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Very recently, Woods and Svensson have reported neutron scattering experiments which indi-
cate that the temperature-dependent weight of the elementary excitation resonance in superfluid
“He is directly proportional to the superfluid density p (7). We argue that this result can be
easily understood within the general framework of the standard field-theoretic formulation of a
Bose-condensed system and that it gives strong evidence in favor of the regularity hypothesis in-

troduced by Hohenberg and Martin.

Recently Woods and Svensson have reported' a
careful set of measurements of S(Q, w) for *He as a
function of the temperature. They found that their
results (from 1.00 to 2.27 K) could be well described
by?

S(Q, ) =&pr)ss(g, ) +£—"(;T—)S,,(Q, w . ()

Here p,(T) is the macroscopic superfluid density
which enters in low-frequency long-wavelength
phenomena described by two-fluid hydrodynamics
[while p,(T) =p — p,(T) is the macroscopic normal-
fluid density]. Perhaps the simplest way of describing
the decomposition in Eq. (1) is that S;(Q, w) is what
S(Q, w) reduces to for T << T,, while S,(Q, w) is
what one obtains for 7 > 7,. The "superfluid" part
S,(0, w) is strongly peaked at the Landau quasiparti-
cle energy w(Q) and thus the Woods-Svensson
results mean that the weight of phonon-roton excita-
tion is directly proportional to the supei'flgid density.
For the values of w and Q studied (0.80 A™!

=Q =1.93 A™Y), it is well known? that such experi-
ments are probing the collisionless region and not the
hydrodynamic region. As a result, it might seem
surprising' that the strength of the quasiparticle reso-
nance in S(Q, w) is proportional to ps(7T).

In the present article, we show that the main
results of Ref. 1 can be naturally explained as a direct
consequence of the assumption that superfluid *He
has a Bose condensate. More particularly, we point
out that the general field-theoretic expression*™® for
S(Q, w) for a Bose-condensed system naturally
separates into a "singular” and a "regular" part (to be
defined shortly). If we then make the regularity hy-
pothesis of Hohenberg and Martin® (namely, that the
vertex functions and self-energies are nonsingular
functions of Q and w in the collisionless regime),
then it immediately follows that: (a) The regular
part of S(Q, w) is a broad structure and can be identi-
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fied with what Woods and Svensson call the
"normal-fluid" part. (b) The singular part of S(Q, w)
exhibits a single sharp resonance with a weight pro-
portional to p,(7) and can be identified with the "su-
perfluid" part.

In fact, point (b) is already implicit in the paper by
Hohenberg and Martin® as well as in some unpub-
lished work by Pines and Nozieres,’ although no par-
ticular attention was called to it by these authors. In
the present article, we critically review the key points
of the Hohenberg-Martin analysis (largely unknown)
and apply it specifically to understanding the Woods-
Svensson results.

We also recall that one has a completely different
structure for S(Q, w) in the hydrodynamic region at
finite temperatures since it is known® that Dyson-
Beliaev self-energies have singularities related to the
existence of second sound (and thus the regularity
hypothesis is not valid). As a result, the first-sound
resonance in S (Q, w) has a weight which is essential-
ly temperature independent [i.e., proportional to p,
instead of p,(7T)]. Thus, a consequence of.our
analysis is that an expression with a form such as Eq.
(1) will only be valid in the collisionless regime (say
0>02A.

A diagrammatic analysis™® of the density-density
correlation function X,, shows that all contributions
can be divided into two categories, depending on
whether they contain the single-particle Green’s func-
tion Gag(Q, w) -as a separate factor or not. The con-
tributions to X,,(Q, w) which do (proper parts) give
the so-called "singular" or condensate part. The im-
proper parts constitute the "regular” or background
part. Thus we have

Xun (0, @) =X5(0, w) + X2 (0, w) , )
with '

X5 (0, @) =3 A (0, 0) Gop(Q, 0 AP(Q, w) , (3)
by
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and

XoB(Q, w)
1-V(QIX$(Q o) '

where X£(Q, ) is the irreducible density-density
correlation function and A®(Q, w) are certain vertex
functions which arise from the presence of a conden-
sate (ng #0). The formal structure of these results
is made more transparent by systematically decom-
_posing all functions into irreducible (labeled by 0)
and reducible parts, depending on whether diagrams
can be split into two by cutting a single interaction
line. In particular, one finds that’~!! the single-
particle self-energy is given by

X2 (0, w) = ()]

A%(Q, w) AY(Q, )

ER(Q, w) ’
(%)

3,500 ) =22(0, w)+ V(Q)

where
(0, 0) =1-V(Q)Xxf(0, w) .

and V(Q) is the Fourier transform of the *He intera-
tomic potential.

