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New band-structure calculations of point-slit angular correlation curves for positron annihilation in Cu

single crystals are compared with measurements by Mader and Berko et al. Corrections are applied for the

geometrical resolution and for enhancement due to e -e and e -e correlations. A new energy-dependent

form of "Kahana enhancement" is proposed that gives excellent agreement between theory and experiment if
the core contribution is reduced by a factor of 5. The results qualitatively confirm the enhancement of
umklapp contributions derived by Hede and Carbotte. No indication is found for a de-enhancement of the

umklapp components proposed by Fujiwara et al. Calculated curves for a-Cuo, Zno, obtained on the basis of a

rigid-band model are given for future reference,

I. INTRODUCTION

In recent years measurements of the angular
correlation between the quanta from the annihila-
tion of thermalized positrons have been used to
study the Fermi surface and the two-photon mo-
mentum density in a large number of metals and
alloys. ' 4 As known, the latter quantity is clo'sely
related to the electron momentum density. Most
of the measurements have been done with the con-
ventional long-slit geometry which resolves only
one of the three momentum components. However,
the recent development of two-dimensional angular
correlation machines" ' that simultaneously mea-
sure two momentum components allows these stud-
ies to be carried out in much greater detail. On
the theoretical side there has been considerable
progress in calculating the two-photon momentum
density in solids employing different band-struc-
ture methods. In many cases a fairly satisfactory
agreement has been reached between theory and
experiment using the long-slit geometry. "" Cal-
culations of two-dimensional angular correlation
curves are of more recent date but can in combin-
ation with corresponding measurements provide
far more detailed information than their long-slit
counterparts. A good example of such a study is
the recent work on aluminum by Mader et al."
where the umklapp components (for which p =k+6
with G a vector of the reciprocal lattice" ) could be
studied without interference from the intense low-
momentum part of the momentum distribution.
This study also provided valuable information on
the conduction- and core-electron enhancement
due to many-body effects. This latter aspect is
of even greater interest in d-band metals with

their complicated band structure and strongly
anisotropic momentum density.

Kahana" has discussed the theory of enhance-
ment for a positron in a free-electron gas. He
describes the enhancement by a factor

e(p) =a+b(p/p~)'+c(p/p~)', p& p~,

multiplying the independent-particle two-photon
momentum density. Here a, 5, and c are constants
depending on the electron density and p~ is the
free-electron Fermi momentum. When the en-
hancement factor is integrated over the volume
enclosed by the Fermi surface it is able, after
appropriate correction for the core contribution,
to explain the observed positron lifetimes in sim-
ple metals, which are an order of magnitude short-
er than one would expect from independent-particle
theory. At the same time, the momentum density
is only little affected (apart from a scale factor).
Other authors have performed model calculations
of the enhancement in the presence of a (weak)
lattice potential. Hede and Carbotte" have con-
sidered the enhancement of the umklapp compo-
nents in a nearly-free-electron (NFE) system.
Their calculations yield an enhancement of the
umklapp contribution that is approximately con-
stant and somewhat lower than that for the central
free-electron parabola, but slightly increasing
towards the edge of the urn/lapp Fermi sphere.
Fujiwara and co-workers" have discussed the
enhancement effects due to intraband and inter-
band electron transitions in a two-band NFE mod-
el. They conclude that near a zone face the intra-
band transitions produce an enhancement factor
qualitatively- similar to that derived by Kahana,
while the interband transitions of electrons from
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the lower to the upper band cause areduction("de-
enhancement") of the umklapp components.

So far, no prescription of how to correct for
enhancement in cases of practical interest has
emerged from these lattice theories and the the-
ory of Kahana is the only one that has found wide-
spread practical application in simple metals. In
Na, "Li,"and Al, "it produces the characteristic
bulge found experimentally at momenta p& p~. Its
usefulness in d-band metals is questionable, how-
ever. The hybridization between the conduction
and d bands in these metals causes the Fermi sur-
face to be anisotropic and poses the problem wheth-
er the enhancement correction should be applied to
conduction and d electrons alike or only to the
former. In the first case the d bands are far from
parabolic and Eq. (1) cannot be expected to hold,
while in the latter case the question arises how to
separate the hybridized conduction and d bands.

The tightly bound core electrons will also corre-
late with the positron, but the ensuing enhancement
will be smaller than that for the band electrons
since they are less free to move. According to a
calculation by Carbotte and Salvadori" the core
enhancement is a nearly p-independent scaling
factor of -3.6 for Na and -2.8 for Al.

