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The Van der Waals forces between a variety of macroscopic bodies have been measured with high accuracy
by using a new dynamic method. Between samples of crystalline quartz and borosilicate glass separated by a
distance d, the most important contribution to the Van der Waals forces was found to vary as d* in good
agreement with theory. For two silicon samples, however, and for the sample combination borosilicate-
glass-silicon, the Van der Waals forces vary as d* only for large sample separations (d > 0.25 um). For
smaller distances a marked deviation occurs which is not yet understood. Generation of free carriers by the
illumination of the silicon samples with white light causes an increase of the Van der Waals force at large
distances in qualitative agreement with an order-of-magnitude estimate.

I. INTRODUCTION

Van der Waals forces are responsible for many
properties of matter. They are of great import-
ance in the physics of surfaces, and are at the
origin of surface tension, capillary attraction,
adhesion, and absorption. In liquids, viscosity,
heat of evaporation, and solubility are caused by
Van der Waals forces, and the formation of rare-
gas crystals and molecular crystals is dependent
on these forces. They may also contribute strong-
ly to the interaction of macromolecules inside
living cells.

The, first calculation of Van der Waals forces
between molecules was made by London.! Casimir
and Polder? included the influence of retardation
which becomes important at larger distances.

Van der Waals forces not only act between indiv-
idual molecules but also between macroscopic
bodies. The attraction between two plates of ideal
metals was first worked out by Casimir® and,
more generally, between plates of any real mater-
ial by Lifshitz* and Dzyaloshinskii et al.® The ex-
perimental verification of these predictions has
turned out to be very difficult.’"'* Firstly, ex-
tremely smooth surfaces must be obtained. Sec-
ondly, at small distances (d< 1 um) the Van der
Waals forces are large, and accurate measure-
ment of the separation of the samples becomes diffi-
cult. Atlarger separationtheattractiondecreases
rapidly, and in addition Coulomb forces due to
residual electrical charges at the surface disturb
the measurements. We have performed measure-
ments of high sensitivity and accuracy and we are
therefore able to make a detailed quantitative
comparison with the theory.

II. PRINCIPLE OF MEASUREMENT

The dynamic method of measurement, described
in detail elsewhere'® was used in all of our ex-

periments. The principle of the measurement is
shown in Fig. 1. The two specimens [a plane plate
(S,) and a plane convex lens (S,)] were cemented to
the membrane of a modified condensor microphone
and toalow frequency mechanical vibrator (“loud-
speaker”). The Vander Waals force acting between
S;and S, was modulated by the periodic distance var-
iation caused by the oscillating loudspeaker. The re-
sulting oscillations of the microphone membrane
weredetected asanac voltage, amplified and record-
ed asa function of the distance betweenthe speci-
mens. To avoid direct transmission of ordinary
sound and in order to increase the sensitivity of
the microphone, all parts of the apparatus were
mounted inside a vacuum chamber at a pressure

of less than 107 Torr. A further increase of the
sensitivity, by several orders of magnitude was
achieved by operating the loudspeaker at the mech-
anical resonance frequency of the microphone

. membrane in general of the order of 3 kHz. For-

ces as low as 1077 dyn could be detected this way.
The distance between the two specimens S, and S,
as well as the amplitude of the loudspeaker os-
cillations was determined interferometrically. By
illumination of the specimens a Newton fringe pat-
tern was generated and was observed with a photo-
multiplier.

During an experimental runthe meandistancel,be-
tween the two um specimens was slowly varied from
10 to 0.1 pm by movingtheloudspeaker with small
electromagnets. The superimposed loudspeaker
vibration caused the distance [ between the speci-
mens to be varied periodically in time around its
mean value [,

1=1,+bsinwt . (1)

In our experiments the amplitude b of the oscilla-
tion was small compared to the mean distance .
Therefore, we may approximate the Van der Waals
force F acting between the specimens by the fol -
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FIG. 1. Principle of measurement.

lowing expression:

F=F,+ ar

= b sinwt . (2)

11,

The output voltage AV is related to the force by

av=sp 4 . (3)
dl |4,

The sensitivity S was determined by .replacing the
Van der Waals force by well-known Coulomb for-
ces as already described elsewhere.'®

According to theoretical consideration?:® the
Van der Waals force per area between two mater-
ials having plane surfaces can be approximated by