Physically, the distinction between X,, and x5, is
quite simple. X,, involves density fluctuations of the
whole system,

fo=34)dp0 . G

14

while X2 gives the density fluctuation spectrum of
the noncondensed atoms (i.e., atoms with finite
momentum)

. ata

fig="3, dydpig . ™

p#0,-Q

Thus we have X2 =X; ;. Clearly, if there is no con-
densate (T > T,), XS, vanishes and the full density
response function is given by Eq. (4). The additional
presence of a term in X,,, which is directly propor-
tional to the single-particle Green’s function, is en-
tirely due to the existence of a condensate and makes
the dynamics of superfluid *He quite different from
normal *He. XxJ5, describes density fluctuations which
involve adding or removing atoms to and from the
condensate.

We emphasize that the results summarized by Eqgs.
(2)—(5) are exact and apply to both the hydrodynam-
ic and collisionless regions at all temperatures. At
the present time, we know G.,;,B and X,, in the hydro-
dynamic region from the calculations of Hohenberg
and Martin®?® but microscopic calculations for the col-
lisionless region have only been carried out at
T =0 °K in the long-wavelength limit.>"!' Our pro-
cedure is to accept the regularity hypothesis of
Hohenberg and Martin, namely, that the self-energies
and vertex functions such as A¥® are smooth func-
tions of Q and w in the collisionless domain. The

reason for this assumption® is that if the self-energies
were singular, then G,4(Q, ») and hence X5 (0, w)
would exhibit two resonances (as in the hydrodynam-
ic region), rather than one as observed in inelastic
neutron scattering."'> We note that any sharp reso-
nance exhibited by X2 (Q, w) in Eq. (4) as a result of
the vanishing of the denominator €z (Q, w) would
also give rise to a singular self-energy [see Eq. (5)].
From the Chalk River results,! however, we see that
X2 (Q, ) only exhibits a very broad structure. This
is what we expect, of course, if the regularity hy-
pothesis is valid. In the hydrodynamic domain, the
two terms in Eq. (2) do not give rise to distinguish-
able parts of X,, and hence (2) is not useful. In this
region, x,ﬁ, and X3, both exhibit first and second
sound poles.?

Momentum current-current correlation functions
also may be split into singular and regular parts in a
manner completely analogous to Eq. (2). We refer to
Refs. 5 and 11 for a systematic diagrammatic analysis
for all three correlation functions X,,,, Xn.g;» and Xgi,gj.

All these functions have the same poles and more-
over the regularity hypothesis must be valid for all or
none. Our procedure is to first find the strength of
the resonance in the longitudinal part of the momen-
tum current-current correlation function, making use
of the fact that certain exact limiting values of

X4 (0, w) are known. Then we use the equation of
continuity given by

X (0, @) = Tn% (X, (0, ) +pl @)

to find the resonance in X5,. As discussed in Ref. 6,
the condensate part of Xgi‘gj can be related to the su-
perfluid velocity-velocity correlatiog function, which
in turn is directly proportional to G,g. One finds'?
the longitudinal part of the condensate part of'xgi.gj is
[compare with Eq. (3)]

XS(Q, &) = FL(0, w) [7% 80 ) |FL(Q. o), (9
0

where
g(Q, w) = %[ Gll(Q, w) - G{z(Q, w)]

and F£(Q, w) is a certain vertex function which we
must determine. We proceed as follows.

As discussed at length in the literature one of
the most fundamental characterizations of the super-
fluid state of “He is that the condensate does not
contribute to the transverse current response func-
tion, i.e.,

Qlit_\?o X(Q, 0=0)=—p, . (10)

6,713

In contrast, Eq. (8) gives

Xég(Q,w=0)=~p=—(ps+p,,) . ay
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In terms of the field-theoretic decomposition into
singular and regular parts discussed above, we have®

éi_'n}ox,f,’{(Q,w=O)=—p,,, (12)
é@o x$(Q 0=0)=0. 13)

Moreover, since the nonsuperfluid should not distin-
guish between a transverse and longitudinal response
to a static, uniform vector potential, Eq. (12) implies
that

éiTox‘g’(Q,w=0) =—p,. 14)
Finally, combining Eq. (14) with Eq. (11), we have
33’0 XG(Q, 0=0)=—p; . (15)

Combining Eq. (15) with another exact result,® !> the
so-called "Josephson sum rule"

) nom?

