € (in Ry) of the single-particle
Schrédinger equation

[-V2+V(F) -€]¥(F,e)=0. (1)

The density-functional approach to electronic-
structure problems’ requires the repeated solu-
tion of such equations as part of a self-consistent-
field procedure. (The effective-one-electron po-
tential V(¥) is defined in Sec. II F). The objectives
of the analysis in Secs. IIC, IID, and IIE are:

(i) the subdivision of the total calculation into
intra- and interatomic parts and (ii) an efficient
means of performing the latter.

The approach we take to these objectives incor-
porates two basic features. First, it is well
known that the solution of equations of the form
of Eq. (1) is greatly facilitated if the energy de-
pendence of the solutions ¥(F, €) can be described
by energy-dependent coefficients in an expansion
of T, €) in a basis set of energy-independent func-
tions X, (%), i.e.,

V(F, €)= Cole)X, (@) . (2)

The expansion of ¥(¥, €) in e-independent basis
functions reduces the solution of the Schrédinger
equation [ Eq. (1)] to a matrix eigenvalue problem,
for which efficient numerical procedures exist.

The second fundamental feature of our approach
concerns the basis set{ X, (¥)} and can be des-
cribed by contrasting our procedure with the tra-
ditional LCAO (linear combination of atomic or-
bitals) method. In the LCAO method, orbitals
corresponding to atomic-core states are included
in the basis set. This serves two purposes, (i)
the orthogonalization of orbitals associated with a
given atom to those corresponding to the core
states of other atoms, and (ii) the description of
changes in the core states caused by the presence
of nearby atoms.? One of the central themes of
the present development is that intra- and inter-
atomic aspects of the calculation can be decoupled
and that, in particular, both the required ortho-
gonalization® and the core-state readjustments can

be effected without the inclusion of core states in
the basis set used to expand the extended states
constituting the interatomic interaction. The elim-
ination of core states from the (interatomic) basis
set represents a substantial gain in efficiency; it
is, for example, one of the fundamental sources
of the greater efficiency of the scattered-wave
method for molecules'® over LCAO methods. To
summarize, interatomic interactions involve (di-
rectly'®) only the relatively narrow energy range
and annular spatial shell which correspond to a
single value of the atomic principal quantum num-
ber (the single value can be different for different
angular momenta, as in transition metals); we ex-
ploit this fact by constructing a restricted basis
set which spans the special set of functions in
which we are interested.

C. Augmented spherical waves

Augmented spherical waves (ASW’s) are the
choice we make for the energy-independent,
single-principal -quantum-number basis set just
discussed. Their definition and construction re-
flect the qualitatively different types of behavior
exhibited by the wave function ¥(¥, €) in the intra-
and interatomic portions of a polyatomic system.
In the intra-atomic regions the strong effective
potential causes ¥ (¥, €) to vary rapidly, whereas
the interatomic region is characterized by a weak
effective potential and slowly varying wave func-
tions. These aspects of the interatomic region
might be taken to argue for an expansion of the
interatomic portion of ¥(T, €) in plane waves.

[It is this reasoning that leads to Slater’s aug-
mented-plane-wave (APW) method.] Plane waves,
however, treat all portions of the interstitial vol-
ume equally, a luxury for which the price is rela-
tive inefficiency. We opt here for a less flexible,
and therefore less accurate, LCAO-like treatment
of the interatomic region. In this region, we as-
sume solutions of Schrodinger’s equation to be a
linear combination of atomic-orbital “tails” which
extend out of each intra-atomic region. We there-
fore write

V(F,€)=p Cp,(H,F-R,), 3)
Lv

where the {R,} are nuclear positions and the Cj,(€)
are the energy-dependent expansion coefficients.
mentioned above. As individual atomiclike func-
tions H,(T), we postulate spherical waves,

Hy(F)= & Y, (P (k) (4)

where L is a composite index indicating both the
angular-momentum quantum number ! and the
magnetic quantum number m; Y, (%) is a spherical



harmonic® and %; (x) is the outgoing spherical
Hankel function.” [We remind the reader that the
singular behavior of &; (k) for small 7 is irrele-
vant since we use the spherical waves only outside
the intra-atomic (small 7) regions.] The kinetic-
energy parameter k controls the localization of the
basis-set orbital. In this paper it will be taken to
be common to all orbitals and it will not be used
as a variational parameter?®’; we therefore sup-
press it notationally. Our atomiclike functions

H, (T) are postulated in the same intuitive spirit
that Slater-type orbitals or Gaussian functions
are postulated in many implementations of the
LCAO method. The motivation for our particular
choice of “atomic” functions is that they are par-
ticularly well adapted to the augmentation proced-
ure, which we shall now describe.

In contrast to the interatomic region, each in-
tra-atomic region is characterized by a very
strong effective potential. For valence orbitals
the large negative potential energy is cancelled by
a correspondingly large kinetic energy. This
delicate cancellation of large kinetic and potential
energies argues for a careful numerical construc-
tion of solutions in this region. This would require
a large numerical effort®® were it not for the ap-
proximate spherical symmetry of the effective
potential in this region. The assumption of spher-
ical symmetry allows us to construct basis func-
tions for this region by solving an ordinary (i.e.,
one-dimensional) differential equation, the radial
Schriddinger equation; without this assumption we
would be obliged to solve a partial (i.e., three-
dimensional) differential equation. The way in.
which slowly varying spherical waves are com-
bined with intra-atomic radial functions to form
augmented spherical waves (ASW’s) is shown
schematically in Fig. 1. For reader’s familiar |
with Slater’s APW method, Fig. 1 also contains
for comparison a schematic description of an
(energy-independent®®) APW. Figure 1 indicates
that APW’s and ASW’s are very similar; the
principal difference is that a single ASW, like an
atomic orbital, is identified with a particular
atom.

The mathematics of the augmentation process
is straightforward. The spherical wave H, ()
is continued into the intra-atomic region by the
particular linear combination®® of solutions to the
radial Schrddinger equation which joins smoothly
to H,(T) at the interface of the intra- and inter-
atomic regions. [While the intra-atomic region
could in general have a complicated, (e.g., poly-
hedral) shape, for simplicity we take it to be
spherical and centered on the nucleus.] For all
7,(F,= T -R,) less than the sphere radius S, we
replace H, (F,) by its augmented counterpart H,(¥,)
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AUGMENTED
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SPHERICAL
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FIG. 1. Comparison of augmented plane and spherical
waves. Both are energy independent and in both cases
solutions of the radial Schrddinger equation, whose ener-
gy and normalization are chosen to provide continuous
value and slope, replace the “unaugmented” wave in the
intra-atomic region surrounding each nucleus.

(we use the tilde to denote augmentation), where
ﬁL(_fv) =gt YL('?V)T’% ('ru), (5)

and ﬁL (¥,) is a solution of the intra-atomic Schré-
dinger equation,

[-v2+V(F,+R,) - & ]HL(r) 0, (6)

or equivalently

1 & WI1+1)
- Yy + +V
( v, ar®y "V 7y (F, +

v) _Eg)>;lz (Tu) =0,
(7

and V(¥, +R,) is assumed to depend only on 7,
(for r,< S,). (The site at which the augmented
Hankel function is centered will be indicated by the
subscript on its argument.) The two degrees of
freedom available in constructing 71, (7,), its nor-
malization and the energy e,‘”,,’, are chosen so that
H,(F,) is continuous and differentiable across the
spherical surface v,=S,, i.e.,

d \" -
(d—r ) [y (ry) = 0y (k7 )], s, =0; #=0,1.
v

(8

As mentioned above, the effective potential varies
strongly in all the intra-atomic regions; we must
therefore augment H,(T,) not only inside the sphere
centered at R,,, but in all other intra-atomic re-
gions as well. This process is greatly facilitated
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by the fact that H, ('f,,) can be represented in the
vicinity of R, (# R,) by an expansion in Bessel
functions J (T )

HL(_fv) '_‘Z Iy (-{'u’)BL' L(Eu' —ﬁu) , (9
Ll
where
I (@) = kY (7)j (k7) (10)

and j, (k7) is a spherical Bessel function.? The
expansion coefficients B, ;. (R) are the structure
constants which arise in the Korringa-Kohn-
Rostoker (KKR) method of energy-band calcula-
tion®® and the analogous scattered-wave method
for molecules,'®

By (R) =419 I popw €V H, . (R) 1)
L"
and
Ippign= f av Y (P)Y o (7)Y o (7) 12

The augmentation of H,(F,) in the vicinity of R,,
therefore reduces to the augmentation of the
spherical Bessel function j, (kv,.), i.e., for |T
_-ﬁv’l < Syry

A,G-R,)=p. dp F-Ry)By, R, -R,) (13)
LI

where
I F )= Y (7 ,0)f, (ry)

and f, (7,r) is the solution of the radial Schrodinger

equation appropriate to the sphere centered at R,/
1 d? W(l+1) - =

(—E d’}’i, Vyo+ ‘—F_'FV(I',” +Ry ) —E;;’,)

vt

X j, (rye)=0 (14)

that joins the spherical Bessel function j, (k7,.)
smoothly,

da \"_ - .
(d’}’ ,) []’ (7"')—'( IJI(K'rv’)]ryr:Syr =0;
v

n=0,1, (15)

at 7,» =S,r. As with the augmentation of & (x%),
the continuity conditions [(Eq. (15)] specify the
normalization of 7, (r,+) and the energy €{J}. Note
that k,(r,) and j,(r,) are solutions of the same
radial Schrodinger equation; they differ only in
normalization and energy. The four functions

ny (k7), ﬁ, (*), 3, (k7), and f, (r) are compared in
Fig. 2. [The fact that the augmentation of spheri-
cal waves introduces two energies and the corre-

