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A simplified but accurate theory of the cohesive energy of metals has been developed from the density-
functional formalism of Kohn and Sham. In this theory, the total energy of both the free atom and the solid
is expressed as a sum of a core and a valence binding energy, and the cohesive energy is reduced (apart from
a zero-point vibrational term) to a difference in binding energies. The free-atom binding energy is directly
calculated, and accurately (to within 3%) matches the experimental ionization energy in nonrelativistic
elements. The binding energy of the metal, on the other hand, is obtained by the generalized
pseudopotential method developed previously by the author. This latter step permits all band-structure and
self-consistent screening effects to be incorporated analytically. The calculated cohesive energy agrees well
with both experiment (to about 20%) and heavy numerical computation (to about 10%) in simple as well as
d-band metals. More importantly, the method permits the physical origins of the cohesion to be identified in
each case, and ‘these are discussed for 22 nontransition metals. It is found that band-structure effects are
important in all nonalkali metals and, in particular, that sd hybridization contributes 30%-60% of the
cohesion in the alkaline-earth and noble metals. In addition, the large relativistic energy shifts inherent in
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the binding energies of the heavy metals are seen to approximately cancel in the cohesive energy.

L. INTRODUCTION

The cohesive energy of a pure metal, E_,, may
be defined as the total energy of the isolated atom
in its ground state minus the total free energy per
atom of the solid at zero temperature and pres-
sure. Even for a nonrelativistic metal, these
total energies are on the order of 102-10° eV in
magnitude, while their difference is only 1-10 eV,
Understandably, most theories of the cohesive
energy have tried to focus on the small set of pre-
sumed physical mechanisms responsible for the
cohesion, rather than on accurate calculations of
the total energies themselves. The most widely
and successfully treated metals in this manner
have been the alkalis, where the approximate 1-eV
value of E ., can be explained by the classic Wig-
ner-Seitz formula!

Ecoh=€s“(Er +—§€F). (1)

Here €, is the binding energy of the single valence
s electron in the free atom, E is the energy of the
bottom of the valence or conduction band in the
metal, and € is the free-electron Fermi energy.
The simplicity of Eq. (1), however, arises from
three unique features of the alkali metals: (i) only
one electron per atom is involved in the cohesion,
S0 €, is just (by Koopmans’ theorem) the term val=
ue of the corresponding Hartree-Fock Hamiltonian
and no distinction between one-electron eigenvalues
- and total or binding energies need be made; (ii) the
potential which determines ¢, also adequately de-
termines E with only the boundary condition on
the wave function being changed (from vanishing at
infinity in the free atom to a zero-slope condition
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at the Wigner-Seitz radius in the metal); and (iii)
band-structure effects in the metal are negligible.
None of these simplifications is available general-
ly, and the historical consequence of this has been
a legacy of uncertainty regarding the components
of E ., in other metals. Particularly elusive has
been the precise role of d -state electrons in rais-
ing the cohesive energies of the alkaline-earth and
noble metals above those in the alkalis.

Only in recent years, with the availability of
high-speed computers, have systematic cohesive-
energy studies on nonalkali metals begun to appear.
The bulk of the renewed interest has been in the
transition metals and there have been several at-
tempts®™ to quantitatively analyze the origins of
cohesion in these elements. In this regard, Gelatt
et al.® have made approximate calculations on the
components of E ;, for all of the 3d and 4d transi-
tion and noble metals, using the so-called renor-
malized-atom method® to treat the solid. At the
same time, atomic and solid-state computational
methods have advanced to the point where accurate
calculations of E ., from direct total-energy sub-
traction have also become possible.®® In particu-
lar, the local-density formalism of Kohn and Sham®
has been employed by Janak and co-workers”:® to
self-consistently calculate the cohesive energy,
equilibrium lattice constant, and bulk modulus of
all metals with atomic number Z,<50. These cal-
culations provide useful information regarding the
applicability of the local-density theory, but un-
fortunately, they cannot be readily dissected to
supply additional insight into the nature of metallic
cohesion. The present work is an attempt both to
improve this situation and to complement the re-
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cent transition-metal studies by providing a com-
parable analysis on all simple, alkaline-earth and
noble metals. We derive in this paper a simplified
local-density theory of the cohesive energy of met-
als which combines the benefits of the first-prin-
ciples Kohn-Sham formalism with the insight of-
fered by approximation techniques such as the
renormalized-atom method.

Our simplified theory is developed on the basis
of several systematic approximations. First, the
total energies in both the free atom and the solid
are carefully separated into core and valence con-
tributions, with the atomic valence energy being
identified as the negative of that required to re-
move Z valence electrons from the free atom. In
nontransition metals Z is given by the column num-
ber of the element in the Periodic Table, although
in pure transition metals a self-consistent defin-
ition would be required. For all d-band metals,
however, .the energy associated with the d bands
in the solid can be advantageously partitioned be-
tween the core and valence energies and in the
simplest cases the calculation of E ., may be es-
sentially reduced to a difference in valence binding
energies.

