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Magnetic subband structure of electrons in hexagonal lattices
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I

The energy spectrum of an electron in the presence of a uniform magnetic field and a potential of
hexagonal symmetry is analyzed. Two alternative approaches are used, one that takes as a basis set free-
electron Landau functions, and a second one that treats an effective single-band Hamiltonian with the Peierls
substitution. Both methods lead to consistent results. The energy spectrum is found to have recursive
properties similar to those discussed by Hofstadter for the case of a square lattice. The density of states over
each subband .of the spectrum has the same structure as that for the original field-free band. The plot of
integrated density of states versus field is also discussed,

I. INTRODUCTION

Qver the past two decades the magnetic field
has been used extensively as a probe for the elec-
tronic properties of solids. The understanding of
the ensuing effects has been based on the picture
that for sufficiently high fields the conduction elec-
trons are clustered in Landau states. The lattice
potential broadens the levels and changes the
effective mass thus making the cyclotron frequency
a function of energy. In the language of the semi-
classical treatment broadening allows switching
between electron orbits and is therefore essential
to the understanding of the transport properties
in the presence of the field. '

Several authors have discussed broadening. ' '
Chambers suggested that a fine structure could
be found within the broadened levels. ' Langbein
showed that the matrix elements between nearly-
free-electron states within a level and tight-bind-
ing states within a band are given by expressions
of the same form if the field parameter is replaced
by its inverse in going from one representation to
the other. ' This finding suggests that in a plot of
allowed energies versus field the fine structure.
within an identifiable Landau state and the ent;re
spectrum are closely related to each other. In
fact, a detailed numerical study of the spectrum
for a simple square-lattice model carried out by
Hofstadter showed the spectrum to have reeursive
properties. ' In his spectrum the Landau levels
near the bottom of the band broaden as the field is
increased and exhibit a fine structure which is
(nearly) homeomorphic to the entire spectrum.
Hofstadter found this homeomorphism to be in-
grained in the whole spectrum which led him to
postulate a nesting property. This property has
not been rigorously proved since the model yields
a difference equation for the eigenvalues and our
present knowledge of how to handle this kind of
equation is limited. It is possible however, that

nesting is a property that goes beyond the square-
lattice model, as is suggested by the similarity
of matrix elements for the internal structure of
Landau leve» and that of the spectrum as a whole.
As we shall show below, nesting is indeed also
present if the crystalline potential has hexagonal
symmetry. In Sec. II we derive the eigenvalue
equation from a basis of Landau functions and dis-
cuss broadening and the fine structure of a single
I.andau level. As pointed out by Qbermeir and
Wannier' this is a convenient approach that uses
a set of functions of well-known properties oper-
ating in a well-defined Hilbert space. In Sec. III
we use the Peierls substitution" to obtain for a
single-band Hamiltonian the spectrum in the pres-
ence of the magnetic field, and discuss nesting.
Section IV treats the two-dimensional density of
states and Wannier's construction for the inte-
grated density of states as a function of the field. "

II. LANDAU-LEVEL FINE STRUCTURE

A straightforward procedure to treat the problem
of a charged particle which is acted upon simul-
taneously by a periodic potential and a magnetic
field is to use as a basis set free-electron Landau
functions. The crystalline translation group is a
subgroup of the magnetic group and the function
space in which the basis operates is of well-known
properties. Provided that the potential is suffi-
ciently weak the Landau states are still recogniz-
able and the periodic potential just lifts part of
their degeneracy. We shall use this procedure in
this section.

