NMR observation of field-induced domain reorientation in antiferromagnetic KNiF₃

M. Engelsberg Departamento de Física, Universidade Federal de Pernambuco, 50.000-Recife-Pernambuco-Brasil (Received 28 November 1978)

It is shown that the process of field-induced domain reorientation that takes place in cubic antiferromagnets strongly affects the ¹⁹F NMR line shape of the nearly isotropic cubic antiferromagnet KNiF₃.

I. INTRODUCTION

In uniaxial two-sublattice antiferromagnets it is well known that a sharp transition to a "spin-flop" (SF) phase takes place at a critical field $H_{cr} = (2H_A H_E)^{1/2}$, where H_A and H_E are anisotropy and exchange fields, respectively $(H_E >> H_A)$. In cubic antiferromagnets however, the situation is quite different. In the absence of an applied magnetic field a domain structure must exist such that the sublattice magnetization within each type of domain is oriented with equal probability along any axis of a set of fourfold axes of the crystal.¹ The application of a magnetic field causes domain-wall movement and different configurations are possible depending upon the direction and strength of the applied field H_0 . As the field is increased, domain reorientation can take place towards a configuration where the sublattice magnetizations are preferentially aligned perpendicular to the applied field with a small tilt towards \vec{H}_0 by an angle $\theta = \arcsin(H_0/2H_E)$. Such a "domain flopping" however, can be completed in a cubic antiferromagnet at field strengths considerably smaller²⁻⁵ than the critical field H_{cr} and can also differ from the sharp SF transition in uniaxial systems in other important aspects.

Although the existence of antiferromagnetic domains and their general behavior in an applied field have been predicted some time ago,⁶ the details of AF-SF domain configurations in cubic² as well as uniaxial⁷ systems have been subject to careful experimental study only recently. The purpose of this paper is to illustrate the effect of field-induced domain reorientation upon the nuclear magnetic resonance of a cubic antiferromagnet.

In the case of KNiF₃ there is also a different reason to inquire about the AF-SF domain structure. KNiF₃ is a nearly isotropic antiferromagnet with $H_A/H_E \sim 7 \times 10^{-5}$. For a fully isotropic threedimensional antiferromagnet it has been shown by Fisher, Nelson, and Kosterlitz⁸ that the field dependence of the ordering temperature should be markedly different from the mean-field prediction. Such behavior has, recently been confirmed experimentally⁵ in KNiF₃ for fields large enough such that the crystal contained predominantly "perpendicular" domains. For lower fields however, Petit, Ferré, and Nouet² have concluded from magnetic circular dichroism measurements that "parallel" domains prevail over perpendicular ones for $\vec{H}_0 \parallel [001]$. If a single domain crystal with the sublattice magnetization parallel to \vec{H}_0 could be obtained, measurements of the ordering temperature as a function of magnetic field could clarify the magnetic phase diagram of KNiF₃.

The two classic examples of antiferromagnets that remain basically cubic at temperatures well below the ordering temperature T_N are RbMnF₃ and KNiF₃. In zero applied field, four types of equivalent domains with their sublattice magnetizations along the body diagonals of the cube exist in RbMnF₃. With a magnetic field applied along a [001] axis, domain reorientation takes place giving rise to a configuration of two types of perpendicular domains⁴ at fields somewhat smaller than $H_{cr} = 2.7$ kOe. In KNiF₃, a rather different behavior has been observed.^{2,3} Three types of domains have been identified with their sublattice magnetizations respectively oriented along [100] (d_x) domains), [010] (d_v domains), and [001] (d_z domains). Application of a magnetic field along [001] leads to the complete extinction of d_z domains at field strengths H_{df} , reportedly dependent upon sample size. Values of H_{df} between 8 and 20 kOe, much smaller than $H_{cr} = 44$ kOe, have been observed² in KNiF₃ crystals of various sizes. Moreover a threshold field also appears to exist below which no domain-wall motion takes place. In this low-field region the volume fraction of d_{z} -type domains has been inferred² to be considerably larger than that of perpendicular domains. It is worth pointing out however that some of the above observations are not well understood. For a perfectly cubic, strain-free crystal, one would expect to find in zero-field domains of d_x -, d_y -, or d_z -type with equal probabilities. Neither is it clear from a microscopic point of view, what

5942

©1979 The American Physical Society

FIG. 1. (a) ¹⁹F free-induction-decay signal in antiferromagnetic KNiF₃ at T = 10 K for $\vec{H}_0 \parallel [001]$ and frequency $\nu = 29.828$ MHz. (b) ¹⁹F FID signal in KNiF₃ under identical conditions as in (a) except that the frequency is $\nu = 20.113$ MHz.

would be the origin of the threshold field for domain-wall motion in KNiF₃.

