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The interaction between two-electron quasiparticles is approximated in terms of the dielectric and vertex
functions of the uniform electron gas. These functions must satisfy the compressibility sum rule, and this fact
makes the interaction at metallic densities much stronger than the Thomas-Fermi screened Coulomb
interaction. A problem arises in applying this theory to real metals because the compressibility of the
electron gas at densities appropriate to rubidium and cesium is negative. This anomaly is removed by taking
into account the real metal effect of core polarization, The effective interaction is used to calculate the
electron-electron scattering rate and its contribution to the thermal resistivity. The result is consistent with
the single experimental measurement presently available on sodium (new results on potassium, rubidium, and
cesium became available after this paper was completed; these are reported in Table III), whereas the
Thomas-Fermi interaction predicts a thermal resistivity that is too small by a factor of 7. The scattering
rates and thermal resistivities of all the alkali metals are calculated to enable comparison with future
experimental values.

I. INTERACTION

This work was motivated by the experiments of
Cook, Van der Meer, and I aubitz' who carefully
measured both the electrical and thermal resistivi-
ties of sodium from 40 to 360 K and used an ingen-
ious method' to extract from their data the con-
tribution of electron-electron scattering to the
thermal resisitivity. Kukkonen and Smith' calcu-
lated this quantityusing the Thomas-Fermi
screened Coulomb interaction and obtained a re-
sult that was smaller than experiment by a factor
of 7. One aim of this paper is to resolve this dis-
crepancy.

This paper is organized as follows. In Sec. II
we obtain an approximate electron-electron inter-
action U„(q) in terms of z(q) and A(kz, q), the
dielectric and vertex functions and z(kF), the
quasiparticle renormalization factor, of the uni-
form electron gas,

U„=z'(k~)A'(k„, q)
l'(q) (l)

where V(q) =4''/q . This interaction is appro-
priate for electrons with opposite spins. The ver-
tex function takes into account the Pauli principle
in that the screening cloud around an electron is
due both to its charge and to the Pauli principle.
Since we are discussing the interaction of two-
electron quasiparticles, there is a vertex function
associated with each of them. [We note that the
Thomas-Fermi interaction considers both z(k~)
and A(kz, q) to be unity. ] We make no attempt to

do an independent calculation of the dielectric and
vertex functions; rather, we examine and test the
consequences of several existing calculations.

There are constraints on the model interaction
[Eq. (1)] because the q = 0 limits of both the dielec-
tric and vertex functions are exactly related to the
compressibility of the electron gas. Requiring
that the compressibility obtained from the ground-
state energy is identical to that obtained from an
appropriate @=0 limit of the dielectric function is
called the compressibility sum rule.

The dielectric functions of Hubbard' (as modified
by Geldart and Vo.sko') and of Geldart and Taylor'
include an adjustable parameter which is deter-
mined by satisfying the compressibility sum rule.
Vashishta and Singwi' have used a self-consistency
technique to obtain a dielectric function that also
satisfies the sum rule. Because Geldart and Tay-
lor and Vashishta and Singwi do not calculate the
vertex function, we propose a method for extract-
ing it from the dielectric function which allows us
to form the effective electron-electron interaction.

The interactions determined by- these three
dielectric functions agree at q=0 because of the
sum rule, and they also agree at large q. For
intermediate q they are different, and we examine .

the two extremes —the Hubbard and the Geldart
and Taylor interactions —in detail.

The constraint imposed by the compressibility
sum rule turns out to be extremely important, but
it also presents an immediate problem when we
try to apply it to real metals. This is because the
compressibility of the uniform electron gas be-
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comes negative for r, & 5. 18. Since rubidium at
r, = 5.20 and cesium at v, = 5. 63 lie in this region,
we are led to examine the physics of a real metal
more closely. The details of this examination are
in See. III.

In a metal there is an additional contribution to
the dielectric function due to the polarization of
core electrons in the periodic lattice of ions.
Taking the core polarizability to be a constant, we
view the ionic background as a uniform, charged,
and polarizable medium in which the electrons
move. In order to generalize the effective inter-
action to include the effects of core polarization,
we must find the dielectric and vertex functions of
the combined system of the electron gas and the
polarizable background. The Hamiltonian of an
electron gas with mass m~ immersed in a polar-
izable background of dielectric constant &~ may be
written in exactly the same form as the Hamil-
tonian of an electron gas without a polarizable
background, except that the charge e' is replaced
by e'/es. We show in Appendix A by a scaling or
homogeneity argument that the dielectric function
of this model system at a density determined by
x, can be expressed in terms of the known dielec-
tric function of the electron gas with &~ = 1, but at
a new density determined by mar, /mes

The most important consequence of including
core polarization is to modify the compressibility
sum rule so that, in addition to reducing the
strength of the effective interaction, the criterion
for a. positive compressibility becomes m~x, /meB
&5. 19 rather than r, &5. 18. Using semiempirical
values for &~ we find that both rubidium and cesium
are renormalized into the region of positive com-
pressibility.

With these results we are prepared to numeri. cal-
ly evaluate the effective interaction and the elec-
tron-electron scattering contribution to the thermal
resistivity. This is done in Sec. IV, where we
exhibit and compare U„(q) and U„(x) calculated
using the Hubbard and Geldart and Taylor dielec-
tric functions with the simple Thomas-Fermi
screened Coulomb interaction. We find that be-
cause of the constraints imposed by the compres-
sibility sum rule the Hubbard and Geldart and Tay-
lor effective interactions are considerably stronger
that the Thomas-Fermi result. Motivated by the
simplicity of the Thomas-Fermi interaction, we
write an interpolation formula for the effective
interaction which has the Thomas-Fermi form, but
with a, new screening wave vector defined so that
the compressibility sum rule is satisfied. This
interpolation formula is a close approximation to
the more complicated Hubbard result.

The thermal resistivities calculated using the
Hubbard and Geldart and Taylor interactions are

much larger than those predicted by Thomas-
Fermi theory, and both predictions are within the
experimental error of the measurement on sodium.
Summarizing the results for sodium, we find that
(in units of 10 ' cm/W)

W,,/T = 20 (Thomas-Fermi)

=95 (Geldart and Taylor)

= 130 (Hubbard)

= 140+ 70 (experiment')

and we expect that the Vashishta-Singwi result
would fall between those of Hubbard and Geldart
and Taylor. We calculate the thermal resistivities
and scattering rates for all the alkali metals to en-
able comparison with future experiments. The
predicted resisitivities of potassium, rubidium,
and cesium are sensitive functions of the dielectric
constant of the background. For example, the
resistivity of potassium is reduced by more than a,

factor of 3 when &~ is changed from 1 to 1.14.
This change is sufficiently dramatic that experi-
ments on these metals should be able to determine
if our treatment of the polarizable background is
adequate.

The point we wish to emphasize most is the im-
portance of the compressibility sum rule. Since
the effective interaction between two electrons
depends strongly on the vertex and dielectric func-
tions, which must satisfy the sum rule, this sum
rule is of paramount importance, and dielectric
functions which deviate significantly from it cannot
be used to construct the effective interaction.

In Appendix B we examine the four-point scat-
tering function and show how the form of the effec-
tive interaction [Eq. (1)] may be motivated. We
also examine the Bethe-Salpeter equation for the
four-point function and note the limitations of the
phase-shift approximation of the electron-electron
scattering rate.