Recently, measurements of the two-dimensional
angular correlations in copper have been performed
by Mader, ' and Berko et al."" In the present
paper we intend to approach the question of en-
hancement in d-band metals from the experimental
side. We report a band-structure calculation of the
two-photon momentum density and some two-dimen-
sional angular correlation curves for copper and
compare the results with the data of Mader and
Berko et al. Copper is an ideal test case for a
variety of reasons. First, its band structure and
Fermi surface are well understood, both experi-
mentaQy and theoretically. Second, its Fermi sur-
face consists of only one (multiply connected) sheet,
thereby avoiding the complications inherent in the
multiple-sheet Fermi surfaces found in transition
metals. Third, extensive positron annihilation
studies have been performed on copper single
crystals with different slit geometries (see the
references cited in Ref. 4), and, finally, copper
forms many alloys which enable one to convenient-
ly vary the electron density in future enhancement
studies.

In the present calculations the effect of enhance-
ment is included in two different ways. The first
one consists of straightforward application of Eq.
(1). Detailed comparison with the experimental
data, however, shows that better results are ob-
tained if Kahana's prescription is transcribed in
an energy-dependent form that we propose in Sec.
II of this paper. Particular attention is given to

the neck region of the Fermi surface where this
comparison allows us to test the current ideas
about enhancement near a zone face. As an ex-
tension of this work, two-dimensional angular cor-
relation curves for the alloy e-Cu, , Zn, , have
been calculated in the rigid-band approximation
for future reference. Recent calculations by Ban-
sil et al."employing the average-t-matrix approxi-
mation (ATA) and positron annihilation measure-
ments'4 of Fermi-surface radii have shown that as
Zn is added to Cu the swelling of the Fermi sur-
face follows the predictions of the rigid-band mod-
el reasonably closely. Furthermore, it has ap-
peared from previous work on 3d metals" that the
partial electron momentum densities due to the in-
dividual bands do not change much in going from
one metal to the next higher one with the same
crystal structure (e.g., from fcc Ni to fcc Cu).
Differences between the total momentum densities
in these metals derive mainly from the change in
position of the Fermi level. This suggests that as
long as detailed ATA or coherent-potential-approx-
imation (CPA) calculations of the two-quantum mo-
mentum density in disordered alloys are not avail-
able' '27 for comparison with experiment, the
rigid-band model may constitute a useful first
approximation. It should be stressed, however,
that this model does not describe the damping of
the Bloch states due to the disorder in the alloy.

The plan of the present paper is as follows. The
details of the calculations are given in Sec. II,
while in Sec. III the results. are presented and
compared with experiment. A general discussion
of the results in Sec. IV concludes the paper.

II. CALCULATIONS

As known, the two-photon momentum density
p, (p) due to the 3d and conduction electrons may
be obtained from

p, (p)= o t Q I&;(p k)I'&(p —k —G)
OCC ~p ~

with

(2)

r);(p, it) =J exp(-ip r)pe (r) p, (r)t(r . (p)
cell

Here $T, &(r) denotes the Bloch wave function of the
electron with wave vector k in the jth band and

Q (r) the positron ground-state wave function. The
summation in Eq. (2) is restricted to states below
the Fermi level E~. The present calculations were
based on the muffin-tin potential of Chodorow.
This potential is known to give a satisfactory de-
scription of the band structure of copper. " The
method employed to calculate the band structure
and the two-photon momentum density p~(p) from
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TABLE I. Crystal orientations Q&~, px) and mesh used for the calculated angular correla-
tions.

Angular correlation
symbol Mesh' hp, x ~p„

A
B
C
D

[001] f100]
f001] [110
[101]«[10&]
[111],[f10]

(010)
(I10)
(010)
(112)

0.84 x 0.84
0.84 x 1.19
0.59 x ]..].9
0.97 x 1.19

In units of mc x10 (H,ef. 40).

&(( ., ( .) =j((o. , („( .) @., (4)

where p(p) denotes the total momentum density.
In order to display a possible structure in the
curves more clearly the derivatives of the experi-
mental and calculated angular correlation curves
have also been calculated. For the experimental
curves this has been done by locally performing
a weighted least-squares fit of a third-degree
polynomial to five data points and calculating the
derivative to this polynomial, thus introducing a
small amount of smoothing. Polynomials ortho-
gonal over the set of five points have been used"
to avoid the instabilities inherent in the use of
ordinary power series, while the error bars have
been computed from the statistical errors of the
points participating in the fit. '4 The calculated
curves have been differentiated with the aid of

this potential is based on Hubbard's approxima-
tion scheme. " Details of this method may be found
in earlier reports on Fe,"Cu, "and Ni. " In Hub-
bard's original formulation a set of four "pre-
ferred" reciprocal-lattice vectors is used, giving
rise to a secular equation of minimal size but also
to a slight lack of symmetry in the wave functions.
In the present work this has been avoided by ex-
tending the preferred set to include the first two
complete shells, i.e., a total of 15 vectors. Out-
side the muffin-tin sphere of radius r,. =2.4151
a.u. the wave functions have been expanded in 113
plane waves. The same potential (apart from a
minus sign) and the same number of plane waves
have been used to describe the positron wave func-
tion. " The lattice constant used is 6.8308V a.u.