Tl(r) : jl(Kr)

z 0 r
<
}_
o
4
po]
e
u h, (kr) .
; ht(r)
._I
g
o
<€
@

0 r

RADIUS

FIG. 2. Schematic diagram comparing the spherical
Bessel functions hj (x7) and j;(k¥) and their augmented
counterparts ,(r) and j;(r). The curves shown corre-
spond to I=2. Note that ;&) and j,() are solutions to
the same radial Schrédinger equation; they differ in en-
ergy and normalization.

sponding radial wave functions provides a super-
ficial and potentially misleading similarity to the
procedure of Ref. 8, where two functions (a radial
wave function and its energy derivative) are also
used to represent €‘f)and €%, The difference
between augmentation and the procedure of Ref. 8
is more evident when other functions, such as
Gaussians or Slater functions, are augmented,
for in such cases not two but many energies are
introduced. The distinction is particularly clear
in the case of plane waves whose augmentation
introduces a continuous set of such energies and
radial wave functions. All of these energies can
be represented using an energy Taylor series,
but augmentation and the approximately linear
energy dependence of radial wave functions are
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completely independent concepts. Note also that
the angular momentum and site dependence of the
energies and radial wave functions introduced by
augmentation provide an additional (with respect
to the procedure of Ref. 8) adaptation of the basis
set to the valence electronic structure of eack
constituent atom.?®]

Our augmented spherical waves{ A, (¥ - R,)}
are now defined in all regions of the polyatomic
system; they are energy independent, continuous,
and continuously differentiable. We feel that they
constitute an efficient set of basis functions in
which to expand solutions of Schrédinger’s equa-
tion; Eq. (2) becomes

U(F, €)= Cple)H,F-R,) . (16)
L,V

Note further that the ASW’s involve only a single
value of the principal quantum number index for
each angular momentum. The particular choice
of principal quantum number is made when the
conditions Eqs. (8) and (15) are imposed. These
conditions are satisfied by, not a single value of
€‘®) and €7 but a set of values—one for each
principal quantum number. We use only the one
value corresponding to the valence state of inter-
est and the core oscillations naturally introduced
into %,() and 7,(r) during the integration of the
radial equations [Eqgs. (7) and (14)] guarantee that
each of our ASW’s is essentially orthogonal to all
the core states of the polyatomic system.

D. Hamiltonian and overlap matrix elements in the ASW
basis set

In Sec. IIC we described the construction of in-
dividual members of the ASW basis set; in this
section we describe the evaluation of the Hamil-
tonian 3C and normalization matrix elements re-
quired by the Rayleigh-Ritz variational procedure
for the determination of the eigenenergy € and the
expansion coefficients C, (¢) appearing in the
ASW expansion of the wave function [Eq. (16)].
The secular matrix given by the Rayleigh-Ritz
procedure is simply

2, CVENRI )~ vE) /)€ =0, (1)

where 3= =V2+V(¥) and (+++| -+ +) indicates inte-
gration over all space, e.g.,

(vf,lf,'v’)Efd“rfl;(f—ﬁ,,)fly(?—ﬁv,). (18)

We eliminate the interstitial region by taking the
intra-atomic regions to be space-filling polyhedra
and approximate the individual polyhedra by
spheres (the Wigner-Seitz or atomic-sphere ap-
proximation). This approximation can be used® to

justify writing the matrix elements as a sum over
contributions from each atomic sphere,

(vE|3C| L/v') = Z (VL3 T/ 0" ym 19)

where {+++|<++),» indicates integration over the
sphere centered at ﬁ,,n , but we proceed different-
ly. Taking the effective potential to be zero in the
interstitial region (which we are free to do if we
later eliminate the interstitial region) allows us to
write the matrix elements as follows

(VL[5 L'v'y =(uL 86| L"v")
+ Z" ((vf,\i(i[f,' Vl>,,"

(UL H | LV Y y) (20)

where 3 (= - V?) denotes the free-particle Hamil-~
tonian. In other words, we first construct matrix
elements of 3¢, using unaugmented spherical waves
and integrating over all space; we then replace the
contributions to this integration from the intra-
atomic regions by integrations over the full Ham-
iltonian and ASW’s. The motivation for this man-
ipulation is that the integrations over the atomic
spheres are performed using spherical-harmonic
expansions and the expansion of the difference in
parentheses in Eq. (20) converges much more rap-
idly than does the corresponding expansion of
(vL|3¢I'v'),» alone. This improved [ conver-
gence represents not only a gain in efficiency, but
a gain in accuracy as well.?” The gain in accuracy
is discussed below (Sec. IIE) in connection with
the construction of the electron density.

The final steps in the specification of the Ham-
iltonian matrix elements consist of exploiting the
fact that, in all the integrals required by our
representation of the matrix elements [Eq. (20)],
the ASW is an eigenfunction of the relevant Hamil -
tonian. For example,

(VL| 3| L'V )= «XvL| L'V'") . (21)

The integrals over the atomic spheres which ap-
pear in Eq. (20) are of three basic types, one-cen-
ter, two-center, or three-center, depending on
how many of the two ASW’s involved are centered
in the sphere over which the integration is being
performed. One-center contributions are those in
which both ASW’s are centered in the sphere; in
the notation of Eq. (20), v=v'=v". In'this case
only augmented Hankel functions enter:

(VI , = B Ayl Hyyo,,. (22)

Two-center contributions (v=v"# v’ or v+ V" =V")
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require the structure-constant expansion of one of
the two ASW’s, so that both augmented Bessel
functions and augmented Hankel functions enter:

(V” f,‘ SCI i,V'>un .
ZE(tJvZ’<ﬁL’jL>U” BLLI (ﬁym—ﬁvl) (233.)

(VLAY L V") ym
=Bl Ry =Ryn XTI ol Hy ) yn €00, (23b)

where
BY . R, -R,)=Bx, R, -R,).

Three-center contributions arise when neither of
the two ASW’s involved in the matrix element are
centered in the intra-atomic region over which the
integration is being performed (v# v # v"); in this
case two structure-constant expansions are re-
quired (one for each ASW) and only augmented Bes-
sel functions enter the final integration

(VLISAL' V') o
=Z B;,L' (Ey —ﬁyn )E (I{')L'”
"
X(jLulen>ynBLnLl(ﬁun—ﬁv') o (24)

The representation (20) of the matrix elements
requires an integral over all space involving un-
augmented spherical waves; fortunately, such in-
tegrals can be performed analytically. Integrals
of this kind in which both spherical waves have a
common center are simply

(VL| L'v) =@L|L"v),= 6, H,| H.)? , (25)
|

where (¢ +|--+) refers to integration over all
of space exc_ej)t the interior of the atomic sphere
centered at R ,, e.g.,
A EYL = e [ rarn i en)|r. (26)
S

v

[Note that the integral (L |L'v),, which in general
is singular, subtracts out of the formula (20) for
the matrix element.] The normalization integral
involving spherical waves centered at different
nuclei, i.e., (VL| L'V') with v#v’, is given by the
energy derivative of the corresponding structure
constant,

L] - - d - -
(VLI L'V')=B,, (R, =R,) ==& Buu (R, =R, ).

(27)

[Note that the k* dependence of H, () and B, ,/(R),
which has been suppressed notationally, is ex-
hibited explicitly in Egs. (4) and (11).] Equation
(27) is obtained by differentiating the free-particle
Schrodinger equation satisfied by Hy(T) with re-
spect to x* and by using the result

(V24 KR B (F=Ryr )+ Hyr (F=R,yr ) =0 (28)

to express { vL| L’v’') as the integral over infini-
tesimal spherical surfaces®® enclosing the singu-
larities in the integral at ﬁ,, and ﬁ,,, ; the surface
integrals are then evaluated (trivially) using the

structure-constant expansion [Eq. (13)].

The expressions for the individual integrals
which enter our representation (20) for the Ham-
iltonian matrix elements, i.e., Egs. (21)-(27), can
now be combined to complete the specification of
the secular matrix:

(vL|3e| L'V y =[eBX Hy| Hy) , + kX HL | H)% 16,0 0 e + KZI.ELL: (F, =F,n,k)

+B1L'(—’FV —_’FUIE)[G({”JI<<7L9 [ f—IL:>yr —K2<JLII HL')U'] (29)

+ [6 (lJu)< }}Lljj)u —K2<HLI JL)U]BLL' (?y "?y' ;E)

+Z Z Ban (?y —?yll ,E)[G(IJ;I)”" <jL" l jL">l/"

P L ”n

—K2<JLuiJLn>yu]BLn 't (_1»'1," -—:I.',,t ,E) 5

where translational symmetry has been exploited
by introducing the structure constants?® appro-
priate to energy-band theory,

BLL'(?iE)E Z e+i—1:° EBLL’(?+§) s (30)
R

where B; ;. (X) is defined to be zero when X van-
ishes, the R’s constitute a Bravais lattice, and
the 7’s indicate the positions of the atoms within
the unit cell. The normalization matrix is obtain-
ed from Eq. (29) by setting the energies k2, €{),
and € ) equal to unity. A simple manipulation of
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Eqs. (7) and (14) shows that (.| J ), =(J .| H),
=(e¥)-e)"1, so that, like Andersen’s,® our secu-
lar matrix involves only four problem-dependent
quantities (for each I and v), €%, e\, (H| Hy),,
and (J,|J,),. The required integrals involving
augmented functions require only one~dimensional
(radial) numerical integrations and those involving
unaugmented spherical Bessel functions can be
found in Morse and Feshbach.*® The largest angu-
lar momenta used in both the secular matrix and
in the internal L” summation®! [the three-center
contribution to Eq. (29)] are discussed in Sec.