II. THE INTERACTION

A. Approximate electron-electra@ interaction

There are three basic screened Coulomb inter-
actions in a metal: (i) the effective interaction be-
tween two external 'test" charges, e.g. , the
screened ion-ion interaction used to ealeulate
phonon frequencies in simple metals, (ii) the
interaction between an electron and a. test charge,
which is needed to calculate the scattering of an
electron by an ionized impurity, and (iii) the ef-
fective interaction between two electrons. We de-
fine the effective interaction as the Born approxi-
mation of the total scattering amplitude. The first
two of these effective interactions have been widely
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U„(q)=z(k )A(k, q) V(q) a/(q). (4)

Note that U„(q)= z (kz)A(k~, q) U«(q). Therefore
the vertex function represents the exchange modi-
fication of the interaction when an electron is sub-
stituted for a test charge.

The problem of concern in this paper is the ef-
fective electron-electron interaction, U„(q).
This case is more complicated than those
discussed' above because now both electrons under
consideration may exchange with the screening
electrons. Furthermore, if they have parallel
spins thay m3y exchange with each other as well.
Because of these complications, there is no simple
formal result for U„(q) and the problem must be

investigated. We will discuss these two only brief-
ly to define our notation and to show how the elec-
tron-electron interaction differs from them.

Simple calculations of the effective interaction
take into account the Coulomb interaction between
the charge under consideration (e.g. , test charge
or electron) and the screening electrons, but
neglect the interaction of the screening electrons
with each other. In this approximation, all three
effective interactions are identical and in Thomas-
Fermi theory are equal to

'
U~r(q) = 4me'/(q'+ q~2F), (2)

where q» is the magnitude of the screening wave
vector. A more sophisticated approach, the I ind-
hard' or the random-phase approximation, yields
the effective interaction that is the bare Coulomb
interaction, &(q) = 4n'e'/q', screened by the Lind-
hard dielectric function, e~(q). This interaction
is equal to U»(q) at q=0.

When'electron-electron interactions are in-
cluded, these three effective interactions differ.
The test-charge-test-charge interaction, U«(q),
is modified because the screening electrons now
avoid each other due to the Pauli principle (ex-
change) and due to their mutual Coulomb repulsion
(correlation). This interaction may be formally
written

U„(q)= I'(q)/&(q),

where e(q) is the exact but largely unknown dielec-
tric function of the electron gas.

The electron-test-charge interaction, U„(q) dif-
fers from U«(q) because the electron under con-
sideration is indistinguishable from the screening
electrons, and therefore it has an exchange as well
as a direct Coulomb interaction with them. A

formally exact solution of this problem has also
been obtained. The effective interaction between
an electron on the Fermi surface (~ 3

~

= k~) and a
test charge is given by' "

addressed through the Bethe-Salpeter equation
(see Appendix 8).

We propose a simple approximate electron-elec-
tron interaction that is a natural extension of the
electron-test-charge interaction. We assume that
the two electrons under consideration (with op-
posite spins) exchange with the screening electrons
independently. Therefore each electron acquires
a vertex correction and the approximate effective
interaction between electrons with opposite spins
is given by

U„„(q)= k(k, )A(k, q)]'I'(q)/~(q) . (5)

Since this approximation treats the two electrons
as independent quasiparticles, the interaction be-
tween two electrons with parallel spins is formed
in the usual way,

U„,, (q) = U, ,„(q)—U, , „(k, —k, —q), (6)

where 6, and k, are the initial momenta of the two
electrons under consideration. In Appendix B, we
consider the Bethe-Salpeter equation and show that
Eqs. (5) and (6) are a reasonable first approxima-
tion to the effective electron-electron interaction.

With these results, we have formal expressions
for all three interactions in a metal written in
terms of the dielectric and vertex functions of the
electron gas. Unfortunately, these functions are
not precisely known. We do not make an indepen-
dent calculation of these functions, but use several
existing dielectric functions and extract the vertex
function from e(q) by the procedure discussed be-
low. Kleinman" has also discussed these three
interactions and their formal relationships.

(8)

where II'(q) is the polarization and vo is the com-
pressibility of a system of noninteracting elec-
trons. This relation is due to a Ward identity'" "
and is known as the compressibility sum rule. .

Note that K is the compressibility of the electron
gas alone. It is not the measured compressibility
of the metal. Another Ward identity yields the
exact result that" "

B. Constraints on the model interaction

The static dielectric function is defined in terms
of the proper polarization, II(q), as""

&(q)= l+ I'(q)ll(q).

There exists an exact relation between the proper
polarization and the compressibility K which is
given by'
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where m* is the effective mass due to electron-
electron interactions. Explicit calculations of the
effective mass show it to be approximately equal to
the bare mass in simple metals"; hence we take
m*/m = 1.

These two exact relations, together with the
physical requirement that for large q, U„(q) goes
to 4]]'e'/q', are the only a Priori criteria we have
to judge the effective interaction and as we shall
see, they have a profound effect on the strength of
the interaction.

(10)

There are many different calculations of the
ground-state energy of the electron gas and their
internal agreement is quite good. Furthermore,
since the compressibilities determined by the most
recent calculations also agree quite well with each
other, ' it is commonly accepted'" that they yield
something close to the true compressibility. In
our calculations we use the compressibility deter-
mined from the energy calculation of Vashishta
and Singwi'":

0.0335''&x, .

' 0.02nng, 0.1+2'x,

2 (0. I + r,)'

Ko/K

I.O

0.75

C. Compressibility

In order to use the Ward identity and the com-
pressibility sum rule, we need to know the com-
pressibility of the uniform electron gas.

The compressibility is determined by the second
derivative of the total energy with respect to the
volume,

where &= (4/9]]')' '= 0.52106 and the particle
density is given by n '= V/N = -', ]]'(x,a,)', and a, is
the Bohr radius (0. 529 A). This expression is
plotted in Fig. 1.

We note that the compressibility ratio becomes
negative for r, & 5. 18. This is due to a divergence
in v. The divergence occurs at x, = 6. 03 in Har-
tree-Pock theory. Including the correlation ener-
gy moves the divergence to smaller x,. Since
rubidium at x, = 5.20 and cesium at x, = 5. 63 lie in
the region of negative compressibility, we will
need to examine other aspects of the physics of
alkali metals more closely. We do this in Sec.
III.

D. Approximations for the dielectric and vertex functions

The simplest approximation for w(q) was calcu-
lated by Lindhard' in 1954. His result, desig-
nated by v'(q), assumes noninteracting electrons
and is equivalent to- the random-phase approxima-
tion. The expression for ]T'(q) is

rr'(q)= *; —+~[)—(q/2): )'])n ' ).1 1+,~2&

4ve' 2 2q ~ 1 —q/2k+

(i2)

In this approximation, the vertex function is unity
and all three effective interactions are equal.
Since the Lindhard dielectric function does not
satisfy the compressibility sum rule, it cannot be
used to form U„(q). The Lindhard interaction is
equal to UTF (q) at q = 0 and for finite q the dis-
crepancy is small and. it has been shown that UTv(q)
predicts a thermal resistivity much smaller than
observed.

The most widely used improvement of Lindhard's
result, due to Hubbard, ' includes the effect of ex-
change in an appropriate way. In the Hubbard ap-
proximation the proper polarization is given by'"

II(q) = A(q)ri'(q),

where

q T F II'(q)(q)=1 —( -»./») 2 ~2 2(1 / ) o(0)
~

0.50

0.25

I

-6
l's

Ratio of the free-electron compressibility
to the compressibility of interacting electron gas as a
function of r~. z was obtained by differentiating the
ground-state energy of Vashishta and Singwi.