P=A/d+B/d*. (4)

Here dis the distance between the two planes, while A
and B are constants which are characteristic for
the material under consideration. Using this re-
lation the integrated force F between a sphere and
a plane can be written'®

F=21R(A/212+B/31%) , (5)

where R is the radius of the sphere. Inserting this
expression into Eq. (3), we find for the output
voltage

AV =21RSb(A/1,+B/1}) . (6)

It should be mentioned that the values of V mea-

sured at very small and very large distances
must be corrected: at lavge distances (1,>1 pm)
the finite size of the plane plate (2-mm? area) be-
comes important, and because of the small sig-
nal the small amount of sound transmitted from
the loudspeaker via the mounting structure be-
comes noticeable. At small distances (/,< 0.15
wm) a strong signal is registered. But in this
case the amplitude of the oscillation of the micro-
phone becomes comparable to the distance I and
a correction of the mean distance [, has to be
made.

III. EXPERIMENTAL RESULTS

The measurements reported here were carried
out on crystalline quartz, borosilicate glass, and
silicon. The surfaces of all specimens were
polished to best optical quality (surface roughness
<)/10 of sodium light). Particular care was
taken to get clean surfaces and to eliminate sur-
face charges following the procedures recom-
mended in literature.®®% Data of typical experi-
mental runs are shown in Figs. 2-5.
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FIG. 2. Van der Waals force between two specimens
of crystalline quartz. In the experimentally accessible
range from 0.15 to 0.52 ym the force varies like d™* in
good agreement with a theoretical fit according to Eq.
(12) (dashed line).



19 INFLUENCE OF OPTICAL ABSORPTION ON THE...

DISTANCE d (um)

008 Ol 0.2 03 04 06 08 10
I I I [T T TTTT

aor \%\ BOROSILICATE - GLASS
%‘h B=(0.86£0.15)-10™"% erg cm
0,

[¢Y]

(o]

T
/4

LOG FORCE AF (ARBITRARY UNITS)
N
o
T

-08 -0.4 (0]
" LOG DISTANCE d (um)

FIG. 3. Van der Waals force between two samples of
borosilicate glass BK7. Over the distance range from
0.086 to 1.0 um the force is well represented by ad ™ law.
The slope of the theoretical fit [dashed line according
to Eq. (12)] does not agree completely with the slope of
the experimental curve. For d >0.8 um residual elec-
tric charges left on the surfaces become noticeable.

A. Observations on insulators

Our initial experiments using specimens of crys-
talline quartz could only be performed in the re-
stricted distance range from 0.15 to 0.52 um. The
best fit of our data represents a slope of —4 as
shown in Fig. 2. Although the relative error.is
small we could determine the absolute magnitude
of the force only within 50%. According to Egs.

(4) and (6) we deduce: B=(0.6+0.3) Xx10™° ergcm.
Similar values of B (B=0.74X107° 0.81Xx10™°,
and 1.2 X 107! erg cm) were obtained by other
authors.®r%11

Most of our later measurements were performed
on borosilicate glass'” BK7 (see Fig. 3). This
material can easily be cleaned and it is not diffi-
cult to neutralize electrical charges on its surface.
The measurement could be carried out between
0.086 and 1.2 um. In this range the Van der Waals
force varied more than four orders of magnitude.
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FIG. 4. Van der Waals force between the sample com-~
bination borosilicate glass BK7 and silicon (curve a).
For distances larger than 0.2 um the force varies like
d™. For smaller distances a clear deviation occurs
from this distance dependence. Compared to the force
between two glass specimens only, its absolute value
is enhanced. Curve b represents the Van der Waals
force between two samples of silicon. The remarkable
deviation from the expected d™ law occurs for distances
smaller than 0.3 um and is further enhanced.