The momentum density p, (p) of tlie band elec-
trons was calculated in the (010), (110), and (112)
planes on meshes given in Table'I. Numerical
tests show that these meshes provide angular cor-
relation curves that converge to within 0.3/p. The
contribution p, (p) from the core electrons was cal-
culated in the spherical approximation" employing
free-atom wave functions. " These results were
used to calculate the two-dimensional angular cor-
relation curves according to

third-degree orthogonal polynomials fitted to four
points.

A, Resolution

n- Q c,.f (P + q,. /l). ), (5)
n

with A, = 2(ln2)'~'/(tc~„M). The correction for the

p, resolution required the calculation of p(p) in
planes parallel to the selected plane p, = const and
was performed by both three- and five-point quad-
rature. The P, resolution was folded in with the
aid of the five-point formula. The values of c,. and

q,. are listed in Table II.

B. Enhancement

The principal goal of the present work was to
study the enhancement due to the combined e —e
and e —e' correlations. As already mentioned,
Eq. (1) can only be expected to give reasonable
results when applied to an approximately para-
bolic conduction band. Its functional dependence
on)()/p~ then ensures that the enhancement e(p) is

TABLE II. Coefficients c; and abcissae q; for use in
three- and five-point Hermite-Gauss quadrature (after
Ref. 36).

thr ee-point

five-point

co ——0.666 667
c& = 0.166 667
c() =0.533333
c~& = 0.222 076
c~& = 0.011257

q() =0
q~&

= +1.224745
q() =0
q~ = +0.958 $72

q& = + 2.020 183

Before comparing the calculated curves with the
experimental data a correction must be applied for
the angular resolution of the setup. The easiest
way to do this is by folding the theoretical curves
with the P, and p, resolution functions. These can
be approximated by Gaussians with a full width at
half maximum (tc~sM) of 2.8 and 0.609 mrad,
respectively. "'" The folding is performed by
(2n + 1)-point Hermite-Gauss quadrature following"

F( )=(( / x')xf exp(- tx')f( +()d(l
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greatest for electrons close to the Fermi surface.
These are the ones that are most free to correlate
with the positron.

If one attempts to apply this correction to a d-
band metal a number of problems arise. The
hybridization between conduction and d bands pre-
vents an unambiguous separation between the cor-
responding groups of electrons. One could consider
applying Eq. (1) within the first Brillouin zone to
all occupied conduction and d states alike, but this
procedure would be manifestly incorrect. The d
states close to the zone boundary in-the lowest
band would be enhanced by a large factor although
in energy they are far removed from the Fermi
level. Angular correlation curves calculated by us
with this form of enhancement" showed a large
bulge at values of p, a little greater than the Fermi
cutoff, in disagreement with experiment. This
bulge can be removed by restricting the application
of the enhancement correction to conduction and d
states with momenta smaller than the Fermi mo-
mentum

~ pz ~. Although the resulting angular cor-
relation curves compare reasonably well with the
experimental curves, the artificiality of this pro-
cedure, in which part of a filled band is enhanced
and another part of that same band (i.e., the states
with

~
k (

& (p~ () is not, is obvious. That this pro-
cedure nevertheless yields reasonable results can
be explained by the fact that the d -electron contrib-
ution to p(p) peaks in the outer part of the first
zone. In the inner region it is relatively small and
thus enhancement of this d contribution does not
have much effect on the total momentum density.
Yet, the overall conclusion must be that writing
the enhancement factor as some functional of p
does not allow a simple and natural extension of
the enhancement correction to d bands.