III, which deals with test applications of the meth-
od. [While Eq. (29) does not exhibit the Hermiti-
city of the Hamiltonian and normalization matrices
explicitly, this important property is in fact guar-
anteed by the continuous differentiability of each
trial orbital. (Continuous differentiability permits
the integrations by parts required to formally
demonstrate Hermiticity.)]

One of the attractive features of an LCAQO-like
method such as ours is the interpretability of the
matrix elements. We identify the site-diagonal
terms with atomic quantities, the terms involving
one B and the rhixed integrals ( H;|J,), and
(J lHL),, with two-center-contributions. The aug-
mentation procedure can be viewed as accomplish-
ing a “pseudization” of the interatomic interaction
in an LCAO basis similar to that obtained by An-
derson.®? In other words, the augmentation pro-
cedure automatically accounts for the effective
weakening of the intra-atomic potential by the
valence kinetic energy. The net result, as can be
seen directly in Eq. (29), is the representation
of the interatomic interaction in terms of valence
energies () and %)), which are seldom larger
than a few electron volts. It should be noted, how-
ever, that while the form of the ASW secular ma-
trix is LCAO-like, the interatomic interactions
are not confined to near neighbors. Our success-
ful description of free-electronlike materials,
such as aluminum, (applications are described in
Sec. III) requires the inclusion of long-range inter-
actions. In this respect our results are consistent
with those of Chadi,*® who showed that the empiri-
cal-pseudopotential description of the energy bands
of Si (a procedure involving a large secular ma-
trix when the pseudo-wave-function is expanded
in plane waves) can be essentially duplicated by a
much smaller LCAO secular matrix, provided that
long-range interactions and orbital overlap are
properly included. It should also be noted in this
context that, when the spherical-wave kinetic
energy k? is taken to be positive, our “atomic-or-
bital-like” spherical waves are normalizable only
in the d-function sense that plane waves are nor-
malizable, i.e., the integral in Eq. (26) does not

exist. As a result, a slightly different derivation
of the secular matrix is required when x*>0. The
modified derivation is given in the Appendix.
Fortunately, only minor details of the secular ma-
trix change in the k2> 0 case.

E. Construction of the electron density

Self-consistent calculations such as those we
discuss in the Secs. IIl and IV require explicit con~
struction of the electron density. The approxima-
tion responsible for the great numerical efficiency
of the ASW and linear-muffin-tin-orbitals (LMTO)®?
techniques introduce ambiguities intc this pro-
cess. In this section we discuss these ambiguities
and describe a procedure for constructing the
electron density which exploits the strengths of
the ASW method and minimizes the effects of its
weaknesses.

The weaknesses in question are of two basic
types: (i) the nonvariational character of the wave
function provided by the Rayleigh-Ritz procedure
in combination with the restricted energy-independ-
ent basis set and (ii) the overlap of the atomic (or
Wigner-Seitz) spheres. The Rayteigh-Ritz pro-
cedure is fundamentally a least-squares proced-
ure, it provides an accurate representation of only
those aspects of the wave function that are import-
ant to the energy functional. Thus, for example,
the spherical-harmonic decomposition of a particu-
lar Rayleigh-Reitz eigensclution ¥(¥, € *’) implies
I -dependent radial functions that are individually
a linear combination of augmented Bessel and Han-
kel functions. Each such linear combination cor-
responds to an [ -dependent orbital eigenenergy
€®’. In determinantal methods (APW and KKR,
e.g.) these eigenenergies {€ '} are all equal to one
another and to the eigenenergy €’ of the solution
as a whole; the secular equation in such methods
can be viewed as the algebraic statement that all
these energies must be equal. Rayleigh-Ritz solu-
tions are different; the €®’ are not equal to one
another or to €. The situation is typical of
least-squares procedures; if the eigensolution
U(F,e™®) is dominated by a particular value of [,
such as a d state then € ®’ for that ! will closely
approximate €®’ | but 1n general the other €%’ will
differ considerably

Because of these problems with Rayleigh-Ritz
wave functions, we have elected not to use them
directly in constructing the electron density, but
rather to emphasize the role of the most reliable
aspect of the Rayleigh-Ritz procedure, the varia-
tionally determined eigenenergies €®’. To do this
we take the electron density to have the form it
would have in a more accurate KKR or APW cal-
culation, i.e.,



6102 ’ A. R. WILLIAMS, J. KfJBLER, AND C. D. GELATT, JR. 19

ptr)=p )+ 2 [ depORi 0, G

where p, (r,) is the spherical average of the elec-
tron density in the vth atomic sphere; p{®@,) is
the contribution of the core levels; R, ,(7,,€) is a
normalized solution of the radial Schrddinger
equation appropriate to the vth sphere; p,; (€) is
the valence-electron state density decomposed ac-
cording to angular momentum and atomic site,
and the energy integration extends over the oc-
cupied valence bands.

Our procedure for constructing the electron
density is not yet completely specified, for al-
though it is clear that the fofal valence state den-
sity p(e),

p(€)=pr(€)=;6(€—€m), (32)

requires only a knowledge of the eigenenergies
€™ the partial state densities p,,(€) appearing
in our representation of the electron density (Eq.
31) require the decomposition of the norm of each
eigenstate ¥ (T, €'®), i.e.,

P (€)=Y (e — PR, 33)
R

where the ¢{% are the I and v decomposition of the
single electron norm associated with each eigenstate
(27,,4'¥=1. It might seem therefore that the re-
presentation of the electron density in terms of
partial state densities merely exchanges one pro-
blem for another, i.e., the I and v decomposition
of each eigenstate requires wave-function informa-
tion which is given somewhat unreliably by the
Rayleigh-Ritz procedure. The advantage of the
present method of constructing the electron den-
sity is that is exploits the fact that the normaliza-
tion of a'radial wave function varies more slowly
with energy than the wave function itself.?

The required decomposition of the normalization
of each state could be obtained straightforwardly,
were it not for the second of the two weaknesses
mentioned at the beginning of this section, the
overlap of the atomic spheres and the associated
problem of the convergence of spherical-harmonic
expansions. Fortunately, our procedure for con-
structing the matrix elements [Eq. (20)] provides
a degree of control over both of these problems.
The integral constituting each matrix element is
performed by first integrating the unaugmented
functions over all of space and then integrating the
augmentation contribution over the atomic spheres.
The integration over the unaugmented functions is
performed exactly and therefore involves neither
the atomic-sphere overlap nor the convergence of
angular-momentum expansions. The integration

over the augmentation contribution involves both
of these problems, but benefits from the fact that
the augmentation contribution to the wave function
vanishes quadratically on the atomic sphere. This

“ means that the augmentation contribution to the

normalization matrix is small throughout the over-
lap region, thereby reducing the overlap problem,
and also that it is small at large radii; thereby
improving the I convergence.?®* The normalization
of each eigenstate by the requirement

; ZZ CR*WL|Lv'yCey), =1 (34)
v L'y

is therefore a particularly reliable aspect of the
calculation and one we want to emphasize in con-
structing the electron density. Setting all the
energies appearing in Eq. (29) to unity provides
an explicit expression for the normalization
matrix (vL|L’v"), which when substituted into

Eq. (34) allows the normalization to be written as
a single summation over atomic sites and angular
momenta plus a small quantity 5®.

1 =; (CR*H, ’HL>VC(Lkv) +C¥ *<ﬁL 'JL>VA(LI;)
4
+ARKT | H),CR
+ARXT T, AR) 4 50 (35)

where the coefficient A of the augmented Bessel
function is given by

AR ELZ: By, (7, —?,,:E)C(Lh:),,, . (36)
o~

Thus, if it were not for the quantity 5'*’, Eq. (35)
would constitute the required v and I decomposition
of the normalization. [The decomposition accord-
ing to [ is obtained from the L decomposition by
summing over m; L = (I, m).]

The significance of the quantity 6%’ is that it
would vanish identically if there were no atomic-
sphere overlap and if the spherical-harmonic ex-
pansions were completely converged; 5 is the
(exactly computed) contribution to the normaliza-
tion due to unaugmented spherical waves minus
the integral over the atomic spheres of the spheri-
cal-harmonic expansion of the same quantity.
Since both of the factors leading to nonzero §*’ are
associated with large values of I, we have elected
to combine the contribution 5*’ to the normaliza-
tion with the contribution corresponding to the
largest value of / used in each atomic sphere.?®
With 5‘* absorbed into the fourth term, Eq. (35)
provides the required normalization decomposi-
tion ¢$%’, which together with Eqs. (31) and (32),
completely specifies the electron density.