At still smaller distances, measurements be-
came impossible because of the surface rough-
ness, and at larger distances the Van der Waals
forces became comparable to the Coulomb forces
due to the remaining electrical charges left on the
surfaces. Again the Van der Waals forces varied
like 73* [or like d™ since in Eqgs. (4) and (6) I, and
d are equivalent] and we derive B=(0.86x 0.15)
X10™° ergcm. A similar value (B=1.1 X10™°
erg cm), but with much less accuracy has been
found by Kitchener and Prosser.®

B. Observations on semiconductors

1. Borosilicate-glass-silicon

In some experiments we used lenses and plane
plates made of different substances. In Fig. 4



6052 W. ARNOLD, S. HUNKLINGER, AND K. DRANSFELD 19

DISTANCE d (um)
03 04 06 08 10
] [T T TTT7]
SILICON-BOROSIL.ICATE
GLASS
B=1.8:10"'2 erg cm
A=1.6-10"% erg cm
\ O WITHOUT LIGHT
\ +WITH LIGHT
\

O.l 0.2
I

20

LOG FORCE AF (ARBITRARY UNITS)
7
s
Ve
7
7

TR N T S N N B o
0 -08 -04 ' 0]

LOG DISTANCE d (um)

FIG. 5. Van der Waals force between the sample com~
bination borosilicate glass BK7 and silicon under the in-
fluence of light. The illumination of the silicon sample
with white light of an intensity of 0.1 W/cm? increases
the attractive force. Since in our experiment d <w,/c
the additional contribution is nonretarded and therefore
proportional to d~3 as shown by the dashed line. The
open circles represent the Van der Waals force without
illumination as shown in Fig. 4 (curve a).

the results are shown for a single crystal of sili-
con (plate S,) and a lens of borosilicate glass
(specimen S,). The measurements were carried
out between 0.14 and 1.07 um. Again we observed
an output voltage which was proportional to 1/d%,
but only for separations larger than 0.2 um. In
this range of distances the Van der Waals con-
stant B turned out to be (1.8+0.35)x 10*° ergcm.
Below about 0.2 um, however, a clear deviation
of the experimental data from the expected 1/d*
‘curve was observed.

2. Silicon-silicon

In order to examine the influence of silicon on
this unexpected behavior of the Van der Waals
force at small distances, we determined also the
force between two specimens of silicon. The
plane plate (S;) we used was identical with that in
(1), whilst the lens of borosilicate glass now was
covered by a 2.5-um thick layer of amorphous

silicon. Only the central part (2-mm diam) of
the lens was evaporated with silicon in order

to allow a determination of the distance be-
tween the specimens with the help of the New-
ton fringe patterns visible at the corners of

the plane plate. At small distances again a devia-
tion from 1/d* behavior was observed (Fig. 4). But
this deviation was now much more pronounced and
becamenoticeable already atdistances smaller than
0.3 um. This indicates that the anomaly is peculiar
to semiconducting silicon and does not seem to
occur between insulators. At larger distances we
found again a slope of -4 and for the magnitude

of the constant B we deduced (5.0+1.0) x 107°
ergcm,

C. Influence of illumination on the Van der Waals force

In an attempt to study the effect of optically in-
duced free carriers in silicon on the Van der
Waals force, we measured the influence of light
on the force between borosilicate glass and sili-
con. In these experiments the light intensity
necessary for the measurement of the distance
was simply increased by several orders of mag-
nitude (see Fig. 1). White light of a tungsten lamp
was used, but wavelengths larger than 0.8 um were
eliminated by a filter in order to avoid a heating
of the microphone membrane. Using a chopper
the silicon specimen was illuminated periodically.
In this case we found two different values for the
Van der Waals force depending whether this speci-
men was illuminated or not. The experimental data
are shown in Fig.5. Curvel (open circles) represents
the result without illumination, whilstcurve II
(crosses) hasbeen taken with alight intensity of 0.1
W/cm?. Aninfluence of the chopper frequency (0.1 to
1Hz) could notbe observed. Thisindicates that any
heating effects played no role (the thermal relaxa-
tion time of the system was a few seconds). For
distances smaller than 0.3 wm the data are nearly
independent of illumination, whilst a noticeable
increase of the Van der Waals force occurred at
large distances. The Van der Waals force ap-
parently has two components: An intrinsic. force,
which is proportional to 1/4%, and an additional
contribution, which varies like 1/d%. Within the
accuracy of the experimental data the total force
between the illuminated specimens may therefore
be described by the relation:

Fi=Fan+Ald®, (7
with

A=1.6x10"% erg for J=0.1 W/cm?.
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IV. THEORY AND DISCUSSION OF THE EXPERIMENTAL
RESULTS

A. Theory

A large number of recent articles are devoted
to the theory of Van der Waals forces between
macroscopic bodies'®~?" and to a number of re-
lated questions. A review of this field has been
recently given by Barash and Ginzburg®® and
Mahanty and Ninham.?® In particular much effort
has been made in order to derive the result of
Lifshitz* and Dzyaloshinskii ef al.? in a simpler
way with less mathematical complexity and in-
cluding new physical concepts. - All calculations
resulted in a confirmation of this theory, except
for a limited number of special cases. We briefly
recall the main results of this theory.