However, a slightly different approach proves
more fruitful. For a NFE gas with a quadratic
dispersion law, Eq. (1) can also be written as a
functional of energy rather than momentum:

(6)

where E .and E~.are both counted from the bottom
of the conduction band. For a quadratic conduc-
tion band Eq. (6) is identical to Eq. (1), but it can
be extended in a natural way to d states by sub-
stituting for E the actual dispersion relations
E&(k). Moreover, it possesses the attractive fea-
ture that ~' now depends on the distance in energy
from the Fermi level. Low-lying d states ar' e
little enhanced while d states near E~ undergo the
same enhancement as conduction states of equal
energy. We therefore propose Eq. (6) as a purely
empirical prescription for the enhancement cor-
rection. In the present study this form has been
used with the values" for h/a and c/a originally

prescribed by Kahana" for use in Eq. (1) and with
a set to unity. The latter choice implies that all
states outside the first Brillouin zone are in fact
enhanced by a factor e'(I', ) corresponding to the
1", state at k =0, while the enhancement of the core
states, being less than c'(I",), is described by a
core reduction factor n times e'(I', ) (see below).
This procedure is justified since in an angular cor-
relation measurement only the shape of the curve
is measured. It yields excellent results provided
that the enhancement Eq. (6) is restricted to the
first Brillouin zone. An attempt to apply Eq. (6)
throughout all of p space, thereby mimicking the
enhancement of the umklapp contributions proposed
by Hede and Carbotte, "gave rise to relatively
large bulges at momenta corresponding to the
umklapp components and to a general overestimate
of the high-momentum part of the curves, and was
therefore abandoned.

C. Fraction of core annihilations

The study of Al by Mader et al."has shown that
a reasonable agreement between theory and ex-
periment could only be obtained after reduction of
the calculated core distribution by a factor of 2 with
respect to the (enhanced) conduction electrons.
Physically this reflects the smaller polarizability
of the tightly bound core electrons. A 'similar core
reduction factor e, adjustable between unity and
zero, has been employed in the present work. It
is the only fitting parameter in this work.

D. Statistical test

In view of the large number of calculations re-
quired to investigate the influence of different
forms of enhancement, fraction of core annihila-
tion, resolution, etc. , for a number of crystal ori-
entations it is impossible to present the compari-
son between theory and experiment for all these
cases in a graphical form. Furthermore, the over-
all agreement is so good that the eye is not sensi-
tive enough to detect small improvements in the
fits. A y' test enables one to characterize the
quality of a fit by one single number. " If the num-
ber of data points k&30 and the calculated and
measured curves represent the same distribution,
then

o —(2/2)~~2 (2y 1)U2

is normally distributed with zero mean and vari-
ance unity. 0 thus serves as a goodness-of-fit
parameter. The probability that 0&1, 2, 3, or 5
is 0.16, 0.023, 0.0013, or 2.9 ~ 10 ', respective-
ly.
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III. RESULTS

A. Band structure and momentum density

1.0-

P 0

The present band structure is in good agreement
with that reported by Burdick. The rms differ-
ence of 150 levels between —0.1 and 1.1 Ry (all
energies with respect to the muffin-tin zero) is
5.V mRy with relatively large contributions from
two levels above 1 Ry. On the average, the pres-
ent levels are shifted upward by about 3 mRy with
respect to Burdick's. However, a check of a num-
ber of levels with the aid of a Korringa-Kohn-
Rostoker (KKR) program reproduced the present
values (to within about 1 mRy) rather than Bur-
dick's. The actual error is therefore expected to
be rather less than the value of 5.V mRy quoted
above.

A comparison of the dimensioris of the Fermi
surface (FS) constructed by Burdick with those of
the "CuV" surface obtained by Halse" from mea-
surements of the de Haas-van Alphen effect shows
that the former is smaller by an amount varying
from 1.8/o for 0», to 0.4% for 0», . ln view of this
and the systematic upward shift already mentioned
we have raised the Fermi level from Burdick's
value of 0.555 Ry to 0.562 Ry. This yielded a FS
of the correct volume and slightly less anisotropic
than the experimental one (~k», = -1.1%, hk»,
=+0.3% with respect to Halse). The FS geometry
obtained by us in the (010) and (110) planes is
shown in Fig. 1. The positron energy was found
to be 0.559 Ry with respect to the positron muffin-
tin zero which equals the electron muffin-tin zero
apart fro~ sign reversal.