(14)

Hubbard's original form for II(q) did not satisfy
the compressibility sum rule and the expression-
given above, which incorporates the sum rule, is
an improvement due to Geldart and Vosko. '
Henceforth when we use the term Hubbard approx-
imation we will mean as modified by Geldart and
Vosko. The precise interpretation of A(q) is a
source of some possible confusion; the small q
limit of A(q) is»/»„whereas the proper vertex
function must approach [1/z (k~)]»/», by the Ward
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identity [Eq. (9)]. Therefore the identification

z (k,)~(k„q)= A(q) = Ii(q)/II'(q)

is exact in the small q limit. 5'e assume it to be
true for all q. Hediri and Lundqvist" point out that
the large q limit of A(kz, q) is unity and not I/z (kz),
so that this identification is wrong for large q.
However, the following discussion will show that
the error introduced by using Eq. (15) for all q is
small when calculating the thermal resistivity.

Equation (15) is exact for small q, but its use
predicts an interaction that is equal to the bare
interaction &(q) for large q where the correct large
q limit is U„(q)=z (kz)V(q). For our application
to electron-electron scattering q can be at most
2k~ and the importance of the renormalization
factor at this momentum transfer is not known.
We can, however, estimate this effect by assuming
that the effective interaction is

[(1-q/2k )+ (q/2k )g (k )]

times the interaction obtained by using Eg. (15).
This interpolation assumes that the effect of z (k~)
turns on smoothly with q and reaches its full large
limit by q = 2k~. We have estimated that thermal
resistivities calculated with this interpolated in-
teraction using z(k„) -0.7" will be only a few per-
cent smaller than those calculated using the as-

U
O
I

U
I
W

II

U
4

LL

N

sumption of Eq. (15), and thus this assumption is
well justified. Calculations of other properties
that depend more strongly on large q may require
more care. With this approximation for the vertex
function, the effective electron-electron interac-
tion is completely specified within the Hubbard ap-
proximation.

The main thrust of most recent investiga-
tors ' ' ' has been directed toward calculating
&(q) by variational or self-consistency techniques.
Unlike the Hubbard approximation which includes
a free parameter that is determined by satisfying
the compressibility sum rule, these schemes have
no adjustable constants. Vashishta. and Singwi'
have succeeded in obtaining a dielectric function
that agrees well with the compressibility deter-
mined by their energy calculation.

Another approach was taken by Geldart and Tay-
lor, ' who used the integral equation formalism of
many-body theory to compute directly, but ap-
proximately, the proper polarization. In their
estimate of the effect of higher-order processes,
they include an adjustable parameter which is de-
termined by satisfying the compressibility sum
rule. Geldart and Taylor assert that their work
includes exchange and correlation in a self-con-
sistent manner, and state that their II(q) is quite
different from that of the Hubbar'd approximation
as may be seen in Fig. 2." Their version of the
proper polarization is given in tabular form for
various values of x,.

The only dielectric functions that. satisfy the
compressibility sum rule" are those of Hubbard9
Vashishta, and Singwi (within a few percent), and
Geldart and Taylor. The last two do not calculate
the vertex function; however, we assume that it
can be obtained from the proper polarization by
the prescription of Eq. (15). With this assumption
we can form the Vashishta and Singwi and Geldart
and Taylor versions of the effective investigation.

The vertex function of the Hubbard approximation
and those derived from the Vashishta and Singwi
and Geldart and Taylor dielectric functions for
x,=4.0 are displayed in Fig. 2. Apart from a
small deviation of the results of Vashishta and
Singwi, the three all agree at q = 0 because of the
compressibility sum rule. They are all equal to
unity at large q. The only difference among them
is their q dependence in the intermediate region.
We examine the two extremes —the Hubbard and
Geldart and Taylor results —in detail in Sec. IV.

q/kF
FIG. 2. Plot of z(k&) times the vertex function vs q

for the Hubbard (H), Vashishta 'and Singwi (VS), and
Geldart and Taylor (GT) approximations at r~= 4.0
[Eq. (15)].

III. CORE POLARIZATION. IN REAL METALS

In a real metal there are additional contributions
to the total dielectric function due to the response
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of the periodic lattice of ions. The core electrons
on each ion may polarize and the ions themselves
may move in response to a charge perturbation.
Here we consider only the former. In addition
there are band-structure effects which we attempt
to include by allowing an effective mass mB. Tak-
ing the core polarizabilityto be a constant, we view
the ionic background as a uniform, charged, and
polarizable medium in which the electrons move.
In order to generalize the effective electron-elec-
tron interaction to include the effects of core po-
larization, we must find the dielectric and vertex
functions of the combined system of the electron
gas and the polarizable background.

The importance of the dielectric medium has long
been recognized in insulators and semiconduc-
tors, ' '" where the background dielectric constant
is large. The presenceof the polarizable medium
leads one to replace e' by e'/ae in the theory of im-
purity states which results in energy levels that
depend on I/ee (Ref. 24) and an effective density
of carriers determined by r, /ee. However, this
effect has generally been ignored in metals where
the dielectric constant is much smaller, eB -1-
1,25.

We are led to reexamine the effects of core po-
larization because a treatment which considers
only the conduction electrons predicts that the
electron gas at densities corresponding to rubidium
and cesium has a negative compressibility [Eq.
(11)]. Others have considered the effects of core
polarization in metals; Hedin" cnnsidered a model
Hamiltonian and concluded that the properties of a
metal should depend on r, /ee instead of r» and
Perdew' and Wilkins" presented a supporting plaus-
ibility argument. Vosko, Perdew, and MacDon-
ald" have introduced crystalline and core elec-
tron effects into the density-functional theory of
the spin susceptibility by treating the core elec-
trons on the same footing as the conduction elec-
trons. Our treatment is an extension of Hedin's. "

The total dielectric function of the combined sys-
tem of electron gas and polarizable medium is
given by

a=+
ze'

e' 1
2~ lx) —x) I

1

l~, I

(17)

We define a length scale by the density of electrons
V/N = —, v(r, a,)' and measure lengths in units of
r,a„momenta in units of k /(r, a,), and energy in
units of E,=8 /[ me(r, a,)'] I.n terms of the di-
mensionless variables x= r/(r, a,), k=p(r, a,), and
U = E/E„ the Schr'odinger equation becomes

2
l

)

e, = Uy„(IS)
Ix;I),

We show in Appendix A that the polarization
scales as

II (q, r, .e„me) = [(m, /m)'/e, ]
X II (rem/m, q, r,*,1,m, ), (2O)

which must satisfy the modified compressibility
sum rule

where one replaces x, by x,* in the compressibility
ratio [Eq. (11)]. Identifying II/II' with the vertex
function [Eq. (15)], we see that the vertex function
scales as

which only depends on the single parameter
(mee'r, /m~e) that measures the relative strength
of the kinetic and potential-energy terms.

Since there is only one parameter in the theory,
the solution of the problem of an electron gas with
mass mB and density determined by x, immersed
in a background with dielectric constant &B is ob-
tained by a simple scaling of the known solutions
for an electron gas with mass m in a nonpolariza-
ble background but at a different density deter-
mined by

r~ ——me r8/m Ee,

e(q) = ee + &(q) II (q, r„~e,me) . (is) 2 (kr~ r~~ Fe ~ m e)A(kr ~ q~ r~~ Eeme)

Here ~B=1+4mnn, where n is the ionic polariza-
bility and n is the density of ions. H is the elec-
tronic polarizability. We assume that eB is unaf-
fected by the presence of the electron gas. The
goal is to calculate II as a function of ~B.

The Hamiltonian for an electron gas with mass
nzB immersed in a uniform background of dielectric
constant eB and perturbed by a charge ze at the
origin is

PPl 6B=z k„~+,1,m
&LB

yg&B m 6
xA k~, q, z, , 1,m

mB
(22)

With these results we are in a position to com-
pletely specify our approximation of the effective
electron-electron quasiparticle interaction in an
electron gas immersed in a polarizable medium.
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TABLE I. Ionic polar izabilities of the alkali metals.