The second major simplification we introduce is
the calculation of the valence binding energy of the
metal by means of the generalized pseudopotential
theory.'®+' This approach offers some significant
advantages in the study of cohesion and the appro-
priate density-functional version of the theory has
recently been developed by the author.!* The usual
cumbersome procedure of band-structure gener-
ation, summation over occupied states, and iter-
ation to self-consistency in the metal is bypassed
entirely in this technique, as all band-structure
and self-consistent-screening effects are incor-
porated analytically. Thus, the valence binding
energy may be readily broken down into its com-
ponent parts and the effect of each on the cohesive
energy quantitatively assessed. On the other hand,
the implementation of the generalized pseudopoten-
tial theory becomes increasingly complex as one
proceeds from simple metals to metals with empty,
filled, and partially-filled d bands, respectively.
Only in the former three cases has the full quanti-
tative machinery needed to calculate E ., been de-
veloped, and for this reason we will confine the
bulk of our attention to nontransition metals. This
provides ample overlap (15 metals) with the work
of Janak and co-workers”*8 but only a minimum of
overlap (3 metals) with the renormalized-atom cal-
culations.?

Lastly, and as a matter of convenience only, we
have ultilized two further simplifications in our
development. First, the free atom is handled in
the spirit of the original Kohn-Sham formalism,®

with spin-polarization effects'?? neglected. This
introduces a small quantitative error for elements
with odd values of Z, but the magnitude of the er-
ror is systematic and has been well studied in the
nontransition free atoms.”**3 Second, the equili-
brium atomic volume of the metal, §,, is taken
as the observed volume rather than that which
minimizes the total energy, as done by Janak and
co-workers.”*® This greatly reduces the compu-
tational effort required to obtain E.,,, without sig-
nificantly affecting the interpretation of the results.
Our external input into the calculation of the co-
hesive energy thus consists of Z and , in addition
to the atomic number Z,,.

In Sec. II we consider in detail the separation of
the total energy into core and valence contributions,
and the valence binding energies of 27 free atoms
are compared with experiment. Then in Sec. II
our simplified theory for E ., is fully developed and
applied to 22 metals, including 7 heavy metals not
previously treated in either the renormalized-atom
or local-density studies.

II. VALENCE BINDING ENERGY

The separation of a valence binding energy from
the total electronic energy per atom, E,,, is con-
ceptually similar in both the free atom and the
metal. One begins by defining the core energy
E .o as equal to the total energy of an isolated
free ion (with net charge Ze) whose electron den-
sity is exactly the same as that of the free-atom
(or metal) core. A precise definition of the valence
binding energy is then simply

Ebind =E tot -E core * (2)

In practice the binding energy will be on the order
of 5-100 eV in magnitude for nonrelativistic ele-
ments and still typically an order of magnitude
larger than E.,,. Moreover, E;, remains a com-
plicated quantity, so that considerable care must
be exercised in its approximate evaluation. In the
context of the Kohn-Sham local-density formalism,
part of this complexity arises from the fact that.
the exchange and correlation energy is a nonlinear
function of the fotal electron density of the system.
It is advantageous, and in the case of the metal
necessary, to treat the exchange and correlation
terms in an approximate manner. This introduces
a small quantitative error (at most a few percent)
into E,; ,, but by applying the same approximation
technique to both the free atom and the solid the
bulk of the error can be made to cancel in E;,.

A. Free atom

We first derive an appropriate expression for the
free-atom binding energy. The total electronic en-
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ergy of an atom in the local-density formalism may
be written®

Bt = T~ g [ STl arar

+ [ ) [0 (rF) = i EN] GF,  (3)
where E  is the eigenvalue of the self-consistent
Schriddinger equation
( o Z,e® e n(" )

1T -7

e D) 9ol =B o), ()

ar’

n(T) is the total electron density of the system,

n(®) =3 vk ), (5)

€..(n) is the total exchange and correlation energy
(per electron) of a free-electron gas of density #,
and p,.(») is the corresponding exchange-correla-
tion potential:
d

Hyo(n) = ——[ne, ()] . ~ (8)
The sums in Egs. (3) and (5) are, of course, over
all occupied states of the free atom in its ground
state.

Writing #(¥) as a sum of a valence and a core

density,

n(f) =nval(-f) + ncore (-f) ’ (7)
the core energy entering Eq. (2) may be taken as

. 2
B = Tlee)+ [ e (®) (- 222

1 f e ncm(r )

-7
+ €xc(n core )) d-f ’ (8)

where T(7 o) is the kinetic energy of the core
electrons. Subtracting Eq. (8) from Eq. (3) gives
one exactly

pston ff e nval(r)nm(r ) TEdF

-7
o= val

+ f o (F) [ €3 = b1y ()] dIF

b [ B [6e) - o) GF, ()

where the sum in the first term is now restricted
to occupied valence states. The approximation we
wish to introduce to this result involves the final
two integrals. To simplify these terms we note

that physically the valence electron density tends
to be excluded from the core such that

(nval 7 core ) 12 7 va1 T M core (10)

everywhere in the vsystem.“ For small valence-
core overlap the integrand of the final term in Eq.
(9) can be approximated by expanding €, (n) in
powers of n,, and using Eq. (6):

\n core [Exc(n core 7 va]) - €acc(n core )]

=7 core (n val E_Ex%:f_re_) +0 (n'zv‘al )>

gnval[l“"aw:(n core) - exc(ncore )] . (11)