Suppose we have two bodies labeled 1 and 2 with
parallel plane surfaces separated by a distance d.
Their complex dielectric functions are €, ,=¢; ,
+1i€; , and their permeabilities are u, ,= i. Then
the Van der Waals force per unit area is given by*

P) [ (bt
)

+ ( (31 +P€1)(Sz +p€2)

xp(zpfd) - 1)-1]dpd£ .

(8)

(31 - p€1)(sz —Piz)

<1,2(is) is the complex dielectric constant at
imaginary frequencies (i£= w) of the materials 1
and 2, respectively. s, ,=(e, ,-1+p*)'/? where
p is a variable of integration. This equation may
be simplified considerably, if the substances un-
der consideration absorb electromagnetic radia-
tion only in a restricted frequency range of the
spectrum. We consider two cases: (a) kd>1 and
(b) kd<< 1, where & is the average wave vector of
the absorbed electromagnetic radiation. To be
more concrete, we assume in our further con-
sideration that d is comparable to the wavelength
of visible light, because this assumption was ful-
filled in all of our experiments.

1. Case (a): kd>> 1

Now, the separation between the materials is
large compared with the absorbed wavelengths,
which lie only in the ultraviolet region of the spec-
trum. To a good approximation the force per area

P, (also called the retarded Van der Waals forces),

may now be described by the equation

_B _fher?\ (€, -1)E,-1)
i BD‘(240 ) € D, D &

P g). (9)

Here €, , are the quasistatic dielectric constants
of the materials at frequencies small compared to
those in the ultraviolet. Since both substances are
assumed to be transparent for wavelengths com-
parable to the distance d, we may write €, ,=u} ,,
where n is the refractive index for visible light.
®(€,,€,) is a numerical constant®® varying between
0.35 and 1, depending on the values of €, and ¢,.

A corresponding approximation derived by Ebert
and Wittmann®! clearly indicates that the most im-
portant quantity for the calculation of the constant
B is the reflectivity

x[l+ 8 , 8 n? -1 n§—1>
15n,m, = 35nm, ( n2 * n2

¢ is the Riemann zeta function. B, and B in
Egs. (9) and (10) differ by less than 10% for all
possible values of n. Since the value ¢ (z=4) is
close to 1 we can neglect this factor in what fol-
lows.

2. Case(b): kd << 1

We assume that the distance between the two
materials is small in comparison with the ab-
sorbed wavelengths, which now should be only
in the infrared or microwave region. In this case
the forces are called nonretarded. According to
Lifshitz* the Van der Waals force per unit area
may then be approximated by the following equa-
tion:

A nic J“" (€, - 1)e, = 1)

Pu=73, A=z (€, +1)(e, +1)

dg.

QU

87
(11)

Using the Kramers-Kronig dispersion relation,
€(i%) is determined from the absorption coefficient
or from the reflectivity R of the substance.

As long as the materials under consideration do
not absorb at wavelengths comparable to their
separation d, the retarded and nonretarded con-
tributions to the Van der Waals attraction are
simply additive. In a deeper sense this is just-
ified by the theory of Lifshitz which shows that
the interaction between short and long-wavelength
fluctuations of the zero-point radiation field can be
neglected. We therefore write

P=P_+P,=A/d3+B/d*. (12)
nr r
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B. Discussion of the experimental results