Element 's &(10. 24 cm3)

Li
Na
K

. Rb
Cs

3.25
3.93
4.86
5.20
5.63

0.025
0.17
0.80
1.5
2.35

1.015
1.057
1.141
1.217
1,269

3.20
3.72
4.26
4.27
4.44

The semiempirical ionic polarizabilities of the
alkali metals determined by Mayer and Mayer"
are used to determine &~.. These values are in
reasonably good agreement with the results of
Pauling" and Dalgarno. " We list these polariza-
bilities together with es and x,/&~ in Table I; We
take m~= 1.

Since the small q limit of the effective interac-
tion is determined by, the compressibility

U,.(q = 0)=, [a/~, ]„*
qTF

(23)

the most important consequence of including the
effect of core polarization is to modify the com-
pressibility ratio. Roughly speaking, the com-
pressibility ratio I Eq. (11)]is given by

(24)

which is modified to become

(25)

First we note that the criterion for a positive com-
pressibility becomes x, /es & 5. 18 rather than z,
& 5. 18, and using the values of x,/e~ from Table
I, we see that rubidium and cesium are both re-
normalized into the region of positive compres-
sibility. Furthermore, the strength of effective
interaction at q= 0 depends strongly on t'~. For
example, the small q limit of U„(q) in potassium
is reduced by a factor of 3 by changing &~ from
1.0 to 1.14. This has a, dramatic effect on the
thermal resistivity which we calculate in Sec. IV.

IV. RESULTS AND CONCLUSIONS

A. Effective interaction in momentum space

We have calculated the effective interaction
U„(q) I Eqs. (5), (8), and (15)] for various metals;
typical results are displayed in Fig. 3. In Fig.
3(a) we plot U„(q) for r, = 3.93, appropriate to
sodium, and with a dielectric constant (es = i.0)
which ignores core-polarization effects. The' top
curve (G&) gives U„(q) obtained from the Geldart
and Taylor dielectric function; the middle curve
(H) shows the result of the Hubbard approximation,

and the bottom curve, (TF) represents the Thom-
as-Fermi interaction. Figure 3(b) presents the
same curves for sodium when the dielectric con-
stant of the background is included. The same in-
formation for potassium, x, =4.86, is given in
Figs. 3(c) and 3(d).

Consider first Figs. 3(a) and 3(b). All three
curves in each agree at large q, because they go
as 1/esq'. For intermediate q the Geldart and
Taylor interaction is largest and has a, definite
shoulder where the slope'is changing rapidly near
q = 2k„. The differences become more pronounced
as we approach small q. The Hubbard and Geldart
and Taylor interactions agree at q= 0- and are both
much larger than the Thomas-Fermi result: this
is because the Hubbard and Geldart and Taylor
interactions both satisfy the compressibility sum
rule, which the Thomas-Fermi result does not.
This is the major failing of the Thomas-Fermi
interaction. It is obvious from Fig. 3 that the
only difference between the Hubbard and Geldart
and Taylor interactions is their q dependence in
the region from q= 0 to 3k+. Comparing Fig. 3(a)
to 3(b) we see that the effect of including core po-
larization is to renormalize the q =0 interaction,
making it weaker [see discussion around Eq. (23)].
This is about a 10% effect in sodium.

The same general observations hold for the ef-
fective interaction in potassium, shown in Pigs.
3(c) and 3(d), but the interaction is much stronger
than in sodium and the effect of. the polarizable
background is much more dramatic.

In summary, Fig. 3 illustrates the two main
points of this paper. Eixst, the effective interac-
tion is stronger than the Thomas-Fermi interac-
tion for small q, and the discrepancy inc&eases
with increasing x,. Since Eqs. (23) show that

U„(q= 0) 1

U»(q=0) ' "~ 1 —(~,/es)/5. 18 '

we see that this effect is entirely due to the com-
pressibility sum rule. Second, we emphasize tPe
importance of &~ in the effective interaction in
potassium. This is because z/a, is a very sensi-
tive function of x, for x, near 5. 18 and the change
from y, to r,/es results in a large decrease in the
strength of the interaction.

B. Effective interaction in real space

The real-space potential is obtained by numer-
ically Fourier transforming U„(q); the results for
sodium and cesium are presented in Figs. 4(a, )
and 4(b). The curve (GT) shows the Geldart and
Taylor interaction, the curve (H) gives the results
of the Hubbard approximation, and the curve (TF)
presents the Thomas-Fermi interaction.
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FIG. 3. Plot of the effective electron-electron interaction U~(q) in sodium [(a) and (b)l and potassium I, (c) and (d)]
as a function of q/k&. The curves (GT) give the results obtained using the Geldart and Taylor dielectric function; the
curves (H) show the results of the Hubbard approximation, and the curves (TF) represent the Thomas-Fermi screened
Coulomb interaction. The dielectric constant due to core polarization is && and the e&=1.0 results are included for
comparison. The potential is given in units of a03(st/ao).

Several features of the curves in Fig. 4 deserve
discussion. For small x (r«1, which is not
shown), all the potentials go as 1/sar. This re-
sult, which arises from our model, is partially
reasonable and partially not. Since the screening
by conduction electrons is ineffective at short
distances, the 1/~ behavior is expected. Similar-
ly, the ion cores should not be effective in screen-
ing the interaction of two electrons for separations
small compared to the lattice spacing, so we do
not expect the 1/ss factor. However, our model,
which takes ~~ as independent of wave vector, does
predict this factor. What rescues us is the fact
that for small r the potential is so large (whether
it is 1/sax or 1/x) that electrons having energies

considered in this paper are classically forbidden
to be in this region. Specifically, the phase shifts
used in the transport calculations are insensitive
to the form of the potential for x less than the
classical turning point, set by condition U„(r)/s~
-1. From Fig. 4 we see that the turning point is
roughly at x=r„about a lattice spacing, so the
particle never samples the small x region and any
discrepancy in the potential for small x is irrele-
vant.

For intermediate x the Hubbard and Geldart and
Taylor interactions have much harder cores than
the Thomas-Fermi result, and since this is a
classically allowed region we expect them to be
stronger scatterers.
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The momentum and real-space versions of the
interpolation formula are compared with the Hub-
bard interaction in Fig. 5, where we see that it is
a close approximation to the more complicated
Hubbard result. This is also evident from Table
III in the next section where we exhibit the thermal
resistivity calculated using the interpolation for-
mula.

m'(u, r)'
((u(k„k„'k, +q, k, -q)) . (31)

E depends weakly on another average of the scat-
tering rate and, for the cases considered in this
paper, we find that E is approximately constant
and equal to 0.8. (The precise definitions of these
averages are given in Refs. 3 and 33.) The point
we wish to emphasize is that there is an exact
prescription for obtaining the thermal. resistivity
due to electron-electron scattering once the quasi-
particle scattering rate is known. Thus we can
test our calculations of the scattering rate against
experiment.

The scattering rate needed in Eq. (31) is the
rate for the scattering of two quasiparticles from
the states k, and k„both on the Fermi surface,
to states k, +q and k, -q, also on the Fermi sur-
face. The lowest-order golden rule or Born ap-
proximation to this rate is obtained by considering
a single scattering of the two particles via the ef-
fective interaction U„(q). The total scattering rate
can then be obtained, in principle, by summing all
repeated particle-particle scatterings; in practice
this means solving the Bethe-Salpeter equation
for electron-electron scattering in a system at
metallic density. To our knowledge this has- not
been done and obtaining such an exact solution is
far beyond the scope of this paper. The Bethe-
Salpeter equation is discussed in Appendix B,
where it is pointed out that the main difficulty with
its solution lies in the fact that the Pauli principle

D. Thermal resistivity

The Boltzmann equation of the Fermi liquid with
particle-particle scattering as the relaxation
mechanism has been solved exactly, and the trans-
port coefficients are determined by two angular
averages of the phenomenological scattering rate."
In particular, the thermal resistivity is given by

W= (3/C„V')(2n /3K' ),
where C„ is the specific heat, V~ is the Fermi
velocity, and 7', and E are related to angular
averages of the scattering rate. Specifically, the
relaxation time for a quasiparticle at the Fermi
surface is 2&,/n, where 1/r, is proportional to an
angular average of the scattering rate,

g(e)= o, +-'o;+ —,", v,

+ (10'/e) sin5, sin5, sin(5, —5,), (34)

o, (e) = (4 v/2 ge) (2l + 1) sin'5, (e) . (35)

We have assumed (and verified by direct calcula-
tion) that all phase shifts beyond 5, are negligible.