Let the magnetic field H point in the z direction,
and let us assume also this direction to be per-
pendicular to a lattice x-y plane. We choose the
Landau gauge A=H(0, x, 0) for convenience. In
this gauge the Landau functions contain as factors
a plane wave of wave vector k=(0, k„k,) in the
y-z plane and a harmonic-oscillator function in
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This is an adaptation of Eq. (2) of Ref. 9; the
value of the matrix element is shown explicitly
and the sum over different Landau levels has
been suppressed. V~ is the strength of the Four-
ier component of reciprocal-lattice vector G

=(G„,G„O) of the lattice potential, e„=(heH/»&c)
(n+-,') is the energy of the free-electron Landau
orbit, L„ is a Laguerre polynomial of order n and
a =eH/Sc. We observe that the index k, in Eq.
(1) appears explicitly only in an imaginary expo-
nent; its useful range is therefore limited to a
length proportional to the field in reciprocal
space. To be specific let the basis vectors on the
x-y plane be a and b and define the dimensionless
field parameter

y=(ea/kc) ~axb~ (2)

which measures the number of magnetic-flux
quanta traversing a unit cell. One can readily
verify then that the imaginary exponent in (1)
changes by an integral multiple of 2m if k, is in-
cremented by PG,' for a rectangular lattice or by

2$G,' if the lattice is hexagonal, all G,'. These
increments therefore define the, physical range of

The translational symmetry just described
can be taken advantage of in practical calculations
if the field parameter is a rational number, say,
&P =q/P with q and P integers prime to each other.
There is then a particular G,'= Q, for which the
range of k, is itself the y component of a recipro-
cal-lattice vector, and it is just P times the smal-
lest G,'. The infinite set of equations that result
from (1) upon displacement of k, by all possible
G,' becomes then cyclic and is therefore closed.
This property is the basis of recent numerical
treatments of the square-lattice case ' and is
also used in our treatment of the hexagonal lattice
that follows.

the x coordinate, "of index n. In the presence of
a lattice potential the motion along the z axis may
be separated out in simple cases and for more
general potentials a separation scheme such as
that proposed by Langbein' may be adopted. We
shall ignore this feature here and work in two
dimensions. The lattice potential then couples
degenerate Landau states of different k, as well
as states of different index n. For weak potentials
we ignore the latter and obtain for the amplitudes
C of degenerate states within the level n, that con-
tribute to an eigenstate of energy E, the matrix
equation

In setting up the model, we note that the Gaus-
sian factors in (1) enhance the contribution of the
reciprocal-lattice vectors closest to the origin.
If we keep only terms nearest to the origin and
assume isotropy in the coupling the two-dimen-
sional hexagonal potential has the form

27 x 4g xV=V, +2V, cos — —y +cos-
a a 3

+ cos— +y (3)

r&E 9v3 V, e '/~~ 2v

If(o, m f/ Q "vSQ

where U is the width of the field-free energy band.
For /=0. 1this ratio is of the order of 10 ' and
becomes smaller for smaller fields.

A close inspection of (4) shows that the spec-
trum is unchanged under reflection about integer
values of 1/Q and changes sign under translation
by one unit in the same quantity. The spectrum
is therefore invariant under translation by two
units. In the variable ~ the equation is invariant
under translation with period 2@ as anticipated in
our analysis of Eq. (1). For rational Q =q/p the
system becomes closed after translation by p
periods thus leaving just 2q separate equations.
Not all these equations are independent, however,
as can be seen by making in (4) the substitution

C(u) =e' "~ "&"'" '&f(u).

where the y-axis has been chosen in the direction
of the basis vector b. With this potential the set
of equations that (1) generates for fixed k, be-
comes, after some rearrangement and the use
of (2),

ZC(K+ m) = cos[&/(~+ m --,')/P]C(&+ m —1)

+ cos[2v(~+ m)/$]C(~+»&) (4)

+ cos[&r(a+m+ —,')/p]C(g+»&+ 1).
Here m may take all integer values, z = ak, /2»,
and X is related to the energy through

E =a„—V +2XV e ' ~+I„(2m/~3 /).
Equation (4) is a second-order difference equation
whose bounded solutions determine the broadening
and fine structure of the Landau level for a given
value of the magnetic field. The spectrum is con-
fined to values of X between -3 and +3. The proof
is similar to that given by Rauh for the square
lattice. ' Using these bounds we can estimate the
ratio of broadening to the separation between
neighboring Landau levels for low n. The result
ls
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Indeed, one can then easily verify that f(u) and

f(u+q) obey the same equation. If we use Flo-
quet's theorem to connect these two functions
through the relation

f(u+ q) = exp(2mi p, )f(u)

a Hermitian system of q equations for q unknowns
results. The secular equation gives then q real
solutions for the eigenvalue X, for each value of
the Floquet index p, and of K. As these indices
cover their range, the q roots spread into bands
that through (5) give the spectrum for the mag-
netic field under consideration. As shown in the
Appendix the bands thus generated do not overlap
and only touching of neighboring bands at their
near edges is possible.