Some representative results for the momentum
density p~(p) due to the band electrons are shown

p„- [1oo]
p ~0
pa [001]

20

10

10 15 20xmcx16

FIG. 2. Two-photon momentum density p&(p„,p„
= O,p~) vs P„ in the (010) plane for Cu for different
values of p~ (see text). The ticks along the pg axis
mark intervals of 1.68&& max 10 3. The dashed curve
represents the core contribution pc at p = 0.

in Figs. 2 and 3 where graphs of p~(p„, p„=-0,p, )
vs p„ for p, =0.0, 0.84, 1.68, 2.52, 3.36, 4.20,
5.04, 5.87, 6.71, 8.39, and 10.07~mcx10 3 are
shown. The dashed curve in Fig. 2 describes
the isotropic core contribution at p, =0 (with unit
weight). These results are similar to those re-
ported earlier'o for the (100), (110), and (111)
directions and provide an additional insight into
the anisotropic behavior of p„(p) in copper. The
curves, when examined in conjunction with the FS
geometry in Fig. 1, clearly bring out the effect of
the FS discontinuities and the overlap integral
~A;(p, k) ~' on the momentum density. Detailed dis-

FIG. 1. Fermi surface
of Cu in the (010) and (110)
planes in the extended zone
scheme.

X
I

20 15 10
X= P [100] I P [110] = K X K

5 0 5 10

I"
I

15xmcx10
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1.0- cussions of the band-structure effects on p~(p) can
12, 25, 30be found elsewhere.

c x10

10 15 20xmc x10

FIG. 3. As Fig. 2, but for the (110) plane.

B. Two4imensional angular correlations

1. Copper

Two-dimensional angular correlations have been
calculated for the orientations listed in Table I. In
order to facilitate comparison with the experimen-
tal data "'"all calculated and measured curves
have been normalized to unit area under the curve
(with p, expressed in atomic units . inesince the
experimental curves have only been measured up
to -20 mrad they have been extrapolated exponen-
tially prior to normalization. As discussed earli-
er, the theoretical curves consist of a band and a
core-electron contribution. The band contribution
is calculated without enhancement correction and
with enhancement according to Eq. (l) (p depen-
dent) and Eq. (6) (E dependent). " For each of these

th core fraction e between 1.0 and .1.
of the FSMoreover, we investigate the influence of e

shape and of the way in which the p., resolution
correction is applied. Table III shows the good-

arameter o for various combinations of the parameters.TABLE HI. Values of the goodness-of-fit parame er 0 o v

FS
Orient. geom. Enhancement

Pp
resol. b 1.0 0.7

Core fraction G.

0.5 0.4 0.3 0.2 0.1

A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
A
B
C
D
A
B
C
D

Ha

Ha

Ha

Ha

Ha

no

Eq. (1)

Eq. (6)

Eq. (6)

Eq. (6)

Eq. (6)

Eq. (6)

five-point

five-point

no

five-point

three-point

five-point

five-point

59.4
53.2
28.2
77.1
29.0
29.9
13.0
39.2
43.8
26.5
10.4
83.7
32.6
22.3
11.3
44.7
33.1
19.9
11.4
32.5
22.5
11.0
43.8
32 9c
2203
11 3'
45.3'

46.5
43.2
22.8
60.4
19.4
24.4
10.7
29.2
36.1
27.5
6.0

76.0
20.8
14.0
6.6

32.8
21.6
12.3
6.9

20.8
14.2
6.3

33.0
21.1
14.4
6.6

30.8

38.0
36.8
19.4
49.7
15.4
22.7
10.3
26.5
32.8
30.3
3.9

72.8
14.2
10.4

4 ]
28.1
15.2
9.9
4.5

14.1
10.7
4.0

29.2
14.0
10.8
4.2

22.5

34.0
33.7
17.7
44.6
14.7
22.7
10.5
26.9
31.8
32.4
3.2

71.9
11.7
9.7
3.3

27.3
12.9
9.8
3.8

11.7
9.9
3.2

28.9
11.0
9.9
3.27

19.3

30.0
30.8
16.1
39.9
15.1
23.2
11.0
28.5
31.5
34.8
2.9

71.4
10.2
9.9
2.8

27.7
11.6
10.7
3.3

10.1
10.1
2.7

29.7
8.9
9.8
2.69

17.1

26.4
28.1
14.7
35.7
16.5
24.2
11.7
31.3
31.8
37.5
3.0

71.6
9.9

11.0
2.7

29.3
11.4
12'.5
3.3
9.9

-11.2
2.7

31.7
7.9

10.6
2.48

16.3

23.2
25.7
13.4
32.2
18.9
25.9
12.7
35.1
32.7
40.6
3.5

72.3
11.0
13.0
3.0

32.1
12.4
15.0
3.6

10.9
13.2
3.0

34.8
8.3

12.1
2.69

17.0

lation Ha: Halse Cu7 FS (Ref. 39).bs FS geometry from this band-structure calcu a o;
( -~ ) - - -q

~ ~ ~ odh"o bo d ( ~ ~ ).'Values in this row calculated under exclusion of data points just eyon e
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1.2- 1.2

1.0

to
~~c

0.8

la

h 06

N
CL

0.4
CL

z
0.2

1.0

0
~~

0.8

lgl
O
m 06

CL

I] 04

x

0.2

0 10
p /mc (mrad)

20

FIG. 4. Calculated point-slit angular correlation
curve and derivative for orientation A ({p,p„)={[001],
[100]j). Experimental points by Mader (Ref. 21) and
Berko et al . (unpublished). Unless shown differently,
error bars are smaller than the diameter of the points.
Dashed curve: core contribution multiplied by core
fraction e. Arrows indicate the interval excluded from
o in How 7 of Table III. BZ: Brillouin-zone boundary.

ness-of-fit parameter 0 for some of the calcula-
tions.