What we have demonstrated in this section is that
once we have an effective interaction that rs so
simple as to depend only on q, we can calculate an
approximation to the scattering rate by phase-
shift analysis. Given this approximate scattering
rate, the thermal resisitivity can be calculated
exactly.

It should be remembered that the scattering rate

restricts the available intermediate states to those
unoccupied by other particles.

However, when the effective interaction is so
simple as to depend only on a single momentum
transfer, the problem of the scattering of the two

fusee particles can be solved exactly by phase-shift
analysis. We approximate the actual scattering
rate by the free-partic1. e rate. In Appendix B we
argue that this is better than the Born approxima-
tion and show that the free-particle rate is self-
consistent in that it reproduces the value of the
compressibility built into the calculation via the
compressibility sum rule.

Since our effective interaction depends only on q,
the problem of the scattering of two free particles
via this interaction can be reduced to a one-body
problem in the center of mass of the particles. '
The phase shifts are obtained by numerically solv-
ing the Schrodinger equation for a single particle
in the effective potential &„(x).

Within this scheme, the total scattering rate is
related to the center-of-mass scattering cross
section by'

&u(k» k„' k, + q, k, —q) =—
~

2w (2w8') o(8)
I'&p, )2

where 8 is the center-of-mass scattering angle,
q=2~k, -k,

~

sin(-,' 8), and p is the reduced mass,
which is —,

' m in this case. To obtain the transport
coefficients we need to average over 8 and the rel-
ative energy, s= —, ~k, -k, ~'/p, , which ranges from
0 to 2&~. Using the standard phase shift expression
for c(8)" and taking the appropriate average over
8, one finds that the thermal resistivity is given
by'

gr l 6 0 8 0
2 3 s 2 i ~ Y . (g)

4nK, 2e~ [1 —(e/2e~)]'~' &

(33)
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we have been discussing is the phenomenological
rate that appears in the collision integral of the
standard Boltzmann equation, and that our use of
microscopic theory to form the scattering rate
has been based on intuition. The Boltzmann equa-
tion for the Fermi liquid is itself a phenomenologi-
cal equation, written down by Landau' for 'He and
generalized to the electron gas by Silin. " Eliash-
berg has derived the transport equation for a
Fermi liquid from microscopic theory"; however,
the equation he presents is of an unfamiliar form
and cannot be compared directly with the Boltz-
mann equation. We have shown that the standard
Boltzmann equation can be cast into the same
form as Eliashberg's result. " Equating the two,
we obtain a formula for the phenomenological
scattering rate in terms of the four-point scatter-
ing function of many-body theory.

~(p$. 'pi@2) = I I "(P&)1'(pi,p. ,pl, pl) I'. (36)

We examine the four-point scattering function in
Appendix B and show how the form of the effective
interaction may be motivated. Ne also see that
there are other contributions to the scattering rate
that are not included in our treatment of repeated
particle-particle scattering via the effective inter-
action. The most obvious is repeated particle-
hole scattering which we discuss briefly in Appen-
dix B.

E. Numerical results

In order to directly compare the Hubbard and
Geldart and Taylor interactions we have calculated
the scattering cross sections [Eq. (35)] and the
quantity Z(e) needed for the thermal resistivity
[Eq. (33)] for both these potentials. We list these
quantities for sodium in Table II.

The trends shown in Table II may be roughly
understood on the basis of the following considera-
tions. For low incident energy the scattering
samples the interaction only at large separations,
where e & &„(r) [Fig. 4(a)]. In this region the
Hubbard interaction is stronger and we see that

the Hubbard total cross section is larger. For
high incident energy, e,„=2&~, the scattering
samples the hard core of the interaction as well.
Here the Geldart and Taylor interaction is larger9
and w'e find that the Geldart and Taylor total cross
section is also larger. The thermal resistivity
is a weighted average of Z(~) [Eq. (33)] that weights
high energies most. The Hubbard Z(e) is larger
than that of Geldart and Taylor for all e, but they
are quite close at e= 2&~, so we expect the Hub-
bard resistivity to be close to the Geldart and
Taylor result, but slightly larger.

We have calculated &, the thermal resistivity
due to electron-electron scattering, for electron
densities appropriate to aluminum, copper, and
gold, as well as for the alkali metals. Although
our analysis is valid only for free-electron-like
metals such as the alkalis, we have included the
others to show the z, dependence of the theory.
In Table III we compare the Hubbard and Geldart
and Taylor predictions with each other and with
experiment. We also list the results obtained
using the Thomas-Fermi interaction and the in-
terpolation formula [Eq. (29)].

From Table III we see that all the resistivities
increase with x„and the Hubbard results are all
somewhat larger than those of Geldart and Taylor,
while both are much larger than the predictions of
the Thomas-Fermi theory. We note that the pre-
dictions of the interpolation formula [Eq. (29] are
within 15/o of the Hubbard resistivities.

We also list the same approximations for the
scattering rate 1/v' in Table IV. 7' is the lifetime
of an electron on the Fermi surface and our defini-
tion is related to that in Refs. 33 and 43 by w

= (2/w')r, . The scattering rates obtained in Ref.
43 to calculate the electrical resistivity were cal-
culated using the Thomas-Fermi interaction.

The only element for which we can directly com-
pare theory and experiment is sodium, where the
mea, sured value is W/T = 140+ 70 x 10 ' cm/W. '
Both the Hubbard and Geldart and Taylor predic-
tions fall within the experimental error, while the
Thomas-Fermi results are a factor of 7 too

TABLE II. Scattering cross sections as a function of the incident energy for electron-elec-
tron scattering in sodium, x~=3.93, &~ =1.06. The symbols used are defined in the text [Eqs.
(34) and (35)]. The total cross section including exchange is 0 =&p+30'g+02.

Incident
energy

Cross sections (in units of ap)
Hubbard Geldart and Taylor

e/2m~
0.005
0.25
0.5
1.0

Op

27.3
14.3
10.0
6.3

0'(

0
1.7
2.2
2.3

02
0
0.1
0.3
0.5

27.3
19.5
16.9
13.7

Z

27.3
23.5
22.2
19.1

Op

13.3
11.7
10.9
9.6

Og

0
0.2
0.5
1.7

0'2

0
0
0
0

13.3
12.3
12.4
14.7

Z

13.3
12.5
13.4
17.2
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TABLE III. Electron-electron scattering contribution to the thermal resistivity. We com-
pare various theoretical calculations with the experimental results of Cook and Laubitz et al.
(Befs. 1, 2, and 40). The Thomas-Fermi results are obtained from the interpolation formula
given in Bef. 3. The theoretical predictions for Al, Cu, and Au are free-electron results at
the appropriate electron densities with &~ =1. They are included simply to show the r~ de-
pendence of the theories.