Langbein has previously discussed the proper-
ties of the secular determinant that results from
this treatment. ' In our notation it has period 2/q
in x and the indices p. and z appear in the constant
term only. The equation for X that results has
the form

P(A) = (-)~"[cos2vPz + 2 cosmP(~+ —,'q)

& cos2'v p, j i

where P(X) is a polynomial of degree q in X not
containing p and z. Inspection of the right-hand
side shows that as these indices cover their range
it varies between the values -3 and 1.5. Inter-
cepts of the polynomial between these two values
define therefore the subbands for the rational
field chosen. Figure 1 shows the spectrum ob-
tained in this manner with values of q up to 41.

We stopped at this value of q because the sym-
metries in the spectrum are already visible and
bandwidths became as narrow at 10 ' in the ener-
gy scale of the graph and very time consuming
to search for in the computer. The number of
subbands equals the denominator of the rational
field variable r= I/P as expected. Touching of
neighboring subbands occurs between the second
and third subbands counting from above for the
fractional part of x'= -', and its symmetrically
equivalent points, and nowhere else in the spec-
trum. We defer a more detailed study of Fig. 1 until
Sec. III. A portion of the energy spectrum as
given by (5) is shown in Fig, 2 for V, = -U. The
empty lattice Landau levels are included as
straight lines. Broadening increases with the
field and a fine structure is present between any
two integer values of I/P.

III. PEIERLS SUBSTITUTION METHOD: NESTING .

e(V/i —eA/Kc)g= Etj. (8)

As a model for the hexagonal lattice we consider
an s tight-binding band with nearest-neighbor

A well-known alternate approach to treating the
problem in a Landau basis assumes that the ener-
gy function e(k) for the lattice with no magnetic
field is known. The so called Peierls substitu-
tion" k- -iV —eA/hc makes the energy function
an operator and the eigenvalue equation to be
solved is" "
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PEG. 1. Spectrum of Eq. (1) for rational values of the variable 1/p=r. M is an arbitrary integer. The spectrum
has period 2 in the variable r.
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FIG. 2. Energy spectrum for broadened Landau levels
with no interlevel mixing. Only low-index levels are
shown and the fine structure corresponds to just a few
rational values of the field variable fI5. The empty-
lattice Landau levels are represented by slanted straight
lines.

overlap only. Using the same orientation of the
axes as in Sec. II the energy function that results
is

&(k) = c —2& (costa(v 3k„—k„)/2]+ cosa&,

+ costa(Wk„+ k, )/2]] .

ture is common to the square lattice" and was
predicted for more general two-dimensional po-
tentials by Langbein. ' Figure 1 therefore also
represents the spectrum of (10}if we interpret
the variable r as the field P. A portion of the
band-energy spectrum as given by (ll} is shown
in Fig. 3. Landau levels near the bottom of the
field-free band are clearly recognizable, their
field dependence in the limit of low field matching
exactly the empty-lattice energy levels indicated
by straight lines in Fig. 2. Large gaps separate
the low-index Landau levels. As the field in-
creases the broadening and structure also matches
that in Fig. 2, only the levels bend toward lower
energies in Fig. 3. We note that coupling be-
tween levels was neglected in Sec. II so that some
distortion as the field is increased and the ratio
of level to gap width becomes larger, was to be
expected. Gaps open up near the top of the band
as well thus giving the Landau levels for hole
states.