Our representation of the electron density [Eq.
(31)], together with the fact that the energy de-
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pendence of solutions to the radial Schriodinger
equation is approximately linear, ® suggests a
further simplification. Equation (31) shows that
if the € dependence of the radial wave functions
were perfectly linear, then the electron density
p,(7) would rigorously depend on only the first
three moments of the (occupied) partial state den-
sities p,,(¢). While the radial wave functions are
not perfectly linear in energy, their near linearity
suggests that a representation of the electron den-
sity based on the first four partial-state-density
moments is probably adequate. We are thus lead
to the following compact representation of the
electron density

p.,(V) = pl('cora) (’l")

+22 2 QPR <), (37
=1, 2

where the two charges Q%’ and the two energies
€id (for each ! and v) are determined by the re-
quirement that this representation [Eq. (37)] of the
electron density preserve the first four moments
of each partial state density, i.e.,

¢F
ICCICELEY AT WORS

{1, 2

7n=0,1,2,3. (38)

Having transformed the interatomic information
provided by the energy-band calculation from
partial state densities to moments and from
moments to the charges @}’ and energies €}, one
additional transformation of the information con-
tained in the energies €{f’ will complete the
specification of our procedure for constructing
the electron density. We prefer to think of the
environment of a given atom as characterized by
boundary conditions which the intra-atomic wave
functions are obliged to satisfy. The effective
one-electron potential and the radial Schrodinger
equation containing it imply an unambiguous re-
lationship between the energy E‘,,S’ and the logarith-
mic derivative D{}’ of the corresponding solution
at the surface of the atomic sphere, i.e.,

d
D(lls) = ['rRlu(r’ €)]-12;R1u('r’ €)y

r=S,, e=&ip , (39)

where S, is the radius of the vth atomic sphere.
This characterization of the environment in terms
of electronic configurations {Q{!’} and boundary
conditions {D{?’} imposed at finite radii {S,} pro-
vides a link with intuitive theories of metallic
bonding and crystal structure. The basis of the
theory of metallic cohesion due to Wigner and
Seitz®” is the difference between atomic boundary

conditions and those characteristic of a partially
filled energy band. The analysis of crystal-struc-
ture preference due to Engel and Brewer!? is
based exclusively on electronic configurations,
i.e., the Q,, (EZM,ZQ%’). Finite~-volume atoms

in environment-determined configurations con-
stitute the concept underlying the “renormalized-
atom” theory of metals.'* The contribution of the
present analysis is the establishment of a rigorous
link between these intuitively appealing concepts
and ab initio self-consistent-field calculations.
This link has already been successfully exploited
in the analysis of core-level binding-energy shifts
observed in x-ray photoemission electron spectro-
scopy for chemical analysis (ESCA), *® where,
more than any other single quantity, the electronic
configuration ,, determines the variation of the
binding-energy shift with atomic number.

The characterization of the atom in terms of the
charges Q{# and the boundary conditions D{f also
has the practical virtue of decoupling intra- and
interatomic self-consistency. In other words,
once the @{I’ and D{}’ have been produced by a
band calculation, the atomic calculation they
specify can be iterated to self-consistency before
another band calculation is performed. In this
way every band calculation performed in the
course of obtaining interatomic self-consistency
is based on atomic potentials which are internally
self-consistent. This fact substantially reduces
the number of band calculations required for total
self-consistency. Recent work by Zunger and
Freeman®® exploits the same basic idea.

F. Intra-atomic calculations—total energy
and hydrostatic pressure

In the preceding subsections of Sec. II we showed
how the ASW formulation of the energy-band pro-
blem permits the interatomic aspects of the
electronic structure to be described as a process
which, when given four numbers characterizing
each atomic valence level {{?, (I, |1,),; I=J, H},
produces four new quantities {D{, Q'¥; i=1,2}
which characterize the contribution of each orbital
to the electron density of the polyatomic system.
In this section we show that this characterization
of the electron density implies expressions for the
total energy and hydrostatic pressure which are
desirable in that they allow these quantities to be
decomposed in intuitive ways. For example, the
total energy is represented as the sum of individual
compressed-atom total energies plus a Madelung
contribution.

Consider first the total energy E as given by the
density-functional formalism, &7

E=Ts+U+E,,, (40)
xc
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where Tg is the kinetic energy of a system of
noninteracting electrons possessing the same
electron density as the system in question,

Tszz:fd%w;(?)(-vz)qf,,(?), €® <¢gy (41)

the electrostatic energy U is the sum of electron-
electron-nucleus, and nucleus-nucleus contribu-
tions

U= [ @rp® [ @r o@)F ¥
-2 fd3YpG)ZZ, [T-R, [

+3°2,2 2, |R,-R, |, (42)
v v #y
where Z, is the atomic number of the atom center-
ed at ﬁ,. (Note that our use of Rydbergs as the
energy unit implies somewhat nonintuitive co-
efficients for V? in T and the three contributions
to the electrostatic energy U.) The quantity E,, is
the contribution of exchange and correlation, to
which we make the local-density approximation,’
i.e.,

E..= f a*r p(;)€:c(n) |nnﬂ(f') 43)

where €% ,(n) is the contribution per electron to the
total energy of an interacting, but homogeneous,
electron gas of density n. The orbitals \Ilk('f)
appearing in Eq. (41) are those whose squares
constitute the electron density p(?), i.e.,

p(;‘)EZI\IIkG‘)IZ, eWse,. - (44)

Minimization of the total energy E by the varia-
tion of the orbitals \Ilk('f') leads to Schrodinger-like
Euler equations for the \Ilk(})

[-V2+ V(r) - €, (T)=0 (45)

in which the effective-one-electron potential V(r)
is the sum of electron-electron and electron-nu-
cleus electrostatic terms plus a contribution due
to exchange and correlation

v(r)=2 f.dwp(?) [T-7"]"

-2>7Z,[r-R, [

+—d—n€2c(n)

an n=p(¥) * (4 6)

The fact that the ¥,(T) entering the total-energy
expression [Eq. (40)] satisfy the Schrodinger
equation [Eq. (45)] can be used to express the total
energy as the sum of the orbital eigenenergies €®*’

plus the nuclear electrostatic energy and so-called
two-electron or “double-counting” terms

E:Z: e +E ZV’Z z, ’ﬁ - ﬁv’ [ul
v

v #

-~ d
- fd%fp(r){n%dc(n) lnan(?)

o [ @r p@)|F-F ). @n)

(Thek summation includes only occupied states.)

It is into this form for the total energy that we
shall introduce our particular representation of
the electron density, i.e., that given by self-con-
sistent compressed-atom calculations specified by
the boundary conditions D{ and corresponding
charges Q¥ (i=1,2).

Our objective is to rewrite the total-energy ex-
pression [Eq. (47)] as a sum ‘of similar expressions
for each of the compressed atoms Ef plus a
Madelung contribution E¥, i.e.,

E-SEAEY, 48)

where E is the electrostatic energy associated
with the lattice of ions

B'=3Q-2) 2@y -Z,) R, - R, [ 49)
v v Fv .

The quantities @, and Z , are, respectively, the

electronic and nuclear charges associated with

the vth atomic sphere; @, is simply the sum of the

orbital charges introduced in Sec. IIE plus the

charges Q! associated with core states,

Q=202 AW+l (50)
i21,2 c

For single-constituent systems (e.g., pure metals)
Q,=Z, and the Madelung energy E” is zero (in the
atomic-sphere approximation).

To effect this decomposition of the total energy
we must recognize that in rewriting the total ener-
gy in terms of one-electron energies €® we have
implicitly taken as a reference energy the zero of
the electrostatic, or Hartree, potential, i.e., the
effective potential given in Eq. (46) without the
exchange-correlation contribution. It is therefore
not surprising that, when the compressed-atom
total energies E{ are expressed in the form of
Eq. (47), the one-zlectron energies which appear
must be referred to the zero of the local Hartree
potential VZ(r). The latter is the electrostatic
potential due only to charges in the particular
atomic sphere, i.e.,

Z, Sv 1
Vf(r)z—2<7— fo d7141rrfp,,(rl)-;;>, (51)
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where 7, is the larger of » and 7, and S, is the
radius of the vth atomic sphere. The local refer-
ence energies are introduced into the total-energy
expression [Eq. (47)] by adding and subtracting the
quantity 23, @, ®¥, where ¢ is the Madelung po-
tential in each atomic sphere,

o4=22, @ -Z)[R-R, [, (52)

The Madelung potential ¢¥ relates the local re-
ference energies to one another and to the global
Hartree potential. Combining the subtracted E,, '
Q, q&ﬁ’ with the sum of one-electron energies ap-
pearing in Eq. (47) introduces the effective valence-
orbital energies (e!f’; i=1,2) discussed in Sec.

IIE, i.e.,

.Z e _Z Qﬂ’ﬁ'

=2 DTN L 3T, (53)
cv

v {=1,2

where the “bar” on the local core and valence
orbital eigenenergies €.¢’ and €{! indicates that
they are referred to the zero of the local Hartree
potential, i.e., € =€’ — ¥, Thevalence energies
€ are those implied by the boundary conditions
(logarithmic derivatives) D{¥, which in turn are
specified by the partial state densities given by the
energy-band calculation (see Sec. IID). This re-
lationship [Eq. (53)] says nothing more than, if the
reference energy in the vth sphere is changed by
@Y, then the total energy associated with shifting
the energies of @, electrons by this amount must
be accounted for. When the E,, Q, ¢¥, which we
have added to the total-energy expression [Eq.
(47)], is combined with the nuclear-nuclear
electrostatic energy and the interatomic portion

of the electron-electron “double-counting” integral

[ @ro) [ @ oG [F-51,

we obtain the Madelung energy [Eq. (49)] and the
desired expression for the constituent atomic
energies,

A — ($)=(i (c)=(c)
EA=Y D Qe +Y Qwey
[

1 i=1,2

SV
- f dr 417p,(7)
0

det Sy -
x(n _m—dn l,.:p,,m + —£ dr, 411p,,(1'1)'r>1) .
(54)

Equations (48), (49), and (54) constitute the de-
sired total-energy decomposition. It should be
noted that such a decomposition is only possible

when both the electron density and the effective
one-electron potential are taken to be spherically
symmetric in each atomic sphere, for only in
this case do charges outside a given sphere have
the limited effect of simply shifting all energies
in the sphere by a constant Madelung potential
[Eq. (52)].