The final two integrals in Eq. (9) can then be com-
bined as

f nval(-f) {[ch(n core +nval) - Exc(n core)]
- [“xc(n core +nval) - IJ'xc(n core )]} ﬁ
= fnval(-f) [€xc(nval) - “‘xc(nval)] d-f . (12)

The free-atom binding energy is thus reduced to

Efnd = Z E —_ff e "vilff')f:/rl(.)

o=val

+ f nval(-f) [exc(nval) - l"‘xc(nva])] d? . (13)

This result becomes exact in the limit of no val-
ence-core overlap where the left-hand side of Eq.
(10) vanishes. Alternatively, Eq. (13) can be
viewed as the exact total energy of a system of
electrons of density 7,,(¥) in the presence of an
external ionic potent1a1

Uion(-f) Fo- d?,

Z,e? +f €% core (T')
r |¥ -7

+ ‘J’xc(nval +ncore) - “’xc(nval) . (14)

In either case, —E2T is physically the energy
required to remove the Z valence electrons from
the free atom, assuming no significant relaxation
of the core.

It should also be pointed out that the derivation
of Eq. (13) requires no specific knowledge of the
exchange-correlation functional €,,(z). The result
thus applies to any closely related treatment of
exchange and correlation satisfying Eq. (6). In
particular, the popular Xa method due to Slater'®
is encompassed by our formal results.

We have performed atomic self-consistent field
calculations on 27 elements from groups IA, IIA,
IB, IIB, IIIA and IVA inthe Periodic Table. ‘The
exchange-correlation potential defined by Eq. (6)
was taken in the form
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p’xc(”)=p'x(n)+l~l'c(n), ' (15)

where (., (#) is the familiar Kohn-Sham exchange
potential,®

W, (1) = —=2e2(3n/87)V3, (16)

and p(n) is the Hedin-Lundquist correlation poten-
tiall®

Holm) = —poIn[1 + 7o(5m)V°] )

with 1,=0.045 Ry and 7,=21 a.u. The valence
eigenvalues and wave functions obtained from solv-
ing Eq. (4) were then used in Eq. (13) to obtain the
free-atom binding energy in each case. These re-
sults are given in Table I together with the corre-
sponding experimental ionization energies.!” The
agreement with experiment is clearly very good
with all trends for the nonrelativistic atoms given
correctly. Except for the special case of hydrogen,
Eq. (13) for the light elements (Z,<38) is accurate
to within 3%. For the intermediate elements (47
<Z,<56) the error ranges from 2% to 6%, while
for the heavy elements (Z,>79) the error becomes
10%-22%. The latter is a reflection of the impor-
tance of relativistic effects, which, of course, are
not included in Eq. (13). Interestingly, however,
the relativistic energy shifts appear to cancel out
in the cohesive energy, as shown in Sec. III, sug-
gesting that such shifts are largely volume inde-
pendent.

The 1.4-€V error in E}°7 for the case of hydro-
gen is a direct consequence of our neglect of spin
polarization. The local-density theory given above
implicitly assumes that all spins are paired, so
that spin-up and spin-down electron densities are

identical:
n(F) =n,y('f) =3n(F). (18)

This obviously is not true in a free atom with an
odd value of Z, and with only one electron pres-
ent in hydrogen the error is particularly large.
Proper account of the spin polarization in hydro-
gen®® lowers EZ°T by about 1.1 eV and brings the
result close to the observed value of -13.6 eV.
Spin polarization always lowers the total energy
and consequently increases |E&°7|, but the mag-
nitude of the effect falls off dramatically in multi-
electron atoms to 0.3-0.4 eV in Li, Na, and Al to
less than 0.3 eV for elements with Z,>19.7'%3 In
this regard, note that our calculated |E2°7] is less
than experiment for all odd-Z elements except Cu.

B. Metal

We now turn to the corresponding treatment of
the valence binding energy in the metal, ETet@!,
The derivation of an approximate expression for
this quantity is necessarily more complicated than
in the free atom, but all of the pertinent details
have been given previously in Ref. 11, We shall
only briefly summarize here the essential features
of the development which are relevant to the co-
hesive energy.

The total electron density in the metal is broken
down into a sum of uniform, oscillatory, and lo-
calized-core contributions:

E) =2 it + 60,1 (F) + D Meore (F = R,) (19)
i

where 7 ,,; is the free-electron density

TABLE I Vtalence binding energy of 27 free atoms, in eV. The theoretical values
represent —Eying as obtained from Eq. (13), while the experimental values are the measured

ionization energies from Ref. 17.

Element Theory Experiment Element Theory Experiment
H 12.21 13.60 Zn 27.70 27.35
Li 5.23 5.39 Cd 24.98 25.90
Na 5.08 5.14 Hg 24.66 29.18
K 4.28 4.34 .