In his detailed numerical study of the square
lattice Hofstadter discovered a recursive property
which he generalized to all rational values of the
field as a nesting hypothesis. ' We find the spec-
trum for the hexagonal lattice to have recursive
properties as well. A detailed description of
nesting may be found in Hofstadter's work and we
shall only reformulate it briefly for our case.
There are different ways to subdivide the spec-

5.0—

In the gauge A=H(0, x, 0} the variable y is cyclic
and can be separated away from Eq. (8) by the
ansatz

g(x, y) ~xp(i2m vy/a) b(x)

Xb(o}= coswP(a ——,')b(a —1)+ cos2mgcrb(a)

+ cosa&(a+-,')b(a+ 1), (10)

where a = 2x/W3 a —v/P and 7 is related to the
energy through

E =Qo 2XQ) ~

whereupon we obtain using (2), after some algebra,
the equation

O
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The eigenvalues of (10) then determine the energy
spectrum for a given value of the field. Compar-
ing (4) and (10) we see that the present method
yields an equation identical in structure to the
equation for a single Landau level with the field
parameter P replaced by its inverse. This fea-

'-5.0—
I

0.0
I

0.5 I.O

FIG. 3. Energy spectrum for an effective single-band
Hamiltonian in the range 0 & p &1.
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trum to bring about the nesting property. Hof-
stadter chose as the basic unit the cell 0 «P & 1

that covers in his case the fundamental period of
the spectrum. We prefer an alternative to Hof-
stadter's choice and take the entire spectrum as
the basic unit with all nested images being repli-
cas of the whole spectrum. as well. The advan-
tage is that the fine structure of a single Landau
level is then the image of the whole spectrum at
the first level of nesting and sub-Landau levels
are the image of Landau levels at the next level
of nesting, and so on. This subdivision therefore
stresses the similarity of Eqs. (4}and (10) as
given by the Landau state and band approaches,
whichappears tobe an expression of the nesting
property.

In order to formulate the nesting hypothesis we
first imagine that a diagonal line has been drawn
through the main gap between any two integer
values of Q. Referring to Fig. 1 this diagonal
would rise, for example, from the bottom of the
field-free band at x=2M + 1 to the top of the band
at x = 2M + 2. We next note that these lines sepa-
rate two basic patterns, one inverted with respect
to the other. We proceed to formulate nesting in
terms of these patterns in the following way. Call
the band at P =0 the base line for the whole spec-
trum that extends from -~ to ~. Then, any sub-
band of the spectrum is a base line for a (distor-
ted) direct or inverted copy of the entire spectrum.
In going fromm one level of nesting, say /, to the
next level, 3+1, the local field variables are re-
lated through

(12)

where sgn ]u} is plus or minus 1 depending on the
sign of u, and [Q, ] denotes the location of the new
base line in the old field variable. If this quantity
is even, a direct replica of the spectrum is ob-
tained, whereas for [Q,] odd the image is inverted.
For instance, at the first level of nesting about
[&f&]= 0 the upper portion that is separated out by
the main gap through the cells at either side has
the same structure as the entire spectrum, with
its local variable P, related to Q through / =1/
(sgn/Q}+ I/Q, ). Thus, at P= + —,

' the portion of
the spectrum. that we are analyzing contains one
subband and the local-field value is P, =al. At
P = a 3 two subbands are found and Q, = a —'„etc.
The number of subbands strictly follows the rule
that it should equal the denominator of the rational
fraction in its local-field value. As another ex-
ample, the center subband at P= —,

' is character-
ized by Q, = —1 after two steps of successive
nesting involving [QJ=O and [Q,]=1. It belongs

IV. DENSITY OF STATES

The multiplicity of solutions of (7} can be ob-
tained in a straightforward manner since the
phases I(; and p, appear in the constant term only,
We follow the method introduced by Wannier,
Obermeir, and Ray that transforms the counting
over an energy range to a counting over a range
of the polynomial, thus yielding a form of the
density of states appropriate for an arbitrary
rational value of the field. "