We turn now to the evaluation of the hydrostatic
pressure. Since the motivation for calculating
the pressure can be seen and stated more ‘con-
cisely once the algebraic form of the pressure
expression has been presented, we momentarily
defer such discussion and proceed with the de-
rivation. We begin by differentiating our site-
decomposed expression for the total energy,

[Eq. (48)],

dE dE, dE¥
3PQ——azi;‘——stdsv —aT (55)

v

where P is the internal pressure (positive if the
total energy decreases with expansion), @ is the
volume of the unit cell, and ¢ is the lattice con-
stant. Expressions for the pressure have been
given by Liberman,®’ by Janak,%! and, most re-
cently, by Pettifor,® who presented an ‘expression
for S, dE#/dS, appropriate to the local-density
theory of exchange; the inclusion of correlation
(as suggested by Pettifor) leads to the following
result,

dEA . . _
S, =20 2. Qe (R (T
v 1 i=1,2

XDIP(DIY + 1) —1(1 + 1) )(1/7?)

) \
de } (56)
n=pp(r)

+EP - V) F e
where R{})(») and !’ are the (normalized) radial
solution and orbital eigenenergy implied by the
boundary condition D{!’ (see Sec.IIE), and 7 is
to be evaluated at the sphere radius S,. The
effective potential V, appearing in Eq. (56) is the
local Hartree potential defined in Eq. (51) plus
the contribution of exchange and correlation

[the last term in Eq. (46)]. The explicit depen-
dence of the Madelung energy»E“ on the lattice
constant ¢ is trivial,

3EY
-a Py ::EM , (57)

so that Eqs. (55), (56), and (57) complete the spe-
cification of the pressure. Before going on, we
note two subtleties in the derivation of the pres-
sure expression. First, one can neglect the im-
plicit dependence of the Madelung energy E¥ on
the lattice constant g through the @ dependence

of the site charges @,, because of the stationarity
of the total energy with respect to variations in
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the electron density,i.e.,

dE ©OF j‘ s dp(¥) OFE
da ~ da & da 6p(T) (58)

The fact that, for any value of a, we determine
the electron density to minimize the total energy
E guarantees that 6E/6p(Y) vanishes. Second,
Eq. (56) can only be obtained algebraically (i.e.,
without appeal to scaling arguments) from Eq.
(54) if it is assumed that the lattice-constant de-
pendence of the distribution of boundary condi-
tions makes no contribution to the pressure.

We believe? that this assumption is in fact
justified.

Evaluation of the hydrostatic pressure is useful
in a number of ways. From a purely practical
point of view, it facilitates determination of the
equilibrium lattice constant, because it passes
linearly through zero at equilibrium, in constrast
to the total energy, which passes through a quad-
ratic minimum.*® More importantly, the pressure
provides' a valuable tool for studying the site and
angular-momentum decomposition of binding.? %
This is not merely the statement that Eq. (56) con-"
sists of a sum over v and I; the pressure provides
a decomposition of binding which is intuitively
satisfying. In particular, it involves only states
which have significant amplitude on the surface
of the atomic sphere. To appreciate these vir-
tues of the pressure, it must be compared with
other quantities used to analyze binding. The
sum of the one-electron energies is frequently
used, but it suffers the disadvantage of ignoring
other contributions to the total energy'# % 4% and
of involving an arbitrary reference energy. For
example, the surface dipole-layer potential®’
shifts the one-electron energies of a solid rela-
tive to those of the free atom?® and yet plays no
role in cohesion, because the energy gained in
adding an additional atom to a solid involves
moving a neutval atom through the surface po-
tential, not merely a collection of electrons.*®
A quantity which is not “fooled” in this way by
such potential-energy changes is the kinetic en-
ergy 7. The latter has the virtue of being state
decomposable and unambiguously related to bind-
ing by the virial theorem.

E=3PQ-T. (59)

The total-energy difference 6 F between two equil-
ibrium (P=0) configurations is therefore the nega-
tive of the change in kinetic energy 67,

SE=-06T. (60)

The difficulty encountered when using the kinetic
energy to analyze binding is that changes in T

are not confined to valence states. Thus, for
example, when binding in transition metals is
analyzed according to Eq. (60), one finds that the
upper core levels (the 3p levels in the 3d-transi-
tion series) are “responsible for cohesion.4”
This statement is not wrong; it merely indicates
that the kinetic-energy analysis does not pro-
vide an intuitively satisfying interpretation of
binding. The interpretation provided by analysis
of the pressure suffers none of these drawbacks.

Evaluation of the pressure has another practical
virtue; the virial-theorem-based expression for
the total energy given in Eq. (59) is an indepen-
dent alternative to those given earlier in this
section, and as such provides an invaluable check
on our numerical procedures. Perfect agree-
ment between the total energies given by Egs.

(59) and (47) requires the exact solution of both
Poisson’s equation and Schrédinger’s equation in
each sphere. Agreement does not indicate the
elimination of systematic errors such as those
introduced by our use of the local-density and
atomic-sphere approximations, or by our neglect
of relativistic effects, but it does indicate the
elimination of random errors and it is these which
would most corrupt the small total-energy differ-
ences of interest in our attempts to interpret me-
tallic binding. Thus, for example, Eq. (47) yields
an energy of —35720.9668 Ry for fcc gold, whereas
Eq. (59) yields —35720.9671 Ry. Both of these
energies contain systematic errors much larger
than the energy differences of interest, but their
agreement indicates that the rgndom error in the
total-energy differences discussed in Secs. III

and IV is probably smaller than 0.01 eV.

It should be noted that the kinetic energy T
appearing in Eq. (59) is not merely the expecta-
tion value of the operator — V2 described by Tg
[Eq. (41)], but includes the kinetic-energy con-
tribution 7, of the exchange-correlation functional,
ie.,

T=Ts+T,. (61)

In the local-density approximation 7., is given by
o S, (722, h h
To= | drp(E)[3-nei(n) -~ 4 (1) e - (62)

This relationship®® follows from the fact that
" (n) satisfies Eq. (59), i.e.,

€t (n) :_%EdZ SEOEAOR (63)

where %m’i:n", and kinetic-energy density 2 (n)

is the bracketed quantity in Eq. (62).
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III. NUMERICAL TESTS

The ASW method we propose is based on three
independent approximations: (i) the effective-
one-electron potential is assumed to be spherically
symmetric inside each of a set of volume-{filling
spheres; (ii) our LCAO-like basis set is always
restricted and therefore not complete, and (iii)
the energy dependence of the wave functions in-
side each sphere is represented by an energy-
dependent linear combination of only two energy-
independent functions. In this section we apply
the method to problems with known solutions,
where the meaning of the word known will vary
considerably. We begin with the so-called empty
lattice®! for which all the individual eigenenergies
and wave functions are known exactly; we next
consider metals for which “known” means the
existence of more accurate calculations and we
conclude with a study of the prototypical com-
pounds NaCl, NiAl, and CuZn for which “known”
means only that reliable experimental measure-
ments exist for the ordered, stoichiometric
compounds.

A. Empty lattice and metallic elements

The results of the application of the ASW method -

to the empty lattice are compared with the exact
band energies in Fig. 3. The lattice structure

is face-centered cubic; the maximum angular mo-
mentum used®? was 2 and the kinetic-energy
parameter k’ describing the localization of the
spherical waves was taken (everywhere in this
paper) to be —0.01 Ry.”® Figure 3 indicates that
our ASW technique is most reliable for the low-
energy states; fortunately, for the occupied states
in metals (at most 3 mobile electrons per atom,
or 1.5 nearly-free-electron bands) the method
appears quite reliable even in a test as stringent

ASW EXACT EXACT

as that posed by the empty lattice. This is born
out by our calculations for Al. Figure 4 compares
the energy bands given by the ASW procedure with
those of the KKR method.?® In the Al calculations,
spherical waves corresponding to /=0, 1, and 2
were used and the internal I summation in the
three-center contribution to the secular matrix
(see Sec. IID) was extended to 1=3.> The Al
calculations constitute a stringent test of the
method, not only because of the nearly-free-
electron character of the states, but also be-
cause. of the large occupied bandwidth, as well.
Figure 4 exhibits an effect of the constant-« ap-
proximation; the small value of x used in the
calculation is more appropriate to the bottom of
the band than to the top, thereby artificially ex-
agerating the bandwidth by the small amount
visible in the figure. The Al calculations also
test our procedure for constructing the electron
density (see Sec. ILE), i.e., the energy bands
labelled ASW in Fig. 4 employ, not the potential
used in the KKR calculations, but rather the self-
consistent potential given by iteration of the ASW
procedure to self-consistency.’® This particular
point is exhibited more directly in our test calcula-
tions for metallic copper. Table I contains band
energies for three calculations: the KKR calcula-
tion,’ the ASW calculation using the potential
given by the KKR calculation, and the ASW cal-
culation, itself iterated to self-consistency. Com-
parison of the first two sets of results indicates
the accuracy of the ASW band methodology per se;
comparison of the second and third probes the
accuracy of our two-valence-state representation
of the electron density (see Sec. IIE), and com-
parison of the first and third probes the accuracy
‘of the combined procedure.’