1. Quartz and borosilicate glass

In order to compare our experimental results
with the simplified theoretical formulas (9)-(12),"
we calculate A and B from the optical constants
of crystalline quartz and borosilicate glass BK7.
The refractive index, which enters Eqs. (9) and
(10) is mainly determined by the absorption due to
electronic transitions in the ultraviolet region.
For crystalline quartz and borosilicate glass BK7
we have »=1.55 and »=1.52, respectively.*?
Therefore, from formula (10) we calculate B,
=0.75x10™° ergem, By,,=0.69%x 10™° erg cm.
Similar values can be obtained from formula (9):
B,=0.77x 1079 ergcm, By, =0.71 X 107 erg cm.
More mathematical effort is required to calculate
A, which is determined by the absorption be-
havior in the infrared due to lattice vibrations.3?
From the measured imaginary part €'’ of the di-
electric constant, €(i£) -1 can be derived via the
Kramers-Kronig relation

ci9-1-2 [* 3w, (19)
For crystalline quartz there are two absorption
bands in the near-infrared region3 which are of
interest here. We approximate them by rectangular
functions with ¢’ =3.5 for w,=1.4 x 10" sec™ <w
<w,=1.6x=10" sec™ and ¢’’=4.5 for w,=1.8

x 10" sec?<w<w,=2.1 x10" sec™ and zero
otherwise. Evaluation of the integrals of Eq. (13)
and (11) yields A,=0.18 X 107" erg. Similarly

we calculate for borosilicate glass BK7 with ¢’/
=0.8 for w,=1.3x 10" sec?<w<w,=1.6x 10" sec™
and ¢’'=4.6 for w,=1.8x10™ sec™' <w<w,=2

X 10" sec™, Ag.,=0.14 X107 erg. It should be
mentioned that we used the infrared data of a glass
whose chemical composition is similar to BK7.
The infrared absorption of BK7 is not known at.
wavelengths of the spectrum of interest here. In
Figs. 2 and 3 the dashed line represents a fit
according to Eq. (12) using the theoretical values
for B and A calculated in this section. In general
the agreement between experiment and theory is
remarkably good, although in the case the bor-
osilicate glass the slope of the theoretical fit

does not agree completely with the slope of the
experimental curve.

2. Borosilicate glass-silicon and silicon-silicon samples

For the calculation of B we may apply Eq. (10).
However, this is problematic since in our mea-
surement the distance was comparable with the
wavelength at which the interband absorption in
silicon sets in. In this case Eq. (8), the exact

formula for the Van der Waals attraction should
be used. Unfortunately, under these conditions
Eq. (8) cannot be further simplified and only a numer-
ical solution is possible (see also Sec. IV B4).

We may approximate, however, this integration
in the following way. The Van der Waals force.
is due to the pressure of the zero-point fluctua-
tions modes taking into account the boundary con-
ditions at the surfaces of the plates (see for ex-
ample Ref. 3). This pressure, which acts per-
pendicular to the surface of the plates, is propor-
tional to the difference AU between the energy
density of the electromagnetic zero-point fluctua-
tion inside and outside the plates. It is obvious
from this argument that the reflectivity should
enter in the expression for the Van der Waals at-
traction. This was indeed pointed out in detail
by McLachlan.’® Since all modes which cannot
exist between the plates contribute to AU, we
may replace the expression R’ in Eq. (10) by the
average

1 “1
r=— f R'(w)dw, (14)
Wi Y

with w; =nc/d. With values for R’ calculated
from reflectivity of crystalline Si,* we get » =0.37
and 0.36 for distances of 0.25 and 0.7 um, re-
spectively, and hence Bg=4,5X 107'° ergcm in
very good agreement with our experiment. In a
similar way we calculate the magnitude of the
constant By; for the experiment with the sample
combination silicon-borosilicate glass. The nu-
merical integration results in » =0.14 and Bsc
=1,7x107*° ergem. This is also in good agree-
ment with our experiments. Owing to our evapor-
ation conditions, the silicon films deposited on
the borosilicate glass sample were amorphous.
One therefore should take into account the differ-
ent reflectivity behavior of amorphous silicon®
in formula (14). According to our numerical cal-
culations we get only slightly lower values for »
and therefore for B, too. The contribution of the
term A/d? to the attraction can be neglected
since silicon has only a very small absorption in
the near infrared.®®

3. Influence of light

From Fig. 6 we see that irradiating the silicon
sample with white light causes an additional con-
tribution to the Van der Waals attraction. It has
the form A/d® with A =1.6X 107'% erg. Since the
energy band gap of silicon is about 1.1 eV, the
white light (A<1u) can be absorbed and gives
rise to a free electron density N, which on the
other hand, influences the optical properties of
the material for frequencies w = w, where w, is
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FIG. 6. Theoretical calculation of the Van der Waals
force between silicon plates according to the theory of
Dzyaloshinskii et al.’ It gradually changes its slope
from d3 to d~* in the distance range from 1072 to 1 ym.
(see also insert). The constant B is in good agreement
with the experiment and the approximate theoretical
calculations as discussed in the text.