Al Cu
W/T (10 6 cm/W)

Au Li Na K Rb

&s

Ep

Exper iment
Geldart and Taylor
Hubbard
Interpolation
formula [Eq. (29)]

Thomas- Fermi

2.07 2.67 3.01
1 1 1

0 4.4 7.3
19 83 17
19 90 20
17 87 20

0.80 2.9

3.25
1.01

28
33
33

7.8

3.93
1.06

140 +70
95

130
130

20

4.86
1.14

190
460 .

650
740

5.20
1.22

350
660
930

1100

5.63
1.27

870
1300
1800
2100

130

These results became available after this paper was completed. %'e include them in this
table, but they are not discussed in the text. The values for K and Cs are reported as pre-
liminary. See Bef. 41.

small. " The Hubbard and Geldart and Taylor
resistivities are close to each other for small x„
but differ substantially for cesium, and it may be
possible to differentiate them through experiment.

We point out that for a detailed compa, rison with
experiment one would have to take into account
deviations from Matthiessen's rule due to inter-
ference effects among the several scattering mech-
anisms. The dominance of phonon scattering at
the high temperatures at which the experiments
were done would cause deviations from additivity
which are about 25% of the calculated resistivity
and have the same temperature dependence as

Thus one should increase the theoretical.
values by about 25% to compare with experiment.

In Appendix B we argue that the use of the pha, se-
shift analysis overestimates the calculated thermal
resistivity by 5%—10/0 in Al and by 20%-35% in
Cs. Therefore it is likely that our results for 8'

and 1/7' are somewhat too large.
To see the effects of the polarizable background

we have calculated ~' for sodium and potassium
with &~= 1.0, and compare them in Table V with
the results obtained using realistic values of e~.

From Table V and Figs. 3 and 4, we see that
the effect of the polarizable background is to de-
crease the strength of the intera, ction between the
quasiparticles and thus decrease W. Although the
effect is relatively small in sodium, it is much
larger in potassium, and experiments on potas-
sium might be able to detect if our way of treating
the polarizable background is adequate.

F. Concluding remarks

We wish to emphasize that the effective interac-
tion between two electron quasiparticles depends
strongly on the vertex function, which in turn must

TABLE IV. Electron-electron scattering rate 1/T. T is the lifetime of an electron on the
Fermi surface. Our definition is related to that of Bef. 33 and 43 by &=(2/7t ) 70. The approx-
imate Thomas-Fermi results were obtained by interpolation.

1/7-T2 (]06 se& 1K 2)

Cu Au Li Na K Rb Cs

Vs

Geldart and
Taylor

Hubbard
Interpolation
formula

Thomas-Fermi

2.07
1

1.5
1.4

~0 5

2.67
1

2.9

3.3
3.2

3.01
1

4.2

5.0
5.1

3.25
1.01

5.3

6.6
6.8

-1 5

3.93
1.06

10.3

14.5
15.4

2.4

4.86
1.14

26.0

41.1
45.7

5.20
1.22

30.4

47.8
53.3

0

5.63
1.27

45.6

72 3
82.1

4.9



ELECTRON-ELECTRON SCATTERING IN SIMPLE METALS 6087

f$

(W/T) (10 cm/W)
Geldart and

Taylor Hubbard

3.93

4.86

1.00
1.06
1.00
1.14

110
95

2000
460

150
130

2100
650

satisfy the compressibility sum rule, so that this
sum rule is of paramount importance in the effec-
tive interaction. Both the Hubbard and Geldart
and Taylor theories have an adjustable parameter
which is chosen to satisfy the sum rule, and they
predict resistivities that are similar. The only
other dielectric function that satisfies the sum
rule is that of Vashishta and Singwi. ' The vertex
function derived from their dielectric function lies
between those of Hubbard and Geldart and Taylor
(Fig. 2) and we expect the resistivity also to lie
between those two. Other dielectric functions,
such as those of Sjngwi et a/. ,

"Toigo and Wood-
ruff, ' and Kleinman, "deviate significantly from
the sum rule at metallic densities and are inade-
quate to calculate the effective electron-electron
interaction.

In summary, we have used two existing cal-
culations of the dielectric function of the electron
gas in order to calculate the effective electron-
electron intera, ction. We have taken into account
the effect of the polarizable background of ions in
a real metal in an approximate but reasonable way
which produces significant changes in the effective.
interaction. We have shown that the vertex func-
tion and the effects of the polarizable background
are important at metallic densities and cannot be
ignored. We use the effective interaction to cal-
culate an approximate scattering rate. Given this
scattering rate we calculate exactly the electron-
electron scattering contribution to the thermal
resistivity, a quantity that can be measured and
that can thus provide a check of our results. Our
calculations agree with the single experimental
point now available, and we make predictions for
all the alkali metals.

In closing we remark that although we have
treated the compressibility and the background
dielectric constant as well-known quantities, they
are, after all, calculated (or deduced) values that
are simply the best available at the present time,
and as we have seen, the results become increas-
ingly sensitive to their precise value as x, in-
creases.

TABLE V. Comparison of electron-electron scattering
contribution to the thermal resistivity with and without
a polarizable background.
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APPENDIX A: SCALING OF THE DIELECTRIC FUNCTION

The dimensionless Schrodinger equation for an
electron gas immersed in a polari;zable background
is given by Eq. (18). The dimensionless wave
function 4& depends on the eoup1. ing parameter
xf = (mes, /mac) and the dimensionless variables
{x,j. The dimensionless energy U depends only on
'y-

The electron gas problem defined by [Eq. (18)]
with m~ = m and e~ = 1 has been solved in various
approximations for many different values of x„
the linear measure of the electron density. This
means effectively that Eq. (18) has also been
solved for different values of the coupling parame-
ter x,*. Since 4~ depends only on this parameter,
we see that the dimensionless wave function for
the system at density x, with mass m~ immersed
in a dielectric medium, e' —e /~e, is identical to
the dimensionless wave function for a system with
mass m in vacuum, but a,t a new density, x,

The actual real-space wave function 4 depends
on dimensioned va, riables and will be different for
these two cases. The connection between 4 and 4&
for a, system at density ~„with mass m~ and the
dielectric constant &» is given by

+(x„&»me~{re))=@a(&~ 1 m~{rq/w, ao]) (37)

The wave function for the system at density H,
with mass m and &~=1, is

+(r,*,1,m, {r, ))='+~ (x,*,1,m, {r, /x,*aj) . (38)

Therefore the scaling of the wave functions is
given by

@(~„~e,me, {r,))

»„&, 4(x,*,1,m, {(me/mac) r,)), (39)
[m&~/'m~] " '

where the prefaetor is a normalization constant.
The dimensionless energies of the two systems
are equal but in dimensioned units,

(40)
V

Now that we have deduced the scaling of the
wave functions we can calculate the sealing of the
dielectric function by the standard derivation.
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The change in the density induced by the static
test charge density, p,„,(r) =zen„, (r), is given
by' '

6(n(r)) -=(n(r))„-(n(r))„, (41)

where ( )„denotes the expectation value calculated
in the ground state of the full Hamiltonian, and H,
signifies the Hamiltonian of the electron gas in the
absence of the test charge. Since the wave func-
tions of H and Hp scale in the same way we need
only consider one of them. We wish to express
the induced density 5(n(r, r„es, me)) of a system
at density ~, with mass m~ and with a dielectric
background e~ in terms of the induced density
5((n(r, r,*,1,m)) of a system with density r,* with

mass m and without a dielectric background. The
expectation value of the density is given by

(n(r, r„ea, ms))

d 1) 4 'v 6g~mp~ r ~ 'pl r r (42)

where

n(r ( ()= Q ll(r-r )=( )n(
*

I 'I)
Using the simple scaling of the density operator
and the scaling of the wave function, it is found
that

(43)

Fourier transforming, we have

(n(q, r„&s,me)) = (n[(mes/ms)q, rf, 1,m]) . (44)

Equivalently, we may use the definition of the
dielectric function which yields the net electro-
static potential due to a perturbation by n, „,(q),

6(n(q)) = (-Vll/c)n„, (q ) . (46)

For our own case n,„,(q) = 1 and using Eq. (16) we
obtain the scaling of the polarization given in Eq.
(20).
I

The induced density scales in exactly the same
wa.y. Note tha, t this is an exact scaling result
and does not depend on a linear approximation,
thus it must be preserved in all orders of pertur-
bation theory.