Let A.,(z, p) be a root of (7) for. given z, p, and
a fixed value of the field. As these indices cover
their range the root will scan an entire subband
that we have labeled s. The indices have constant
weight since they are phase variables and the
density of states is then given by the expression

g(x)=(—)+ d(c d p. 5[X,(~, p, ) —X] . (13)

The sum is over all subbands and the total number
of states has been normalized to one. The 5 func-
tion can be integrated over by transforming the
integral over p to an integral over X, with the aid
of (7), and the remaining integral over z may. be
found in tables. One gets

1/u K(v/u), 1 & P «1.5
g(X)=, —„1/v K(u/v), —3 «P & 1 (14)

1 'dP

0 otherwise,
where

u = —,
' ((P —1)'+ [(3 —2P)' + I]'}'~'

v = (3- 2P}'~4.

to an image of the spectrum anchored about the
upper subband at &f&= —,

' and bounded by the main

gap and the gap going from /=0 to the upper edge
of the subband at /= —,'.

The distortion that the spectrum undergoes as it
is nested includes a moving over of the touching
point between the second and third subbands at P

For instance, it appears at P, = —,
' after the

first level of nesting about the base line [&j&]=0.
Figure 3 shows that this point marks the closing
of a gap that originates at the top of the field-free
band. In fact, the gap would reappear at larger
fields if the sub-Landau levels branching off from
the edge of neighboring subbands along the pro-
jected path of the gap would trade places. A sim-
ilar situation occurs below p = —', for gaps that
originate at the bottom of the field-free band which
would also reappear under a switching of sub-
Landau levels. The nesting statement makes no
distinction between gaps open or closed in the
sense explained above and this adds to the dis-
tortion introduced by nesting.
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P is the value of the polynomial (7) at X, and Z(x)
is the complete elliptic integral of the first kind.
Within a subband, only this latter factor varies
significantly giving a X-shaped logarithmic singu-
larity to the density of states. At subband edges
the d'ensity of states drops discontinuously to zero
as a gap is encountered.

Although the density of states, has the same
functional form for all subbands it differs in detail
from one subband to another. The total number of
states is the same for all subbands however, and it
equals 1/q. To see this we note that g(X) depends
on X through P and its derivative only; the inte-
gral over X is therefore simply transformed to
one over P and since the range of the polynomial
is the same for all subbands the integral has the
same value in all cases. We can use this property
to show that below the main gap of Fig. 3 there
are exactly Q states per unit cell. For this pur-
pose we apply the transformation (12) once about

[Q]= 1 and obtain for the local variable P, that
describes the portion of the spectrum below the
main gap the relation $, =1 —I/P. For Q=p/q
this gives P, = (P —q)/P so that there are p sub-
bands in the region and since each has weight 1/q
the overall number of states is P/q= @. Since the
degeneracy of Landau levels in the presence of a
lattice is just Q per unit cell" our result gives
further evidence that the portion of the spectrum
below the main gap indeed corresponds to the
lowest Landau level. By repeated application of
nesting one can show further that the number of
states in the portion enclosed by the main gap
and the one directly above it and extending from
the bottom of the field-free band to the top of the
subband at Q =-,' is also Q, as is for all similar
portions further up i.n the spectrum. This sup-
ports then the identification of these portions
with Landau levels of higher order.

An interesting alternate description of the spec-
trum was introduced by one of us (G. H. W. ) for
the square-lattice case" through a plot of the

. number of states 8'below each gap versus field.
In this plot, the line W= Q images the main gap
of Fig. 3, and the lines W=2$, 3$, . . . image
the gaps abov'e it referred to in the preceding
paragraph. Similarly, the lines W= P, 2Q —1,
3$ —2, . . . image the gaps originating at the top
and to the left of the band at Q =1. All gaps in
the spectrum and therefore all lines in our plot
may be reached by an appropriate nesting of the
above structure. One can then show that in the
interval 0 & @& 1 all gaps are imaged by the set
of straight lines W=M +NP with M and N integers
not both odd and opposite in sign. We note that in
the square-lattice case the spectrum has reflec-
tion symmetry about a constant-energy line pass-