The results presented in Figs. 3 and 4 and in
Table I indicate that our approximations intro-
duce small errors into individual band energies;

ASW

ENERGY

FIG. 3. Comparison of
exact energy bands for the

“empty lattice” with those
given by the ASW method.




6108

0.20

0.0

-0.20

-0.40

-0.60

ENERGY RELATIVE TO Eg IN Ry

-0.80

-1.00

FIG. 4. Comparison of the energy bands of aluminum
given by the KKR method (Ref. 54) with those given by
the ASW method (dots) iterated to self-consistency. The
lattice constant (7.60 bohr) is that which minimizes the
total energy in both calculations (See Ref, 56).
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we consider now the effects of these errors on

the quantities of principal interest, the binding
properties given by the total energy and pressure.
Of interest to us are the three fundamental pro-
perties of the binding curve (total energy versus
lattice constant), the position of the minimum
(equilibrium lattice constant), the depth of the
minimum? (cohesive energy) and the curvature
near the minimum (bulk modulus or compressi-
bility). Table II compares the results of our

ASW calculations with those of KKR calculations®
and with experiment.’> % Table II presents re-
sults for the monovalent metal K, the polyvalent
metal Al, the transition metal Mo and the noble
metal Cu. The evident success of the calculations
is particularly encouraging in light of the com-
plete absence of experimental input and the greatly
reduced computational effort. (The ASW calcula-
tions require approximately 1% the computation
required for the KKR results.)

B. Prototypical compounds: NaCl, NiAl, and CuZn

In this short section, we compare with experi-
ment our calculated binding properties (lattice
constant, heat of formation, and bulk modulus)
for three compounds representing three different
types of bonding. Rocksalt (NaCl) is a strongly
bound ionic compound, CuZn is a weakly bound
metallic compound, and NiAl represents a mix-
ture of metallic and covalent®! binding which re-
sults in bonding of intermediate strength. While
there now exist several self-consistent band-

TABLE I. ASW-KKR comparison for Cu. Results of three energy-band calculations for fcc

copper (lattice constant=6.76 bohr).

Symmetry
point Energies (Ry)

r -~0.064 0.390 0.390 0.390 0.451 0.451 a
-0.067 0.391 0.391 0.391 0.452 0.452 b

-0.082 0.389 0.389 0.389 0.451 0.451 c

X 0.241 0.284 0.494 '0.509 0.509 0.748 a
0.248 0.289 0.495 0.510 0.510 0.757 b

0.242 0.285 0.494 0.509 0.509 0.742 - c

L 0.242 0.386 0.386 0.497 0.497 0.544 a
0.245 0.386 0.386 0.498 0.498 0.555 b

0.239 0.384 0.384 0.497 0.497 0.537 c

2Self-consistent KKR results (Ref. 54).

b ASW results using potential generated by the KKR calculations.

¢ Self-consistent ASW results. Self-consistent energy-band calculations necessarily intro-
duce an arbitrary reference energy [see Ref. (57)], which must be specified in order to com-
pare the energies of the third calculation with those of the first two. In the tabulation above

the Fermi energy of the third calculation was equated to that of the first (0.628),
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TABLE II. Metallic-binding-property comparison. Comparison of calculated and experi-
mental Wigner-Seitz radius, cohesive energy and bulk modulus. The three rows for each
element give respectively the experimental values (Refs. 59 and 60), results of the present
work, and results of KKR calculations (Refs. 6 and 54). Calculated cohesive energies include
a small contribution due to zero-point vibrations (see Ref. 54).

Wigner-Seitz Cohesive energy Bulk modulus
radius (bohr) (Ry/atom) (Mbar)
Al Expt 2.97 0.249 . 0.88
ASW 2.97 0.295 0.87
KKR 2.97 0.285 0.80
K Expt 4.86 0.069 0.04
ASW 4.71 0.069 0.05
KKR 4.65 0.066 0.04
Cu Expt 2.66 0.256 1.42
ASW 2.66 0.298 1.29
KKR 2.64 0.304 1.55
Mo Expt 291 0.501 2.71
ASW 2.95 0.494 2.68
KKR 2.90 0.498 2.51

theoretical studies of compounds involving transi-
tion metals,® we believe that the calculations re-
ported here are the first to deduce binding pro-
perties from a knowledge of only the relevant
atomic numbers. (Our calculations also involve
the choice of a lattice structure, but changes in
binding properties with lattice structure are
generally much smaller than the binding proper-
ties themselves.)

The numerical comparison provided by Table
III indicates that our procedure® provides a
reliable estimate of the binding energy of interest®
in each case. This small set of results sug-
gests that the error in our calculated binding
energies is roughly 0.1 eV/atom. The fact that
this error is similar in magnitude to that asso-
ciated with our calculations of pure-metal co-
hesive energies is interesting, because it indi-

cates that we are not profiting from an additional
cancellation of errors when we subtract the pure-
metal total energies from that corresponding to
the compound. The important inference to draw
from Table III is that we have constructed a
model of compound formation which closely
mirrors reality for a very broad class of
materials. An advantage of the model over ex-
perimental reality is that the inner workings of
the model are more amenable to study than are
those of real systems. In other words, with the
credibility of our model established and some
idea of its limitations in hand, it now makes sense
to look inside the model and try to understand in
a detailed way why some compounds form, while
others do not. Section IV describes our efforts
to do this for a particularly interesting subset

of the transition-metal hydrides.

TABLE III. Compound-binding-property comparison. Comparison of measured and calcu-
lated lattice constants, heats of formation, and bulk moduli. The contribution of magnetic
order to the total energy of pure Ni was obtained from Ref. 54.

Lattice constant AH Bulk modulus
Compound (bohr) (eV/atom) (Mbar)

NaCl Expt 10.72 4,012 0.26°

ASW 10.2 4.05 0.32
NiAl Expt 5.45° 0.61¢ coe

ASW 5.44 0.74 1.7
CuZn Expt 5.58° 0.12¢ 1.2°

ASW 5.50 0.14 1.5

2Experimental data, Ref. 65.
- P Experimental data, Ref. 60.

¢ Experimental data, Ref. 66.
dExperimental data, Ref. 67.
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IV. PRINCIPAL FACTORS CONTROLLING THE ABILITY
OF TRANSITION METALS TO FORM HYDRIDES

In contrast to all other sections of this paper
which are concerned with the description of a new
methodology and the calibration of its numerical
accuracy, this section describes an example of the
type of application for which the formalism was
developed. The transition-metal hydrides are in-
teresting systems about which a great deal re-
mains to be understood. They seldom exist as
stoichiometric ordered compounds and in some
cases they do not exist at all (without the applica-
tion of external pressure). We focus here on the
question: Why do Ni and Pd form hydrides, while
their Periodic Table neighbors Co, Cu, Rh, and Ag
do not? Much has been learned about the electronic
structure of metallic hydrides from the energy-
band calculations of Switendick,®® but no explana-
tion is provided for the anomalous tendency of
Ni and Pd to form hydrides. Gelatt ef al,*® have
studied the energy of formation of hydrides of the
3d- and 4d-transition metals in an attempt to iden-
tify the important variables of the problem. Their
conclusions are tentative in large part because of
uncertainties introduced by approximations made.
in the course of the analysis. When the basic
ideas of Ref. 69 are studied using the more accu-
rate methodology described above, the following
simple picture of hydride formation emerges. The
interstitial hydrogen proton provides an attractive
potential for the metal electrons. The lowering of
the energy of those metal states with significant
amplitude in the vicinity of the proton is the basic
bonding mechanism; it results in a band of states
that is often split off below the remaining energy
bands of the system. This split-off hydride band
leads to a separate peak in the state density of the
hydrides which lies below the structure associated
with the d electrons. This aspect of the state den-
+ sity is common to all the transition-metal hy-
drides; it can be seen in Fig. 5, where we com-
pare our calculated state densities for pure met-
allic Co, Ni, Cu, Rh, Pd, and Ag with those of their
monohydrides. Figure 5 shows, as did the calcula-
tions of Gelatt et al,, that the bonding caused by
the interstitial proton, which is directly reflected
in the amount by which the hydride band is split
off below the d bands, decreases smoothly as we
move toward the noble metal in each series, Thus,
while the effect of the proton on the metallic elec-
trons is the principal binding mechanism, the mon-
otonic variation of this effect with atomic number
cannot explain the anomalous tendency of Ni and
Pd to form hydrides.

According to Gelatt ef al., while most of the
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+31 M 1 | 4
0 '4 /——-/\
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RhH

|

STATE DENSITY (ev™!)