Rows 6 and 7 in Table IH clearly show the great
improvement obtained by the application of the
energy-dependent enhancement correction Eq. (6)
in comparison with both the unenhanced results
(row 1) and the p-dependent enhancement (row 2)
(the difference between rows 6 and '7 is explained

0t't" ] 10 20
pi/rnc (mrad)

0 ~ As»g. 4, but for orientation Q ({p
={[101],[10T]}).

Zt X

below). We note a reduction in o from -30 to 60
for the case of no enhancement, no core reduction,
to -2.5 to 16 for enhancement according to Eq. (6),
and a core fraction of 0.2.

Folding of the angular correlation curves with
the p, resolution is essential to obtain a good fit
(cf. rows 3, 5, and 6). Performing this folding
by means of five- instead of three-point Gaussian
quadrature improves the fits for two of the orien-
tations (A and C, cf. rows 5 and 6).

As already mentioned, the FS resulting from the
calculation is slightly less anisotropic than the
experimental FS of Halse. This could affect the
angular correlation curves, especially at values

1.2- 1.2-

1.0

to

0.8
i
l0

0.6

N
CL

O
I 0.4
CL

Z

0.2

io

C
0.8

l
Cl

0.6

N
O.

0
0.4

CL

z
0.2

0 10 20
p, /mc (mrad)

FIG. O. As Fig. 4, but for orientation B ({p~,p„)
={[oo1],[110]}).

p imc (mrad)

FIG. 7. As Fig. 4, but for orientation 8 ({p,p )
={[111],[110])).

Z& X
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of p, for which the line of integration intersects
the FS under an oblique angle. The influence of
this was checked by replacing the positions of the
Fermi breaks in p(p) by those derived from the
Halse surface. The results appear hardly sensi-
tive to this change (cf. rows 4 and 6).

The'adjustment of the core fraction o. has a large
effect on the quality of the fits. Row 6 of Table III
shows that the minima of 8 fall at values of o, be-
tween 0.2-0.4. However, if the experimental points
just beyond the zone boundary are omitted from the
fit (a procedure that will be justified below) the
minima in a are lowered and shifted towards a
lower a, as shown by the last row of Table III.
The values of a obtained in this way are, respec-
tively, 0.16 (A), 0.20 (C and D), and 0.33 (fI).
Apart from the last one, they all cluster around
the same number. Thus if the last result is ignored
for the moment it can be concluded that the core
contribution in Cu should be given a weight of -0.20
with respect to the band electrons. This reduction
by a factor of -5 is considerably larger than the
factor of 2 found by Mader et gl."in Al and will be
discussed in Sec. IV.

The resulting angular correlation curves [with
n =0.20, enhancement according to Eq. (6), cor-
rection for instrumental resolution, and use of the
experimental Fermi surface of Halse] are shown
in Figs. 4-7, together with their derivatives. On
the whole, the agreement with the experimental
data is excellent, especially if it is remembered
that n is the only fitting parameter. The most
notable difference is found in curve 8 (Fig. 6) be-
tween 0 and 2 mrad. The reason for this discrep-
ancy is not clear, but it probably explains mhy for
this orientation 0 reaches its minimum at a higher
fraction cx than for the other orientations. On the
other hand, even the small shoulders at -7 mrad
in the derivative curves for orientations A and B
are accurately reproduced. For orientation B
these shoulders, together with the broad shoulder
at 11.5 mrad in the derivative curve and the bulge
between -8 and -12 mrad in the angular correlation
curve, are all caused by the onset of the umklapp
contributions centered at (002), (222), (442), etc. ,
followed by a lining up of the necks and the cutoff
of the umklapp contributions centered around (111),
(331), etc. The little shoulder observed for A,
together with the faint bulge around -9 mrad in the
angular correlation, both originate in the onset of
the (002), (202), etc. , umklapp contributions.