Rb 4,08 4.18 B 70.41 71.36
Cs 3.73 3.89 . Al 53.12 53.25
Ga 57.18 57.27
Be 27.15 27,53 In 51.00 52.68
Mg 22.82 22.68 Tl 49.46 56.33
Ca 18.06 17.98
Sr 16.69 16.72 C 145.8 148.0
Ba 14.92 15.21 Si 102.3 103.1
Ge 102.7 102.7
Cu 7.83 7.72 Sn 90.33 93.18
Ag 7.11 7.57 Pb 86.49 96.68

Au 7.21 9.22




19 SIMPLIFIED LOCAL-DENSITY THEORY OF THE COHESIVE... 613

nunifzz/ﬂo’ (20)

7 core (T —ﬁi) is the core density of the ith nucleus
in the metal, and &n.,(F) represents the remaining
valence (screening plus orthogonalization hole) den-
sity. Ind-band metals the total d-electron density
can be conveniently partitioned between 6% ,, and

7 core SUch that in nontransition elements # o is
formally the same as the core density in the free
atom. Identifying #,ur+06%., as the total valence
electron density n,,, the analog of Eq. (13) is then
obtained by a quite similar procedure. In the met-
al, however, we take additional advantage of the
fact that both on,, and the overlap of neighboring
core densities are small, This allows us to ap-
proximate the full exchange-correlation potential
as

d 7 uni
’J'xc(n) = ’J‘xc(nunif) + ‘“’_J:;’(,T—ién val

+ Z [“‘xc(n unif+ni:ore) - “’xc(nunif)] ’ (21)

With i, =7 o (F = R;). In addition, the sum over -
occupied valence states in the metal (excluding any
d-state contribution already in E .,.) has the form

e2 unif >
Z Eot=T(nunif)+fnunif ( ..n »,f dr' +U'xc(nunif)
o =val lr—rl
+ 3 vl - ) aF
i
+ 9 BE,, (22)

o =val

where v, (F) is given by Eq. (14) with n,,; =n ;.
Finally, the small quantities 6%, and ., 6E ,
can be developed as systematic expansions in two
effectively weak potentials: a pseudopotential W,
and a d -state hybridization potential A.

The net result for the valence binding energy can
be expressed as

E?ifxxdal =E fe +E vol +E struc (23)

where E ¢ is the free-electron binding energy as-
sociated with » .,

Efe=%Z€F +Z €, (M ynir) —%(Ze)z/Rws, (24)

with €, =7%(31%1,,i)¥3/2m and Rys=(3Q, /4m)Y3;

and E,, and E . are the remaining volume-de-
pendent and structure -dependent contributions, re-
spectively, arising from finite W,and A. The quan-
tity E,,, is inherently first order in W,and A%, while
E,, . is formally second order in these quantities.
For the cases of simple metals and metals with empty
or filled d bands, the former can be written

V)

k<kp

(klwr|k) dk =
(24

in a plane-wave |k), localized d-state | ¢,) rep-
resentation, wherew )" and A, are the appropriate
lowest-order contributions to W, and A, respec-
tively, and the dots represent second-order terms.
The hybridization term in Eq. (25), of course, is
present only for d -band metals, with the upper
signs appropriate to filled d. bands (e.g., in the
noble metals) and the lower signs to empty d bands
(e.g., in the heavy alkaline-earth metals). The
second-order terms in E,; and E 4, arise both
from the second-order components of W, and A®
and the lowest-order components of W2 and A*
terms. All of these contributions can be obtained
systematically without further approximation and
the full expressions are given in Ref. 11. The re-
sults are too complex to warrant reproducing
here, but for divalent and polyvalent metals they
must normally be retained in an accurate cal-

Z (K| Ap| ¢aX 94l wlk) d-ﬁ) I (25)

T R
kp @ €t —-E§

r

culation of ETetd!, Physically, the first-order
terms reflect the average shift in the actual val-
ence-band energies relative to their zero-order
values, while the second-order terms encompass
detailed band-structure and self-consistent-
screening effects.

The notation pa in w8, A, and E}*denotes “pseu-
doatom” and refers to the zero-order pseudoatom
construction*® ysed to define and calculate these
quantities. The pseudoatom itself represents a
zero-order estimate of the actual electron density
and potential associated with a single Wigner-
Seitz cell of the metal:

pa (-f) =7 ynif +7 core (.f) (26)

and

‘Upa(-f) = Uunif(-f) + vion(-f‘) ’ (27)
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where v ¢ is the Coulomb potential arising from
that portion of 7 ,,; contained within the sphere
7<Rys. The pseudopotential matrix element enter-
ing Eq. (25) is given by

(klwp &y = (k|v,|k) + Zd(ea —E%) (k| ¢ X ¢ oK)

=C,

+;(<E|Apal¢d><¢dli>+c.c,), (28)

where et =71%k%/2m,
Bt =(6|~(1%/2m) V2 + 0, 6 , (29)

and the localized inner-core and d states, ¢, and
¢4, are those which make up the core density:

Nere (F)= ) OXE) ¢ F), (30)

o=cyd ]

with only occupied states, of course, included in
the latter sum. The expectation value E}* repre-
sents a first approximation to the mean position

of the d bands in the metal. The hybridization
potential A,,, on the other hand, arises from the
fact that ¢, is not an exact eigenstate of —(#7%/2m)V?
+Un. The extra localization potential v, needed
to make it an eigenstate precisely defines A, :

B =0, —<¢d|vloc‘ @) - (31)