+
o w
-1

Ni\\\m/ \\Af'
' l
Rh Pd Ag
b el Wl
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FIG. 5. State densities for six transition and noble
metals and their NaCl-structure monohydrides. The
state density due to the hydride band isolated below the
d-band structure is clearly discernable in each hydride
state density. The state density of the metal and its hy-
dride were aligned in energy so that the peak due to lo-
calized states near the top of the d band falls at the same
energy in the pure metal and the hydride. The arrows
indicate the position of the Fermi energy in each case.
The lattice constant in each case is that which mini-
mizes the calculated total energy (see Table IV).

bonding is due to the proton, it is the electron of
the hydrogen which leads to the interesting varia-
tion of the bonding with atomic number. The ad-
ditional electron enters the system at the chemi-
cal potential of the metal and it is the variation

of the latter which is responsible for the anoma-
lous solubility of hydrogen in Ni and Pd, Esti-
mates of the chemical potential of the transition-
metal hosts™ based on the renormalized-atom
model™ provided some support for the idea; the
chemical potential, considered as a function of
atomic number, decreased on moving from Fe to
Co to Ni, but changed little on moving to Cu, When
this variation of the energy associated with adding
the electron is combined with the weakening bind-
ing energy of the proton just mentioned, an inter-
pretation of the anomalous tendency of Ni and Pd
to form hydrides is provided.

The present analysis supports this interpreta-
tion and our less approximate calculations clarify
some of the internal arguments. First, our cal-
culations show (in contrast to those of Ref. 69)
that the chemical potential of the pure-metal host
decreases monotonically on moving from Co to
Ni to Cu and from Rh to Pd to Ag. But, the finite
additional concentration of electrons provided by
the hydrogen elevates the effective chemical po-
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tential™ in the noble metals, where the Fermi-lev-
el state density is small. As a result of this ele-
vation, which is readily apparent in Fig. 5, the ef-
fective chemical potential, i.e., the energy asso-
ciated with the addition of the electrons (of the hy-
drogen), exhibits a sharp minimum at Ni in the 3d
series and at Pd in the 4d series. In our view it
is this minimum which is responsible for the
anomalous hydride formation in Ni and Pd. Figure
6 displays the evidence supporting this view. In
Fig. 6(a) we compare our calculated heats of for-
mation for ordered monohydrides with estimates
inferred from measurements on nonstoichiometric
samples; in Fig. 6(b) we show the variation of our
calculated (effective) chemical potential. In as-
sessing the information presented in Fig. 6 it
should be born in mind that the variation we are
concerned with is only a matter of a few tenths

of an electron volt, which is at the limit of the ac-
curacy of both the calculations™ and the experi-
ment. Nonetheless, the hydride calculations do
exhibit the anomalous tendency of Ni and Pd to
form hydrides, and Fig. 6(b) shows that the effec-
tive chemical potential exhibits a variation of sim-
ilar shape and magnitude. Thus, our calculations
lead to the same general conclusions™ reached in

Ref. 69 and, in our opinion, put them on a substan-.

tially more secure. footing.

The accuracy with which equilibrium lattice con-
stants for NaCl, NiAl, and CuZn are given by our
procedure (see Sec. III B) suggests that our calcula-
ted dilatation of the metal lattic by hydrogen solu-
tion is reliable. Table IV presents the calculated
equilibrium lattice constants for the six monohy-
drides and the experimental values for NiH, and
PdH,. We find that the notion that hydrogen in-
creases the volume of the unit cell by a constant
amount is approximately correct; for the sequence
Co, Ni, Cu, Rh, Pd, and Ag the effective Wigner-
Seitz radius of the hydrogen is 1.6, 1.7, 1.7, 1.7,
1.7, and 1.8 Bohr. It is interesting that the heat of
solution is most easily understood by considering
the hydrogenic proton and electron separately,
while the lattice dilitation is most easily under-
stood in terms of the neutral atom.

V. SUMMARY AND CONCLUSIONS

The objective of the present work is to demon-
strate that parameter-free electronic-structure
calculations can play a useful role in studying
questions of interatomic binding which arise in
the context of solid-state chemistry and metallur-
gy. The approach taken has been to identify the
essential variables and to develop accurate but
efficient computational procedures to describe the
complex interactions among them.
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FIG. 6. Correlation of heat of hydride formation with
effective chemical potential of metallic host. Compari-
son of our calculated heats of formation [E(hydride)

— E(metal) —% E(H, molecule)] with experimental heats

of hydrogen solution (Ref. 76). A more appropriate ex-
perimental comparison, possible only in the systems
with a hydride phase, is the hydride heat of formation
[1.2keal/mole for NiH, —4.8 kcal/mole for PdH (Ref.
75)], which is in somewhat better agreement with the
calculated values. (b) shows that the corresponding vari-
ation of the effective chemical potential is similar in
shape and amplitude. The calculation of the total energy
of the Hy, molecule is described in Ref. 77.

Our work builds on that of Moruzzi et al.,***
which demonstrates that metallic binding can be
accurately described in the local-density approx-
imation, and on that of Andersen,® who introduced
a procedure for greatly improving the efficiency
of the energy-band calculations required for the
study of cohesive properties. We have shown that
this procedure can be viewed as a particular syn-
thesis of two ideas, that of energy-independent
basis sets and the concept of augmentation due to
Slater. We have combined these two ideas some-
what more directly into an accurate, yet intuitively
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TABLE IV. Lattice dilatation resulting from Hydride formation. Comparison of calculated
and measured lattice constants for pure metals and their hydrides. Measured values for NiH
and PdH are data for nonstoichiometric hydrides (Ref. 75). Measured pure-metal lattice con-

stants from Ref. 66.

Calculated Measured
Material lattice constant (bohr) lattice constant (bohr)
Co 6.5 6.7
CoH 7.0 oo
Ni 6.6 6.7
NiH 7.1 7.01-7.06
Cu 6.8 6.8
CuH 7.3 s
Rh 7.3 7.2
RhH 7.7 LX)
Pd 7.4 7.4
PdH 7.9 7.81
Ag 7.8 7.7
AgH 8.32 oo

transparent, method of calculating the total-energy
differences relevant to compound formation. In so
doing we have condensed the gross quantity of in-
formation manipulated in ab initio electronic-
structure calculations into those variables which
characterize the atomic constituents and those
which characterize the crystalline environment.
Self-consistent-field calculations carried out in
terms of this small set of variables accurately
describe the bonding properties of representatives
of both pure metals and a broad class of com-
pounds.

More importantly,'we feel that our analysis of
hydride formation demonstrates that the ASW
methodology can be helpful in developing simple
ways of thinking about complicated systems. The
ASW calculations play two roles in this context;
they provide a type of very well-characterized
data on which to build interpretive theories. In
addition, however, we have tried to structure the
calculation in terms of quantities amenable to in-
terpretation, site, and orbital charges, etc. The
example of hydride formation does not make ex-
tensive use of all the interpretive features of our
model, atomic decompositions and hydrostatic
pressure, for example; no single example will, As
mentioned above, the analysis of core-level binding
energies®® exploited the self-consistent electronic
configurations given by the model for transition
metals. The pressure decomposition [Eq. (55)]
provides the basis for an.unpublished analysis of
metallic binding; and an analysis of the strengths
and limitations of non-wave-mechanical interpre-
tations of compound formation®!%*! is under way
which relies on the atomic decomposition of the
total energy. We are encouraged by the model’s
utility thus far and we have high hopes that it will
provide a useful link between microscopic and

macroscopic descriptions of binding in a wide va-
riety of systems.
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APPENDIX: ASW method for k2 >0

This appendix serves two purposes: the basic
purpose is to show how the secular matrix ele-
ments are constructed when the spherical waves
are normalizable only in the §-function sense,
i.e., when «”> 0; the secondary purpose is to pro-
vide some of the details of the derivation (for both
x*Z0) which were not included in the text. '

The fundamental difference between the deriva-
tion for x*>0 and that for x*<0 is that when k®>0
we introduce Bloch symmetry earlier. We intro-
duce as our unaugmented functions Bloch sums of
spherical waves, i.e.,

$.7(F)= >; et Ry, 5 ), (A1)
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where H, (¥) is defined in Sec. IIC. Such a Bloch
‘sum can be rewritten using structure constants
as follows '

¢L:(f)=NL<f>+§L:, By RV, (@), (A2)

where J, (f) is defined in Eq. (10); the BLL,(ﬁ) are
the structure constants defined in Eqgs. (11), (13),
and (30) and N, (¥) is defined as follows: '

N (F) =i 6, (k)Y L (7) (A3)
where #,(x) is a spherical Neumann function,®°
Ry () =n, (%) + 7, (x) . (a4)

Once the unaugmented function is expressed as in
Eq. (A2), we proceed,as in Sec. II, by augmenting
the functions N, () and J,(¥). (Note that for nota-
tional simplicity the present development applies
to a Bravais lattice; the extension to a lattice with
a basis is straightforward.)