A feature common to all calculated curves is the
small discontinuity at the zone boundary. It is
caused by the restriction of the enhancement [Eq.
(6)] to states in the first zone, which makes c'
drop discontinuously at the zone face to its value
e'(I', ). The experimental points suggest that such
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FIG. 8. Influence of enhancement and of p~ resolution
correction for orientation A. Solid curve: corrected
for p resolution, no enhancement; broken curve: en-
hancement correction applied, no resolution correction.

a discontinuity does not exist and that the umklapp
momentum density in the next zone is likewise en-
hanced. However, the enhancement factor de-
creases rapidly to its constant value d(I', ) as one
moves away from the zone face. This is particu-
larly clear in the case of orientation D mhere scan-
ning along the [111]direction allows observation
of the neck of the FS free from interference by the
bulk of the FS. Up to the intersection with the hex-
agonal zone face at 5.81 mrad the calculated curve
folloms the data points closely, but between 5.81
and 7.4 mrad the latter lie above the curve. For
the other orientations this effect is less pronounced
since there the main contributions at the zone faces
come f rom relatively low-lying d states. Altogether,
these results agree qualitatively with the predic-
tions of Hede and Carbotte" concerning the en-
hancement of umklapp components. There is no
indication of the presence of thy de-enhance-
ment effect predicted by Fujiwara et al."because
in that case the experimental points just beyond
5.81 mrad mould lie below curve D instead of above
it.

Obviously, the lack of fit at points just beyond
the zone boundary has an adverse effect on the
goodness -of -fit parameter 0 and obscures the ex-
cellent fit along the remainder of each curve. As
already mentioned, p has therefore also been cal-
culated under exclusion of these points (over a
range indicated by arrows in Figs. 4-V). The val-
ues obtained in this way are given in the last row
of Table III and show the great improvement ob-
tained especially for orientationD. For this ori-
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entation it also appeared necessary to chan e the
normalization b 0.35~~

' r ey . ~p in order to make up for the
missing area between 5.81 and 7.4 mrad~ 0

In order to illustrate the relative import
the enhancemncement and the correction for the instru-
mental resolution Fig. 8 shows the r
en a ion A wi»en a A ith each correction removed in turn.
It is clear that the ca e correction for enhancement is
the more important one. Without i
ca c ated curve is too high relative to the low-
momentum part and the familiar bul e"'"at low
momenta is absent.

2. CuZn alloy

Of course the o
techni u

p wer of the positron ann'h I t
que does not lie in pure metals bu in

i iR ion

ordered alloys "4'4'a oys. ' ' We therefore present in Fi .
9 two-dimensional an

lg.

Cu Zn
ngular correlation curves f

calculated on the basis of th
n or

band model.
i 0 e rigid-

el. The Fermi energy E =0.656 R
obtained from the

Ry WRS

e density-of-states curve. The
Fermi-surface radii k = 0.909]pp Q] ]p 0.830, and

I I I I I I I I

k,«„=0.266, all in units of 2ii/a a ree
well with the ATA ' . evalues of Bansil et g/ " The
curves have been enhenhanced following Eq. (6) with
b 'a = 0.187 and c/a = 0.128

1. )' — . . The same value z =0.20 as for
Cu has been used

RS Or Pure
ut no instrumental resolution

function has been folded in. The di
o e reak in thee enhancement factor at the

e in a enhancedzone faces are clearly visible in all
curv es. In rea1it hy, owever, the enhancement is
expected to extend across ths e zone faces like in
pure Cu and the discontinuities will be absen

s ri ing feature is the little peak at 2 5
mrad in the curcurves for orientation B th tR 1S due

n ribution of the neck region E h

ment f
i n. n ance-

the o
urther amplifies the peak. Th e curves for

e other orientations are rather featurer eatureless. The
e e ween the enhanced and unenhanced

curves is generally the same for allr a orientations;
ge in e central part and a lower hi h-m-

mentum art fop or the enhanced results. Full two-
dimensional data have so far been u

i . -at. o Zn, ' and data for Cu Zn
will soon be available. " 0.7 Oo 3
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IV. DISCUSSION

Visual inspection of Figs. 4-7 shows that the
agreement between calculat d

excellent ex
ion an experiment is

, except perhaps for the points between
0 and 2 mrad for orientation g. Yet

va ues of o in the last row of Table III (from
-2.5 to -16.3 for theor e best -fits) and comparing th
with the r o indin ap obabilities given in Sec. IID of findin a