In practice it is v, that is fixed,'® and both ¢, and
Ay, are self-consistently determined in terms of
the choice made, '8

The zero-order pseudoatom may be contrasted
with the renormalized atom of Watson et al.5 In
the latter, the electron density within the Wigner-
Seitz sphere is derived entirely from the free atom
by renormalizing each orbital to unity within the
Wigner -Seitz sphere and setting its value to zero
outside the sphere. This renormalization has little
effect on the tightly bound core electrons, but a
large effect on the loosely bound valence electrons,
with typically one electron’s worth of charge being
transferred from outside to inside the Wigner -
Seitz sphere by renormalization.® Of course, the
renormalized valence electron density will not be
uniform, but its spatial variation outside the core
is usually not rapid. In the case of copper, in fact,
Gelatt et al.® found the Coulomb potential associ-
ated with this density rather close to v ;. As far
as the cohesive energy of d -band metals is con-
cerned, probably a more significant difference
between the zero-order pseudoatom and the re-
normalized atom concerns the treatment of ex-
change and correlation. Unlike the local exchange-
correlation potential entering v, the renormal-
ized-atom method employs a nonlocal Hartree-
‘Fock-like exchange operator which attaches a full
self-Coulomb hole to the Wigner-Seitz cell. It is

argued® that the latter is more appropriate for the
d electrons of transition metals for which the
method is primarily intended. Of interest in this
paper is the overlapping case of the noble metals
where the choice has a large effect on the hybrid-
ization contribution to E_,,, as discussed in Sec.
oI,

It must also be stressed that the renormalized
atom and the zero-order pseudoatom are utilized
to somewhat different ends in practice. The for-
mer purports to adequately approximate the actual
electron density in the metal, such that the poten-
tial, valence band structure, and sum of one-elec-
tron valence energies may be directly calculated
from it. But the renormalized-atom itself is not
self-consistent and the actual Hartree-Fock energy
gained in renormalization does not approximate
the cohesive energy, as has been emphasized by
Wood et al.?® for the alkali metals. The success
of the method is thus dependent upon the insensi-
tivity of the computed band structure to errors in
the assumed electron density and potential, The
zero-order pseudoatom, on the other hand, acts
only to define first-order expansion parameters
and any errors in n,, are, in effect, self-consist-
ently corrected in the determination of the metal
binding energy.

The zero-order pseudoatom technique was used
in Ref. 11 to obtain E}°% and its three components
defined in Eq. (23) for 19 of the metals under con-
sideration here. These calculations employed the
same form of ¢, (#).used in the free-atom calcula-
tions discussed above and by Janak and co-work-
ers”'8 in their local-density studies. Values of
Eg, Eyy Egne, and ETS%® are listed in Table VI
of Ref. 11 and have been used unaltered in the cohes -
ive energy analysis presented below. Added to these
results for the present study have been corre-
sponding first-order calculations on copper, silver,
and gold.®»

III. COHESIVE ENERGY

To obtain the cohesive energy one must now re-
late Ef% to the total free energy of the metal,
Fretal For a metal with N identical atoms at zero
temperature and pressure, this relationship is
simply

Fretal= N(EPR®' +E core +Epn) , (32)

where Egh is the familiar zero-point vibrational
energy

1
E;?h =W2hwg . (33)
q

The phonon frequencies wy may be obtained en-
tirely within the framework of the generalized
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pseudopotential theory from a knowledge of the
structure-dependent energy E g .28 In practice,
of course, Ep, is at most a small fraction of the
cohesive energy. We retain this contribution here
only for completeness and because it was also in-
cluded in the previous local-density studies”*2 (al-
though in an empirical fashion through the mea-
sured Debye temperature).

The next step is to equate the free-atom and
metal core energies. In doing this we note from
Eq. (8) that E ., depends only on the core elec-
tron density and hence on the localized inner-core
and d orbitals. In practice the inner-core states
obtained from the zero-order pseudoatom are
virtually identical with those of the free atom. The
precise shape of the d states, on the other hand,
is controlled by the localization potential. It is
possible to choose v, such that ¢, is exactly a
free-atom d state, but this is neither necessary
nor an optimum procedure in practice.*''® For
empty-d-band metals, of course, ¢, is unfilled
and makes no contribution to either the core den-
sity or energy. In filled-d-band metals, on the
other hand, the practical requirement is only that
¢4(F) for 7<Ryg closely approximate the free-atom
wave function and this condition is fulfilled for the
d states used in the present work.®

More generally, e.g., in most transition metals,
one must also account for any change in d -state
occupation between the free atom and the metal
before cancelling core energies. This requires
first promoting the free-atom electrons to an ex-
cited-state configuration corresponding to the val-
ence assumed in the metal. The energy needed to
accomplish this promotion, E must then be
subtracted from E .

For all simple, alkaline-earth and noble metals,
no promotion is required and the cohesive energy
is just

pro?