the plasma frequency. Since A, =27¢/w, will be

in the infrared, we indeed expect according to
Eq. (11) a contribution of the form A/d 3. For an
estimate of N and hence w, =(47me? N/me)'? we
write N=J(1 - R)a7'/fiw. Here'dJ is the light in-
tensity, R is the reflectivity, « is the absorption
coefficient, and Zw the energy of the photons
generating the free electrons where 7’ is their
lifetime. From optical data® we use average val-
ues R~0.4, Zw=15¢eV and a~10* cm™, In our
measurements J~0,1 W/em? and 7/~ 0.2 msec
(we determined this value experimentally for our .
sample). Furthermore, in silicon the relative
effective mass m/m is 0.8.3¢ Therefore, we
deduce n=~10" cm™ and hence w,~10" sec™.
For the dielectric function of a free electron gas
we use the well known expression®”

€ =€ +i€f =1=wit?/(1+w?7r?)
+iwit/w (1 +w?7?). (15)

Here 7 is the collision time for the electrons in
the conduction band. We derive straightforward
the function which enters in Eq. (11):

f1(i8) =[€,(68) - 1] /[ €,(2€) +1]
=w; T/(wiT+287 +28). (16)

With the aid of the Kramers-Kronig relation

we calculate f,(i¢) for borosilicate glass as done
in Sec. IVB1 and perform the integral fflfzdg
numerically. We then get A=0.5X107"° erg for
w,7=~50,which is at least in an order of mag-
nitude in agreement with the experiment. Per-
haps we have underestimated the infrared ab-
sorption of the borosilicate glass. If we as-
sume, for example, €fx,=9.2 in the same fre-
quency range as given above we would get A
~10™ erg which would be closer to the experi-
mental values.

4. Behavior at small distances

As already pointed‘out, a remarkable deviation
from the d™* law occurs for distances 0.3 um
for the sample combinations silicon-borosilicate
glass and silicon-silicon. It seems to us, that it
is impossible to explain this behavior in the
framework of the existing theories. "

For completeness we calculated numerically the
expression for the Van der Waals force for silicon
given by Dzyaloshinskii et al.®> which does not use
the approximation of zero temperature leading
to Eq. (8) and subsequently to Egs. (9), (10), and
(14), although in our view the influence of the
thermal radiation should be quite negligible under
our experimental conditions (d <1 um). We de-
termined €(i£) — 1 via the Kramers-Kronig relation
[Eq. (13)], using the analytical expression for
€” (w) described by Foley and Landman.?® The
result of the numerical calculation can be seen
in Fig. 6. The Van der Waals force gradually
changes its slope from d™2 to d™* over the wide
range of distances from 10" to 1 um. This cor-
responds to the expected transition from the non-
retarded to the retarded regime and has also been
calculated previously for germanium.** However,
this does not even approximately explain the ob-
served deviation from the d"* power law.*®

Finally, spatial dispersion®*?*27 which in fact
leads to a decrease of the Van der Waals con-
stant cannot explain our results. It only gains
importance, when the distance d becomes either
comparable to the interatomic distance or in the
case of metals comparable to =~ 10%3 where kp
is the Fermi vector. Perhaps the anomalous be-
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havior of the Van der Waals force at distances
below 0.3 um is related to the anomalous optical
properties of the space-charge layer adjacent to
the oxidized silicon surface.

V. CONCLUSIONS

In conclusion we should like to emphasize that
the magnitude and the power dependence of the
Van der Waals force between macroscopic bodies
is indeed in good agreement with Lifshitz’s theory.
This can be seen in particular in the transition
from the retarded to the nonretarded regime after
illumination of the silicon sample with light of
energy Zw >E,. Moreover, simple approximations
can be used to estimate the magnitude of the Van

der Waals force within a few percent. The devi-
ation from Lifshitz’s theory at distances'= 0.3
pm in the case of silicon may be rather peculiar
to this type of materials.
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