In linear response theory the induced density is
related to the polarization by

1/a=1+ 5n, o„,/n, x„ (46)

5n „„=(1/ee —1)(n,„,+ 5(n(q)) ) . (47)

The scaling argument shows that 5(n(q)) is ob-
tained by scaling the response of a, system with

6g —1 and tBI3= Sl~

For our two component system 5n„„,= 5(n(q))
+ 5n„„„,where 6n„„„is the charge induced in the
background of ions. The background responds to
both n, „, and 6(n( q}),

( ( ))
&[(m(.-, /m ~)q]II [(mE~/m~)q, r,*,1,m]n, „,[(mes/m~)q]

1+ &[( e m/me)qe]ll[( e,m/ m)q, r,*,1,m] (46)

Using Eqs. (46) and (47) and n, (q) ,„1, w=e obtain
the final result

e(q)=re+ li s q, r~, l, m ~.
V(q) me

mg ]
(49)

APPENDIX B: THE FOUR-POINT SCATTERING FUNCTION

ANO THE EFFECTIVE INTERACTION

In this Appendix we show that our use of the ef-
fective electron-electron interaction [Eq. (5)] to

calculate the quasipartiele scattering rate [Eq.
(31}]may be motivated by considering the exact
expression for the scattering rate in terms of the
four -point scattering function.

The four-point scattering or vertex function,
I'(1, 2, 1', 2'), is the transition amplitude for the
process (1,2)- (1', 2'), where 1 stands for p, v„
I' is the sum of all diagrams that can be connected
to two incoming and two outgoing particle lines.
It is convenient to separate I into an irreducible
part and then consider repeated scatterings via
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the irreducible interaction. " This procedure
leads to the Bethe-Salpeter integral equation for
r.

There are three ways to separate I" into an ir-
reducible part and repeated scatterings and thus
there are three Bethe-Salpeter equations which
are graphically represented in Fig. 6. The equa-
tion for repeated particle-particle scattering is
given in Fig. 6(a}; Fig. 6(b} shows the Bethe-
Salpeter equation in one particle-hole channel;
and Fig. 6(c) shows the other particle-hole chan-
nel.

Since we are interested in transport properties
which depend on electron-electron scattering, the
appropriate channel to work in is the particle-
particle channel, so we need the irreducible in-
teraction J. In order to form an approximation
to Jwe note four points. First, the exact expres-
sion for Jwill be the sum of three classes of dia-
grams- —those that are irreducible in all channels
plus those that are reducible in one particle-hole
channel plus those reducible in the other particle-
hole channel. Second, if one chooses the irreduci-
ble interactions I and E of the particle-hole chan-
nels to be totally irreducible, then the approxima-
tions to I' (designated by I'z and 1"z) obtained by
solving the Bethe-Salpeter equations in the par-
ticle-hole channels will be irreducible in the par-
ticle-particle channel. Third, since the two par-
ticle-hole channels map into each other upon inter-
change of the incoming or outgoing particles we
need only consider one of them. Fourth, I' is a

scattering amplitude and must be antisymmetric
under interchange of the incoming or outgoing par-
ticles. This means that J must also be antisym-
metric.

Therefore, by choosing the irreducible particle-
hole interaction to be totally irreducible (desig-
nated by 6}and by choosing K=I and solving the
resulting Bethe-Salpeter equations, we obtain an
approximation for J„, the irreducible interaction
between electrons with parallel spins:

Z„= ~+(l; —~) —(r, - S), (5o)

which is both irreducible and antisymmetric when
4 is antisymmetric. We consider scattering from
states p„a, and p„o, to P, +q, 0, and P, —q, O„as in

Fig. 6(b), and we choose the totally irreducible
interaction to be

L= V(q)6o, c,, 6o,c„—V(p, -p, q)6o-, c, 5c,o,,.
(5l)

We iterate the Bethe-Salpeter equation and graph-
ically represent the terms through third order in
Fig. 7. Certain of these diagrams may be summed
to infinite order and the resulting approximation
I', is shown in Fig. 8(a). The effective interaction
between electrons with opposite spins is given by
the first diagram in the expansion of I', shown in
Fig. 8(a). This has precisely the form of Eq. (5).
We obtain 1"~ from I'I by interchanging 1' and 2'.
We may now form J„, our approximation to the
irreducible particle-particle interaction, which
is shown in Fig. 8(a).

Our effective interaction approximation for J„

P1+q P2-q

(a) I' + ki imp +p —k
1 2

P1 P2 1 2'

p+q p

(b) I' I + I
k+q

P2 q

p+q
1y

(c) r
P2

+ kii ~k+ p —p —q2

P( p2- q

FIG. 6. Graphical representation of the Bethe-Sql-
peter equations for the four-point scattering function I'.
The particle-particle channel is shown in (a), and the
two particle-hole channels are presented in (b) and (c).

FIG. 7. Graphical representation of the iterative solu-
tion of the Bethe-Salpeter equation in the particle-hole
channel of Fig. 6(b). The two first-order terms are the
approximation to the irreducible interaction l [Eq. (51)],
and- the second- and third-order terms arise from re-
peated scatterings via the irreducible interaction.
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able approximation in simple metals.
Now that we have the irreducible particle-parti-

cle interaction we must solve the Bethe -Salpeter
equation [Fig. 6(a)] for the four-point scattering
function I". Unfortunately, the Bethe-Salpeter
equation for electron-electron scattering in the
presence of the Fermi sea cannot be solved analy-
tically for any realistic irreducible interaction and
we know of no numerical solutions of the electron-
electron problem (at metallic densities).

What is typically done when considering trans-
port in metals is to use the Born approximation,

2'

FIG. 8. Approximation of J, the irreducible interac-
tion in the particle-particle channel of Fig. 6(a). The
approximation is J t f = 4+ ( 1"I—4) —( ~g —&) IEq. (5o)]
where 4 is the totally irreducible interaction of Eq. (5&)
and I"I and I'& are solutions of the Bethe-Salpeter. equa-
tion in the two particle-hole channels for the particular
choice of irreducible interactions I=K=4. We show in
Fig. 8(a) the Fi obtained by summing certain of the dia-
grams of Fig. 7 to infinite order. The solution 1E in
the other particle-hole channel is obtained from I'& by
interchanging the outgoing particles. The resulting
approximation for J~ ~ is given in (c). The irreducible
interaction between electrons of antiparallel spins is
given by the first diagram for I'I in (a).

includes the first two terms shown in Fig. 8(b)
and ignores all other contributions. Stopping here
at least results in a screened interaction which is
consistent with our preconceptions. To get these
first two terms we have summed up an infinite
subset of all possible diagrams of J, but as is
typical in diagram calculations an infinite number
of diagrams are also omitted. One class of dia-
grams that are obviously neglected are those
shown in Fig. 8(c). These diagrams represent
repeated particle-hole scatterings and are impor-
tant in calculations of the paramagnetic suscepti-
bility in metals such as palladium that have a
large susceptibility enhancement. However, it is
believed that paramagnons —repeated particle-
hole scatterings —are not important in the simple
metals where the susceptibility enhancement is
small. Our approximation of J already includes
the first-order term and we neglect only the re-
peated scatterings. We expect this to be a reason-

l'= 4' +4mfG OI'. (64)

Galitskii solved this equation approximately by
iteration for a low density Fermion gas, but no
results are available at metallic densities where
the iterative method fails. Even if this equation
were solved exactly it would yield only an approxi-
mate I' calculated with free-particle propagators
Go.