Ecoh =E§§ﬁﬁ" —Eg\iiiial—Er?h . (34)

Using our calculated values of E}i°T from Table I
and the values of Ef® and EJ, from Refs. 11 and
21, we have evaluated Eq. (34) for all 22 nontransi-
tion metals. In Table II we compare our values of
E o for representative metals with those obtained
by Janak et al.” by direct total-energy subtraction
in the limit of no free-atom spin polarization. Ex-
cept for the anomalous case of beryllium, the
agreement is within about 10%, with our values of
E., systematically lower than the total-energy-
subtraction ones. Table II also indicates the quan-
titative effect of spin-polarization in the odd-Z
elements.

The relatively small cohesive energy we cal-
culate in beryllium seems to be closely corre-
lated with our neglect of higher-order contribu-
tions to EX%, Very approximate calculations on
simple metals®® show that the third-order energy
is always negative and hence lowers Epct and
raises E,,, in accord with the requirements of
Table II. The unique situation.in beryllium pre-
sumably comes about because of the large pseudo-
potential and the corresponding slow convergence
of Ep¢% in this metal. In this regard, we find the
net second-order contribution to EI® in beryllium
to be 1.70 eV (or 59% of E ) and an order of mag-
nitude larger than that of any other divalent or
monovalent metal.

The importance of Eq. (34) for E ., is that it may
be readily analyzed using the results of Sec. II. If
one regards the Wigner-Seitz formula, Eq. (1), as
the benchmark of our understanding of cohesion in
nontransition metals, then it is natural to separate
E ., into a sum of four components:

E o =AE +AE, +AE +AEY, (35)

where (i) AE,, is the free-electron-band formation

TABLE II. Cohesive energy of representative metals in the Kohn—Sham local—density
formalism, as calculated from the simplified theory developed in the text and from direct

total—energy subtraction. All values are in eV.

Calculation Present work Total-energy subtraction?
Free-atom Experiment P
spin polarization No No Yes

Li 1.76 2.01 1.64 1.63
Na 1.34 1.43 1.10 1.11
K 1.07 1.13 0.90 0.93
Be 2.89 4,00 4.00 3.32
Mg 1.57 1.64 1.64 1.51
Ca 2.01 2.23 2.23 1.84
Cu 4.22 4.45 4.20 3.49
Al 3.62 4.02 3.83 3.39

2Reference 7.

bReference 23.
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energy'
c=Egen —E, — Z(0lw§|0)
‘E§}§?-Z(Er+%€p), (36)
with _ -
Er=(0w}]0) =32 /Ry + €0 (i) (37)

and |0) =|k =0); (ii) AE,, is the sp band-structure
energy obtained by formally setting A =0 for filled
d bands and ¢, =0 for empty d bands in EJct!:

Al - 22 ( Zl(klApaI¢d>I ak

r2kp 4 l€k —Epal

again using Eqgs. (25) and (28) and noting that €,
~EP* is positive (negative) for filled (empty) d
bands; and (iv) AES, is the zero-point vibrational
contribution

AESh = —Egh . (40)

The second form of Eq. (36) is, of course, a
simple generalization of the Wigner-Seitz formu-
la with E being identified as the binding enérgy
of an electron at the bottom of the valence band
in the metal.

We have listed in Table III E , and its four
components, together with the experimentally
observed cohesive energy,?® for each of the 22
metals considered here. Note first that the over-
all agreement with experiment for E ., is within
20% for nonrelativistic metals (Z,<56) and still
within 33% for the relativistic metals. Equally
important is the fact that all trends with both
atomic number and valence are given correctly,
apart from the minor exception of the ordering
of E . in strontium and barium. The next point
to notice is that, outside of the alkali metals,
neither the quantitative agreement with experi-
ment nor even the qualitative trends with Z, and
Z in E ., can be explained by free-electron-band
formation alone. Although AE, gives positive
cohesion in all cases except beryllium, it tends
to increase with Z, in a given column in contrast
to the behavior of E.,;,. The sp band-structure
energy AE, is responsible for correctly revers-
ing the trend and its variation for a fixed valence
is easily understood from the first-order terms
in Eq. (38). Because the matrix element (0| ¢ )

AEg, = “‘?(zﬂ) f 2 [-ERK0l6 )I® - (e5 ~E)

k<kp a=c,

(| @ ()] 42+, (38)

using Eqs. (25) and (28), noting that (Elv,ali) is
independent of E, and where the sum over « in-
cludes only occupied states; (iii) AE,, is the re-
maining sd hybridization energy in EfS#:

5 (218,100 (0s B +0(EF - ep)(er B K| ) °) ak) - (39)

!

is nonzero only for s states, each s core state
contributes positively while all p, d, and f core
states contribute negatively to AE,,. The ratio

of non-s to s core states goes from zero in the
second period (lithium and beryllium) to a value
greater than one in the sixth period, so that AE,
tends to decrease as one moves down a given col-
umn. Physically, this behavior may be interpreted
as the effect of energy-level repulsion in the solid:
Core levels push valence levels of the same sym-
metry to higher energy. '

Finally, the relative importance of the sd hybrid-
ization energy in d -band metals can be seen from
Table III. Note that AE_, is negligible in the heavy
alkali metals but contributes 30%-55% of E .1 in
the heavy alkaline earths and 45%—-60% of E . in
the noble metals, before falling off and becoming
slightly negative in the group IIB elements. This
behavior can be readily explained in terms of Eq.
(39). When the d bands are in close proximity to
the Fermi level, as in the heavy alkaline-earth
and noble metals, the first, and inherently posi-
tive, term in AE; is dominant. But the position
of the d bands falls rapidly in energy as one moves
to the right from the noble metals and already in
the group-1IB metals the second, negative term in
Eq. (39) wins out. At the same time, the magnitude
of the hybridization matrix element (k|A | ¢,) de-
creases rapidly, so that AE; in the group-IIIA and
-IVA metals, which was explicitly set to zero in
the present calculations, indeed becomes neglig-
ible.