0 i the measured and calculated

that the
curves represent the same distributi t ''

u ion, i is clear
e calculations are less than erfe

remainin dis ere
an perfect. The

g iscrepancies are of the ord f 0.5
p, = ). It is unlikely that there is

the level of acc
or ese. The 0.5% level is thou ht t b

accuracy of many parts of the calcula-
tion. To improve on this one

e ubbard approximation scheme by a full a
mented lane wp ave calculation and corn t th

u aug-

ei envalu'g ues and' overlap integrals on f'
mpu e e
R g

a employed in the present work. Also
convolution with the

r. so, the
i e p, resolution may have to be

performed more accuratel d
u fthue o e resolution.

e y, epending on the val-

uncertaint in
u . Furthermore, there is th

y in the crystal potential, the exchan e
e

part should be subtracted from the rom the positron lattice
p ential, and one would possibl ha
the influence of non-muffin-tin

si y ve to consider
in- in potential terms on

1 the
electron wave function Fo e positron and e

y, core enhancement ma, well
e s. in-

may we be somewhat
epen ent and there ma

certaint i
may be some un-

y in the coefficients in Eq. (6).
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The residual discrepancies that prevent g from
reaching minimum values between --3.0 and + 3.0
as the core fraction z is varied also cause some
uncertainty in the correct value of n. This is il-
lustrated by the decrease in the values of o. that
correspond to the minimum in g in going from row
6 to row V in Table III. The present value of
o -0.20 is much lower than the value of -0.5 found
in Al" and somewhat lower than expected. .The
lower density of conduction electrons in Cu results
in an averaged conduction-electron enhancement
e« -6, i.e., 1.4 times that for Al (e~' -4.2}."
This ratio is not very sensitive to the exact form
of the momentum dependence of e „d. Calculations
of the core enhancement c „in Cu are not avail-
able, but as the binding energies of the Cu 3s-3p
and the Al 2s-2p shells are about equal, it is un-
likely that c~~„will be very different from c"', .
Thus one would expect o0.5/1.4 =0.26, nearly a
factor of 2 larger thanfoundinthisstudy. Accord-
ing to Carbotte and Salvadori" c~'„-2.8, whereas .

a -0.5, as found by Mader et al. ,
"together with

4.2 implies &,",'„-2.l. The present value of
a-0.20 would mean ~c~ =Or~& -I.2, significantly
lower than eA,'„. In this respect it is interesting to
note that Lynn et a/. 4' in their study of the core
enhancement in Al have found that for momenta
22p~ the core enhancement appears to be no more
than a few tens of percent. Possibly, the introduc-
tion of a momentum-dependent core enhancement
factor, decreasing for P 82p~, could resolve this
discrepancy. Besides being physically attractive
(tightly bound core electrons are expected to cor-
relate less with the positron than more loosely
bound electrons} this would improve the agreement
for at least two of the investigated orientations (A
and C). Finally, it should not be excluded that the
low value of n could (partly) be a result of the re-
sidual discrepancies mentioned at the beginning of
this paragraph, and that an increased accuracy of
the calculations could raise a to a value more con-
sistent with the expected core enhancement.

In long-slit angular correlat'ions the core con-
tribution is much more important (as a result of
the double integration) than in point-slit curves.
Yet, in most calculations of long-slit curves'
the core is included with unit weight. In view of
the low a found in this work it is not surprising
that these calculations, while able to predict the

anisotropy to a high precision, always seem to
overestimate the high-momentum content of the
long-slit angular correlations. In fact, taking o. = 1
produces the same effect in our calculated point-
slit curves.

The success of the present calculations is for a
large part due to the use of the enhancement cor-
rection in the energy-dependent form Eq. (6) rather
than in its more familiar momentum-dependent
formulation Eq. (1). This does not mean that Eq.
(6} fully describes enhancement in real metals.
In particular, it does not provide the enhancement
af the umklapp components which is needed to fit
the experimental points at p, values in the small
interval just beyond a zone face. In spite of this,
the present approach works remarkably well. If
it turns out to be equally successful in other d-band
metals, it might induce the many-body theorists to
develop a more general description of enhancement.
Until such a theory becomes available Eq. (6) may
be corisidered as an empirical prescription for
handling enhancement in copper and possibly also
other d -band metals.

V. CONCLUSIONS

The present study has demonstrated that band-
structure calculations are capable of predicting
(point-slit) angular correlations of annihilation
quanta in Cu to a high degree of accuracy. An

essential ingredient of this success is the energy-
dependent "Kahana enhancement" proposed in this
paper in combination with a reduced core contribu-
tion. A careful comparison of theory and experi-
ment confirms the theoretical results of Hede and
Carbotte concerning the enhancement of umklapp
components. No indication is found of a de-en-
hancement for momenta just beyond a zone face.
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