Since an attempt to numerically solve the Bethe-
Salpeter equation is beyond the scope of this paper,
we are forced to use either the Born approximation
or the free-particle phase-shift approximation of

It is difficult to determine the validity of any
approximation unless one knows the exact answer

and ignore all repeated scatterings. ' ' '
Another approximation becomes possible when

the irreducible interaction is so simple as to de-
pend only on a single momentum transfer. The
direct term of our approximation, J= U„(q), is a
single screened interaction which satisfies the
above condition. This simplification results in
the ladder approximation to the Bethe-Salpeter
equation" which can be solved exactly for free-
particle scattering in the absence of the Fermi
sea by a phase-shift analysis. The resulting free-
particle scattering amplitude is denoted by f and
the approximation for the four-point function is

1'„„=4'.
In the presence of the filled Fermi sea, the ac-

tual scattering amplitude differs from f because
the Pauli principle restricts the number of inter-
mediate states to those unoccupied by other parti-
cles. Furthermore, a calculation of the actual
scattering amplitude involves the full propagator
of the interacting system, not simply the free-
particle prop@gator. If one continues to use free-
particle propagators, but wants to include the ef-
fect that the Fermi sea has in restricting the in-
termediate states, one obtains Galitskii's integral
equation for I', ' ' which is symbolically repre-
sented as
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to enable comparisons. However, we have certain
prejudices for a repulsive interaction. It is well
known that the Born approximation overestimates
the scattering amplitude for free particles'" be-
cause it does not take into account the fact that
the scattering potential alters the particle's wave
function. The same effect occurs in the presence
of the Fermi sea, so we feel that the phase-shift
amplitude is a better approximation to I" than the
Born approximation.

The forward scattering limit of the exact I' de-
termines the Fermi-liquid parameters because it
is related to the Landau scattering function A(p„
P.) by"

z'(y| )I'(p,v„p,v, ;p, v,', p, v,.)= A(p„p, ), (55)

where the proper four-point function I is given by

I' = I' —A'(k~, q) V(q)/e( q) . (55)

The Fermi-liquid parameters may be obtained
by the relations' '"

A. ,8'(0 )r +r")=
(0) I+A/2l+I p {cosg)

)=0

(5'I)

Fermi-liquid parameters and compare our predic-
tions with the results of others.

The two approximations we want to test are the
Born approximation and the modified phase-shift
result 1"=4' T. he Born approximation is entirely
real so that the calculation of Landau parameters
via the identification of Eq. (55) is straightfor-
ward. On the other hand, the phase-shift approxi-
mation for 1' is complex because f satisfies the
optical theorem, and the identification of Eq. (55)
is ambiguous. Nozieres" points out that the im-
aginary part of the exact I' is proportional to the
imaginary part of the self-energy which goes to
zero for particles on the Fermi surface. At first
sight the phase-shift approximation seems unsat-
isfactory because it has an imaginary part. How-
ever, if one examines Galitskii's solution of the
integral equation [Eq. (54)] in the low density
limit, "one sees that one effect of the first iteration
is to exactly cancel the imaginary part of f so that
to leading order in the low density limit, I' =Re4mf
We suspect that a similar cancellation also occurs at
metallic densities. If I' must be real, the ap-
proximation 1'= 4' is ruled out, but the approxi-
mation

1 =Re4mf (59)

(0) '~ I+a/21+1
&=o

(58)

where I'„=I'(p, v, p, v:p,v, p,v) and I'„=I'(pv, p,
o-, p,v, p, --v) depend on the angle 8 between p,

and p„v(0)= ma p~/n'h'.
The Fermi-liquid parameter A, determines the

compressibility" (v, /tc = 1+A, for m" /m = 1) so
we can test the self -consistency of our approxima-
tions for I'by using I' to calculate A., and compar-
ing it with the value of ~, we have built into the
dielectric and vertex functions through the com-
pressibility sum rule. We can also calculate other

is a,cceptable and would seem reasonable if the
primary effect of solving the integral equation was
simply to cancel the imaginary part of f.

The Fermi-liquid parameters &p and Bo which
determine the compressibility and, susceptibility, "
respectively, have been calculated using both the
Born approximation and the modified phase-shift
approximation of Eq. (59), and the results are
displayed in Table VI, where they are compared
with the values of A, we have built into the calcu-
lation via the compressibility sum rule and with
Hedin's" calculated values of &,. The interpola-
tion formula (which is a good approximation to the
Hubbard interaction) predicts values of A, which

TABLE VI. Test of the self-consistency of the approximations of the four-point scattering
function I". The Fermi-liquid parameters Ap and Bp which determine the compressibility and
the susceptibility are calculated from the approximations of I' and the results are compared
with the value of Ao built into the calculation via the compressibility sum rule and with
Hedin's calculations of Bo.

Input

Ap = Kp/K —1

Interpolation
formula

Geldart
and

Taylor

Ao=Bo

Born Hedin

&p = Xo/X —1

Interpolation
formula

Geldart
and

Taylor

Al

Cs

ys = 2.07
&g =1.0
y = 5.63
Eg = 1.27

-0.37

-0.84

-0.39

-0.83

-0.44

-0.86

-0.23 -0.25

-0.51 -0.32

-0.18

-0.26

-0.19

-0.15
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r I'= (Re 4&f)'+ (Im «f)' (80)

would overestimate these quantities by roughly the
ratio

(81)

Direct calculations using I'= Re 4' show that the
new values of the electron-electron scattering-
contribution to the thermal resistivity compared

are in excellent agreement with the input values.
The Geldag and Taylor results also show good
agreement. Even though we have ignored the con-
tribution of repeated particle-hole scatterings to
the susceptibility, both the interpolation formula
and the Geldart and Taylor interaction predict
values of Bp that are in fair agreement with the
results of Hedin's calculations. On the other
hand 9 the Born approxi mation predicts that Ap —Bp
and the numerical values are not in good agreement
with either the input A.p or Hedin's +p.

We feel that these results indicate that the ap-
proximation I"= Re 4' is better than the Born ap-
proximation and the degree of self-consistency
suggests that it is close to the true l". In this
paper, however, we have used 1'= 4', which is a,

more systematic approximation. If in fact a more
correct identification is 1'=Re4mf, then the physi-
cal quantities we have calculated which depend on
various averages of

to those in Table III would range from 5/o smaller
in Al using the interpolation formula and 12% in
Al using the Geldart and Taylor interaction to 20%
smaller in Cs using the interpolation formula and
35% in Cs using the Geldart and Taylor result.

In summary, we believe that we have included
most of the essential physics in our choice of the
irreducible particle-particle interaction J. Given

J, we have made an approximation for I' that ap-
pears to be reasonably self-consistent, but we
have not solved the Bethe-Salpeter equation and a
strict criterion for the validity of our approxima-
tion is not known.

(Note added: The terms of Fig. 8(c) beyond the
first two, were neglected in forming the effective
interaction between electrons with parallel spins.
However, these terms may also be summed to in-
finite order in the spirit of the Hubbard approxi-
mation which assumes that each interaction line
depends only on the momentum transferred be-
tween the external electrons. This yields a cor-
rection to J„and to U„„[Eq. (6)]:

5V.„,= 5Z„= [A(1 A -1)'/ll'],

+[A(.I-A-I)'/ll'], „,.
This correction term was first obtained by another
method by Kukkonen and Overhauser (to be pub-
lished). The effect of this term has not been in-
vestigated. ]
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