I.O

0.5

0.0
0 I/6, ' I/3, ' I/2

I/4 2/5

0

ing through the center of the field-free band, and
the integers M and X are unrestricted. " For
hexagonal lattices this symmetry line does not
exist and in fact the gap extending from the top
of the band at Q =0 to the bottom of the band at

FIG. 4. (a) Statistical weight of states below the main
gap in Fig. 3, and its nested replicas. Each line
images a gap. Bands in Fig. 3 appear as vertical gaps
here, the most prominent of which are shown as
wiggly lines. (b) Energy spectrum showing regions
bounded by gaps, for comparison with corresponding
regions in Fig. 4(a). Note the similarity between re-
gions labeled equally in both figures.
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/=1 is altogether missing, and so are its nested
images. This accounts for the restriction im-
posed on M and N in our case. Figure 4(a) shows
a few low-index lines for the hexagonal case.
Heavy lines delimit polygons that image regions
in the spectrum also shown bounded by heavy
lines in Fig. 4(b). We have labeled these regions
A, B', C, . . . for easy identification. Each line in
Fig. 4(a) images a gap of Fig. 4(b) and gives the
number of states below the gap as a function of

~
the field variable. Conversely, the bands of Fig.
4(b) show as gape in Fig. 4(a), the most promi-
nent of which at P = 1, —,', and 3 have been fitted
in as wiggly lines in Fig. 4(a).

APPENDIX

sin2m q~+ sin[mq(a + —,'p)] cos2v p, =0,

cos[mq(a + —,'p)] sin2s p, =0 .

(Al}

(A2)

In order to prove that no two subbands overlap
except possibly at their edge it suffices to show
that the polynomial (7) is monotonic everywhere
in the allowed band as given by the right-hand side
of the expression. In other words, the derivative
of the polynomial cannot vanish in that region. If
it did vanish for an allowed value of X then the
derivatives of the right-hand side with respect to
~ and p, should vanish separately, that is,

V. CONCLUSIONS

The results presented here for an electron
both in the presence of a lattice of hexagonal sym-
metryand a magneticfield show that the nesting
property found previously in the spectrum of the
square lattice is of wider validity. In particular,
for rational fields the spectrum exhibits a recur-
sive property which can be described by means
of a set of simple transformations in the field
variable. Furthermore, the correspondence be-
tween the alternative treatments that use a Landau
basis or the Peierls substitution on an energy-band
function is emphasized in our case. This suggests
that the equivalence of matrix elements in both
methods as found by Langbein' and the nesting
property are intimately related.

ACKNOWLEDGMENTS

We would like to thank Dr. D. Hofstadter for
making his computer code for the energy spec-
trum of the square lattice available. One of us
(F. C.) is indebted for the hospitality of the Uni-

versity of Oregon while this work was being done.

This is because of the identity

a~ e a~
RK dk. BK

and the corresponding one in the variable p. . Note
that the above relations are necessary yet not suf-
ficient conditions for the derivative of the poly-
nomial to vanish. If fact, they are always satis-
fied at band edges as one can show by a procedure
similar to that of Ref. 19.

There are three pairs of values of the indices
that make the above equations vanish simultane-
ously, namely, p = «(2n+ 1) with =a-—p2+ (2l + 1)/
2q and p, =-,'n with either z =—,

' p+(2l + n+ 1)/q or
(2l+n ——,'pq)/3q. The right-hand side of (7}
equals 1 for the first two pairs and, depending on
the value of Pq, -3.0 or 1.5 for the last pair.
The last two values correspond to band edges
where (Al) and (A2) are inconclusive, as noted
above. The value one is inside the band, however.
But just at that point the density of states diverges
so there is at least one pair p, z that makes P=1
yet that does not satisfy (Al) and (A2). This case
therefore cannot correspond to a zero of the de-
rivative of the polynomial. We conclude that only
at band edges can this occur, thus allowing the
touching of neighboring subbands.
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