The second distinguishing feature of the x*>0
case is that periodicity makes the unit cell, rather
than all of space, the fundamental domain of inte-
gration. Accordingly, in this appendix the notation
(+++]+++) will indicate integration over the unit
cell, We express matrix elements of the Hamil-
tonian as follows

(@oxlscldr
=Pl P W o+ (DLl DL D, ‘ (A5)

where the tilde, as in Sec. II indicates augmenta-
tion; (e +<|e+ <), indicates integration over the atom-
ic sphere; (s« +| <)’ (E<”o|.oo> —(oeo|oe °),) in-
dicates integration over the interstitial region,

and 3¢, is the free-particle Hamiltonian (3¢,= -V?).
We now rewrite the integral over the interstitial
region as an integral over the unit cell minus the
integral over the atomic sphere,

<$LF|3CI<?’L'F> = priliCol oL
+{<q~>LF|3c|<5L"E>o ‘
—(ostl%olor ot (A6)

where the bracketed quantity is the augmentation
correction. Using the fact that the unaugmented
functions are eigenfunctions of 3¢,

Koprt(®) = -V ¢, (F) =k*¢, 1), (@A
we have that
<¢LF|3(3|J>L"}?> =Kz<¢LF|¢L'K>
+{(@owlreldL w0
- kXpLwl bR - (a8)

To evaluate the integral (¢, %|¢.,3 we combine

Eq. (A7) with the corresponding equation for the
derivative of ¢,#(T) with respect to «°,

(V*+ k)bt ==d1%,

to obtain the following expression for the normali-
zation integral (¢, %|¢. 7

(¢L-§|¢L,§>=fd3r{q.§L,;(f)V2¢f§(1’-)

- ¢t F)V2, @)} (A92)
- [a3-{4.t@TVoz 1)
- ¥t @Ve, 1@} " (A9D)

At the analogous point in the development in Sec.
II we used the fact that on the surface at infinity
enclosing all of space the spherical waves for x*
<0 vanish; the corresponding fact which we ex-
ploit here is that the periodicity of ¢,7(F) and

¢ .7 () cause the integral over the surface of the
unit cell to vanish. The entire normalization in- -
tegral is therefore equal to the integral [Eq.
(A9b)] over the surface of a small sphere contain-
ing the origin,

When we write the integration over the intersti-
tial region as the integral over the entire unit cell
minus the integral over the atomic shere, we im-
plicitly add and subtract the singular integral
(N;|Np, Noting that the analysis involving Eqgs.
(A7) and (A9), which we have used to represent
the volume integral (¢, %|®. %) as a surface inte-
gral, can equally well be applied to the integral
(N, |N.),, we eliminate the artifactually introduced
singular integral, obtaining

(rldp @ — (NN bz ‘

=By (B) +(NL | N 6,10 (A10)
where (N, |N;)! is given by
(N, N >'=—72(m ) -L o, () =, ()L '(1’))'
L L. 1 d’r l' 1 d/l’ 1 3 »
r=S, (A11)

where S is the radius of the atomic sphere and

m, () is a spherical Neumann function®® from which

the leading « dependence has been eliminated, i.e.,
my (¥) =1 Ty (k) . (A12)

Our systematic elimination of the leading «x depen-

dence of the spherical waves [Egs. (4), (10), and
(A12)] facilitated the evaluation of the surface in-
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tegral over the small sphere containing the origin,
because in the limit of small » the «* derivative,
indicated by the dot in Eq. (A9b), acts only on the
structure constant (once the singular contribution

from {N; |N;), is removed). We are now essential-
1y finished, for substitution of Eq. (A10) into our
representation of the matrix element [Eq. (A8)]
yields

<¢~’LE|3(ZI§5L 'i> = [e,(”’(NL INz) + K2<NL INL> ']51,1,' + KZBLer’:)
+ BIT,L'(k) [e l({”<JL ' INL D o= K2<JL ANL Do)+ e )<NL IJL>0 - k%N, IJL>0]BLL’(E)

+; By w(R) € S5XT nl g o = 13T 1 wlT o By, o) (A13)

where we have used the representation of ¢, %(¥)
in terms of J(f) and N, (f) [Eq. (A2)] to repre-
sent the integral (¢ %|d. %o The similarity of

Eq. (A13) tothe result obtained in the k¥*<0 case
[Eq. (29)] is clear. The overlap matrix is obtained

as in Sec. IID by setting the energies appearing
in Eq. (A13) (%, €Y and € ™) to unity. The Bes-
sel-function integrals over the atomic sphere,
which appear in Eq. (A13), are given by Morse
and Feshbach,*

*Permanent address: Ruhr Universitit, Abteilung fiir
Physik, Bochum, West Germany.
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N(r,e) :i/(: ar ViR (v, €).
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proximately linear over the relevant energy range
(Ref. 8), the normalization is approximately constant.

%The normalization matrix is affected by atomic-sphere
overlap and ! convergence even less than the Hamilton-
ian matrix (See Ref. 31).

¥we distribute 6 among the atomic spheres according

to the magnitude of the contribution to which it is added.

In the calculations described in Secs. III and IV, the L
summation in the three-center contribution to the secu-
lar matrix was extended to a value of / greater by one
than that used in the basic ASW expansion of the wave
function in that particular sphere. In these calculations
the treatment of 6® consisted, therefore, of rescaling
the three~center contribution to the normalization [the
fourth term in Eq. (35)] corresponding to the largest
value of 7 used in the particular sphere. When this
procedure would result in a negative contribution to the
partial state density for a particular state, the contri-
bution corresponding to the largest value of 7 is set to
zero and the value for the next-largest value of 7 re-
duced.

STE. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
Solid State Phys. 1, 97 (1955).

3A. R. Williams and N. D. Lang, Phys. Rev. Lett. 40,
954 (1978).

A, Zunger and A, J. Freeman, Phys. Rev. B 15, 4716
1977).

. A. Liberman, Phys. Rev, B 3, 2081 (1971).

43, F. Janak, Phys. Rev. B 8, 3985 (1974).

“Empirical evidence is provided by the fact that we have
integrated the pressure to find the (negative) work re-
quired to compress the lattice from the free-atom lim-
it to equilibrium and obtained essentially the same co-
hesive energy as given by the corresponding total ener-
gy difference. An alternative route to Eq. (56) is to
simply regard it as an approximation to the corres-
ponding integral over the surface of the polyhedral
atomic cell; this is the argument used in Ref. 9.

Bpetermination of equilibrium by means of the pressure
rather than by minimization of the total energy is not
as advantageous as it might appear; the total energy,
because it is a variational quantity, requires a lower
degree of self-consistency to be of practical utility
than does the nonvariational pressure.

4y, L.Skriver, O. K. Andersen, and B. Johansson, Phys.

Rev. Lett. 41, 42 (1978).

4Core states which are not completely localized inside
the atomic sphere require special treatment. The
facts that the treatment should accommodate are the
following: The kinetic energy of such states changes
appreciably when the solid is formed and even when
the crystal structure is changed. Numerical experi-

ments using the KKR method indicate that it is not the
interatomic “banding” of core levels which is import-
ant, but rather the intra-atomic response of core states
to changes in the screening of the nucleus caused by in-
trinsically interatomic changes in the valence electron
distribution. (Such changes are of three types, changes
in the distribution of valence charge among s,p,d, etc.
states, changes in boundary conditions resulting from
bonding, and charge transfer.) Since kinetic-energy
changes reflect changes in the shape of the core-level
orbitals (as opposed to simple potential energy shifts),
we are inclined not to treat core levels as “frozen”
until further study demonstrates the irrelevance of
core-orbital changes to binding. (All the core orbitals
in the calculations described in this paper were re-
computed as part of the self-consistency cycle.) Since,
as mentioned, interatomic banding of the core levels
does not appear to be important, we have elected to
treat core levels as confined to the atomic sphere, but
constructed to satisfy a boundary condition on the atom-
ic sphere which causes their contribution to the hydro-
static pressure to vanish identically. There is a sin-
gle boundary condition for each core state which affects
this. Since cohesion can be thought of as integration of
the hydrostatic pressure, this treatment of the core
eliminates any direct contribution of the core to bonding
and cohesion; the essential role that changes in the core
kinetic energy play in satisfying the virial theorem in-
dicate an indirect role. The role of core electrons in
metallic bonding has been studied by Janak [J. F.
Janak, Solid State Commun., 20, 151 (1976)] for the
case of simple metals.

460, Gunnarsson, J. Harris, and R. O, Jones, J. Chem,
Phys. 67, 3970 (1977).

4IN. D. Lang, Solid State Phys. 28, 225 (1973).

B other words, analysis of cohesion in terms of the
the one-electron energies ignores (among other things)
proton potential-energy changes.

490n forming a 3d-transition metal, e.g., from free
atoms, the d electrons move away from the nucleus by
a small amount and their kinetic energy decreases.
This outward displacement reduces the screening of
the nucleus for the 3p electrons, causing them to sink
deeper into the core with increased kinetic energy,
thereby satisfying the virial theorem.

'We are indebted to U. von Barth for this analysis of 7,
and its role in the virial theorem.

MBy empty lattice we mean-free space viewed as a peri-
odic array of potentials which do not scatter electrops.
The eigensolutions are therefore planewaves eg* 1k +K) ¥
where K is a vector in the Brillouin zone and K is a re-
ciprocal lattice vector, and the eigenenergies are
simply 1k+K 2,

52Note that the three-center contributions to both the
Hamiltonian and overlap matrices vanish identically
for the empty lattice. The question of the maximum
value of L’’ to which the spherical-harmonic expansion
of this term in Eq. (29) must be carried does not arise.

3We have studied the sensitivity of both orbital and to-
tal energies to the variation of x. The approximate
elimination of the interatomic region renders the or-
bital energies somewhat less sensitive than those dis-
played by Gunnarsson ef al., in Ref. 21, The total en-
ergy changes by approximately 5% of the change in k%

over the range we have studied (—0.1<x%<0.2). Note



19 COHESIVE PROPERTIES OF METALLIC COMPOUNDS:... 6117

that. while this variation enters directly as an error
into our estimates of cohesive energies, it tends to
subtract out of our estimates of heats of formation of
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sphere “2”. (5¢q is the deviation from neutrality.) The
Madelung potential [Eq. (52)] acts to eliminate this dis-

continuity, but, since it is independent of the sphere
radii S; and S,, it can do so only for a unique value of
the S;/S;. By equating the discontinuity 26¢(S;~! —S,™1)
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