It is of interest to compare our results with
those of obtained by Gelatt et al.® from the re-
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TABLE ITI. Cohesive energy E ., and its free—electron (AEg ), sp band—structure
(AEg,), sd hybridization (AE), and zero—point—vibrational (AE ) contributions, as

described in the text, for 22 metals, in eV.

Metal AEg, AEsp AE, AE gh Econ E:gﬁt @
Li 1.23 0.57 0.0 -0.04 1.76 1.63
Na 1.39 —0.03 0.0 —0.02 1.34 1.11
K 1.21 -0.16 0.03 -0.01 1.07 0.93
Rb 1.16 —0.22 0.03 -0.01 0.95 0.85
Cs 1.09 —-0.27 0.05 —0.00 0.87 0.80
Be ~0.86 3.87 0.0 —-0.12 2.89 3.32
Mg 1.35 0.24 0.0 —-0.03 1.57 1.51
Ca 1.78 —0.39 0.65 —~0.02 2.01 1.84
Sr 1.87 -0.71 0.53 -0.01 1.69 1.72
Ba 2,01 -1.28 0.88 —-0.01 1.60 1.90
Cu 1.82 —~0.08 2.48 —0.03 4.22. 3.49
Ag 1.93 —-0.28 1.34 —0.02 2.99 2.95
Au 1.89 —0.40 2.12 —-0.01 3.61 3.81
Zn 1.19 0.23 ~0.04 —-0.02 1.36 1.35
cd 1.68 -0.24 -0.24 ~0.01 1.18 1.16
Hg 1.83 —0.48 -0.47 —-0.01 0.89 0.67
Al 2.36 1.31 0.0 —0.04 3.62 3.39
Ga 1.71 1.07 0.0 —-0.01 2.77 2.81
In 2.97 —0.30 0.0 —-0.01 2.67 2.52
Ti 3.37 —-0.97 0.0 —~0.01 2.39 1.88
Sn 1.25 1.50 0.0 —0.01 2.74 - 3.14°
Pb 2.06 0.49 0.0 —~0.01 2.55 2.03

2Reference 23.

normalized-atom method in the overlapping cases
of potassium, copper, and silver. To make this
comparison, we identify their conduction-band
contribution to E ., as the sum of our free-elec-
tron-band formation and sp band-structure en-
ergies:

AE ., =AE, +AE,. (41)

Our values of AE n¢ and AE ; are listed together
with the renormalized-atom values in Table IV.

As expected, there is basic agreement in the case
of potassium, where the renormalized-atom meth-
od reduces to a Wigner-Seitz calculation with E .,
given by Eq. (1). In copper and silver, on the other
hand, our values of AE 4 and AE, are all 0.4-1.0
eV higher in energy than the renormalized-atom
estimates. This is in spite of the fact that our
present noble-metal results do not include second-
and higher-order contributions, which are expect-
ed to be positive.?! As can be seen from Table II,
only about 0.25 eV of the discrepanciés in AE .,q
can be attributed to our neglect of spin polariza-
tion. The differences in AE_,, on the other hand,
seem closely correlated with the respective treat-
. ments of exchange and correlation in the two meth-
ods. The local-density exchange-correlation po-
tential is effectively weak in comparison to the
1=2 component of a Hartree-Fock-type potential,
so that the d bands are wider and sit higher in the

cond

bat—-Sn. the semiconducting form.

free-electron valence bands with the former. In
this regard, it has been established? in copper
that the local-density theory overestimates the
size of the Fermi surface necks by about 20%.
This clearly results from an excess of sd hybridi-
zation at the Fermi level and suggests that our
value of AE_;=2.48 eV is similarly too large. In-

TABLE IV. Present theory vs the renormalized—
atom method (RA) for the cohesive energy Econ and its
conduction—band (AEcon' ), sd hybridization (AE,), and
zero-point-vibrational (AE },) components in the three
metals where the existing calculations overlap. All
values are in eV; the RA and experimental results are
from Refs. 3 and 23, respectively.

AEgmnq AEg, AE ?’h Econ
K:
Present 1.05 0.03 -0.01 1.07
RA 0.90 ceo s 0.90
Experiment eee vee ooe 0.93
Cu:
Present 1.74 248 —0.03 4.22
RA 0.8 1.9 oo 2.7
Experiment oo vee oo 3.49
Ag:
Present 1.65 1.34 -0.01 2.99
RA 1.1 0.3 oo 1.4
Experiment coe cee coe 2.95
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terestingly, the observed cohesive energy of 3.5 eV
in copper may be obtained by reducing our AE
by 20% and subtracting the 0.25-eV spin-polari-
zation energy from AFE 4. In silver, on the other
hand, the local-density theory appears to be rath-
er accurate. Here the renormalized-atom poten-
tial puts the d bands too low in energy,® resulting
in a very small calculated hybridization contribu-

" tion to E.,. In this case our value of AE; seems
the more reasonable of the two.