QhTO G(Q, w=0)=~ o0 (16)
it follows from Eq. (9) that

Q1)1310F’C(Q.w=o) =p(T) . a17)

We defer discussion of how small Q must be for Eq.
(17) to be valid.

Using the regularity hypothesis, we next argue>®
that in the collisionless long-wavelength region, the
Dyson-Beliaev self-energies in §(Q, ) may be ex-
panded around their Q =0, w =0 values. Making use
of Eq. (16), we thus conclude that the singular part
of G(Q, w) must have the form

ﬂom2 v2
Ps wZ —_ v2Q2

S0, w) = (18)

in the phonon region.!* Combining this with the as-
sumption that, in the collisionless region, the vertex
functions F-(Q, w) are smooth functions and hence
can be approximated by Eq. (17), we see that the
resonant part of Eq. (9) is given by ‘

psv2Q2
(D2 — v2Q2 .

XS0, w) = (19)

Taking the imaginary part of the expression in Eq.
(19), it immediately follows from Eq. (8) that the
resonant part of S.(Q, w) is given by

Sc(0, @) =252 [5(w—vQ) —8(w+v0)] . (20)
m 2mv

Thus we have derived an expression in agreement
with the experimental results of Ref. 1. This agree-
ment is yet another piece of evidence for the correct-
ness of the regularity hypothesis in the collisionless
region.

We see that the quasiparticle resonance has a
weight proportional to p,, even though we are not in
the hydrodynamic two-fluid regime. Deviations from
this simple result can be expected at values of Q such
that Eq. (17) is no longer a good approximation.
From general considerations discussed at length by
Pines and Nozieres” ! the zero-frequency response
functions in Eqgs. (10)—(15) are expected to become
Q dependent when Q¢ =1, where £ is the Bose
coherence distance. Since ¢ == interatomic spacing,
Pines and Nozieres have argued that Eq. (10) [and
hence Eq. (17)] should be valid for Q up to about the
roton wave-vector Qc ~2 A~!, which in fact was the
maximum wave vector studied by Woods and Svens-
son.! This predicted breakdown at larger Q values
should be looked for experimentally.

It is now well known!'? that at low temperatures
(< 1°K), superfluid “He exhibits both a quasiparticle
resonance at w(Q). plus a much broader "multipho-
non" structure at higher frequencies, or order 2w(Q).
We interpret this multiphonon structure as part of
x5 (0, w), arising from the nonsingular part of G'a,, in
Eq. (3). Thus we have

X5(0, w) =x},(0, ) +X4(0, o), 1)

where X}, is the resonant part which we have calcu-
lated above in Eq. (20). It should be kept in mind
that the multiphonon part XL, is quite different from
X2, the latter being associated with a structure'
which is concentrated at lower frequencies. X2,
describes the density fluctuations in the excited
atoms (P #0) and is present both above and below
T,. In contrast, X)), is intimately tied in with the ex-
istence of a condensate. It ceases to exist (as does
x.,) for T > T,. At the present time, we have no
good microscopic calculations of either X}, or x5, at
finite temperatures. Whether X2, can indeed be ap-
proximately by the second term given in Eq. (1) can
only be answered by microscopic calculations based
on Eq. (4).

As we mentioned in the Introduction, Hohenberg
and Martin® as well as Pines and Noziéres” 'S were
the first to emphasize that, in the collisionless region,
the condensate and background parts in Eq. (2)
might be expected to give rise to distinguishable parts
of the inelastic neutron scattering cross section. In
fact, Pines and Nozieres did not give a clear micros-
copic definition of the two response functions but
their physical description clearly corresponds to Egs.
(3) and (4) [or Eq. (6.38) of Ref. 6]. These early pa-
pers concentrated on the temperature dependence
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of the quasiparticle energy,!* rather than on its
strength as we have done.! Moreover, little discus-
sion of X5,(Q, ) was given. On the other hand, we
note that Pines'*!7 did conjecture that superfluid *He
at finite temperatures might exhibit a quasiparticle
resonance distinct from a broad zero-sound mode, in
essential agreement with the experimental results of
Woods and Svensson.!
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