It is also of interest to contrast the values of
AE, in Table IV with other previous calculations
of this quantity. The original renormalized-atom
studies of the cohesive energy by Watson and
Ehrenreich® used independent band-structure es-
timates of 2.25 eV in copper and 2.0 eV in silver,
which are in line with the above conclusions. Oth-
er early work,?®+ 26 however, suggested that the
hybridization contribution to E ., was essentially
negligible in copper and negative in silver. Both’
of these conclusions were implied, in fact, in our
own initial application of the generalized pseudo-
potential theory to the noble metals.?® Fortunately,
the apparent contradiction with the present work
is mostly a matter of the definition of AE_;. In
our original calculational technique, setting A =0
had the here unwanted effect of shifting the free-
electron bands down in energy with respect to the
core and d levels. The result of this was to attach
a substantially different meaning to the hybridiza-
tion contribution to E{%# and E ., than given in Eq.
(39).

The other report of a negligible value of AEsd in
copper was due to Deegan.?® Using a simplified
resonance form of the transition-metal band-struc-
ture equations,®” he derived the approximate limit-
ing formula

AE,, = ~(5/m)W, In|(ep —E,)/E,|, (42)

where E; and W, are the position and width of the
d resonance of a single-site potential in the metal.
From this result Deegan estimated AE_;=0.13 eV
in copper, which is about a factor of 20 smaller
than we have obtained here. In this case, the dis-
crepancy arises from the heretofore unnoticed fact
that Eq. (42) is very inaccurate inboth the alkaline-
earth and noble metals. As we had pointed out
previously,’® the formula itself can be obtained
from the generalized pseudopotential theory using
certain simplifying approximations. The quanti-
tative inadequacy of these approximations can best
be appreciated by returning to the common origin
of both Eq. (42) and the first-order components of
Eq. (39) in terms of the full-d-state self-energy
rdd(E);lo

1 €F T ()

T mzlsli’% | Evie-E, ¢
1 F Iml"dd(E) .
- DR f dE

(o}

i

- Y ReTy(E,)0(ep -E,), (43)
d

where P denotes the principal value of the integral
which follows. If one expands I'y,(E) in terms of
the hybridization potential A and E;, the top line

of Eq. (43) can be integrated exactly term by term.
Equation (39), apart from the definitionally in-
serted step function O(EF® — €;), derives from mak-
ing the lowest-order approximations A =A,, and
E,=E}* to the exact result. If, on the other hand,
one neglects the energy dependence of T',,(E) by
approximating :

ImT 4, (E) ~ImI 3y (E ) = 2W 4, : (44)
and for filled-d-band metals
Rel',(E,)~0, (45)

one obtains the Deegan formula from the second
line of Eq. (43). Making the appropriate identifi-

cations™: 18

E,=E} (46)
and (in Rydberg atomic units)

Wo=2Q0ks A%alka) (47)
with |

(kg Al b0 = =47 1y (k) ¥ 5 () (48)

and &, =(E?*)"2, we find that Eq. (42) underesti-
mates AE; by 2.2 eV in copper and, at the same
time, overestimates AE , by 4.0 eV in calcium.
Thus in both the alkaline-earth and noble metals
an order of magnitude error results from the ap-
proximations (44) and (45). Unfortunately, the
predictions of Eq. (42) have often been sited as
justification for neglecting sd hybridization in
treating the cohesion of the noble metals.?®

It is interesting t~ note, however, that the ap-
proximations (44) and (45) appear to fare better
in pure transition r-stals. For partially filled d
bands, E; in the denominator of the top line of Eq.
(43) must be replac °d by E, +T"44(E),™ so that Eq.
(42) is generalized to

_ 5 (€p =E 2 +(W,/2)?
AEsd—_'é?Wd In E?'*‘(I’Vd /2)2

Using the structure-independent resonance param-
eters of Pettifor® for iron (E,=0.540, W,=0.088,
and €, —-E;=0.121 Ry), Eq. (49) gives AE,,=2.7
eV. This compares favorably with the approximate
3.0-eV value obtained by Gelatt et al.> More gen-

(49)




19 SIMPLIFIED LOCAL-DENSITY THEORY OF THE COHESIVE... 619

erally, the prospects of extending the full theory
of Secs. II and III to transition metals appear good,
but this clearly would require a substantial devel-
opmental effort.

A more immediate possibility is a component-
by-component analysis of related aspects of co-
hesion, such as the equilibrium atomic volume
and the bulk modulus, for the 22 metals treated
in Table III. Work of this kind has recently been
carried out on copper and titanium by Gelatt et al.?

and on the 4d transition metals by Pettifor.* The
favorably experience of Janak and co-workers”:8
in applying the local-density theory to all ground-
state properties bodes well for a successful anal-
ysis with the present theory. Such a study could
potentially be very informative in the d-band al-
kaline-earth and noble metals and also in the heavy
metals, where the apparent weak volume depen-
dence of the relativistic energy shifts could be
more closely examined.
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