II. EXPERIMENTAL RESULTS AND DISCUSSION

The effect of field-induced domain reorientation upon the nuclear magnetic resonance of KNiF₃ was examined using a conventional pulsed NMR spectrometer to detect ¹⁹F free-induction decay (FID) signals in KNiF₃. The crystal had the shape of a parallelepiped of size $5 \times 6 \times 7$ mm³ and was oriented by x-rays with a [001] axis parallel to the external field. In the temperature range $10 \le T \le 78$ K no observable change in the FID signals was detected at constant magnetic field. The ¹⁹F spin-lattice relaxation time⁹ however varied over three orders of magnitude in this range of temperatures.

Figure 1 (a) shows a ¹⁹F FID signal in KNiF₃ at T = 10 K. The frequency was $\nu = 29.828$ MHz and a magnetic field $H_0 = 7415$ Oe was applied along a [001] axis. The FID exhibits a periodic pattern of period $\tau = 4.5 \pm 0.3 \mu$ sec and corresponds to the Fourier transform of a spectrum of two resolved lines separated by a splitting

$$(\Delta H)_{\text{exptal}} = H_0 / \nu \tau = 55.3 \pm 4 \text{ Oe}$$
 (1)

A rather dramatic change occurs in the FID when the magnetic field is decreased by only 30%. A mere reduction of the splitting by this amount would have still produced a clearly observable periodic pattern of period $\tau = 6.2 \ \mu \text{sec.}$ However a quite different behavior is observed. Figure 1(b) shows a FID signal obtained under the same conditions as in Fig. 1(a), except that the frequency has been reduced to $\nu = 20.113$ MHz. The periodic pattern of Fig. 1(a) is no longer detectable in the FID of Fig. 1(b) which appears to correspond to a single line. This line is homogeneously broadened as evidenced by the absence of a spin-echo signal following a 90-180° pulse sequence. The fact that no additional broadening is observed in Fig. 1(b) and that no spin-echo signal is detected seems to confirm that this line is largely a single line rather than a merger of several lines.

At $T > T_N = 246$ K the observed FID signals for $\vec{H}_0 \parallel [001]$ correspond to the known spectrum of two lines reported¹⁰ for KNiF₃ in the paramagnetic phase. In the higher frequency ($\nu = 29.828$ MHz) case, the only observable change in the paramagnetic phase is a slight modification in the shape of the decay which becomes exponential while the periodic pattern remains practically unchanged. At the lower frequency ($\nu = 20.113$ MHz) however, the periodic pattern absent in the antiferromagnetic phase is present, as expected in the paramagnetic phase with a proportionally larger period $\tau = 6.2 \pm 0.5 \mu$ sec.

One can understand the above results for $T < T_N$ as being a consequence of the reorientation of domains under the applied field. For a configuration where d_x -, d_y -, and d_z -type domains coexist one should expect in principle four NMR lines for $\overline{H}_0 \parallel [001]$. The origin of these lines can be simply understood in the following manner. In each type of domain two nonequivalent fluorine sites exist in the cubic perovskite structure with the F-Ni internuclear vector either parallel ("parallel sites") or perpendicular ("perpendicular sites") to \vec{H}_0 . In addition, fluorines in d_z domains also have different Larmor frequencies from fluorines in d_x and d_y domains because of the considerable difference between the values of the parallel (χ_{\parallel}) and perpendicular (χ_{\parallel}) electronic susceptibilities in the antiferromagnetic phase at low temperatures.¹¹ This gives in principle a total of four lines.

The shift between the different lines arises from the hyperfine interaction between each fluorine and its two neighboring Ni^{2+} ions in different sublattices, as well as from the dipolar interaction between the fluorine nuclear magnetic moment and the magnetic moments of the Ni^{2+} ions. A simple adaptation of the calculations valid for the paramagnetic case¹⁰ yields the following shifts:

$$(2\pi\nu/\gamma_n - H_{\rm II}^{\rm xy})/H_{\rm II}^{\rm xy} = 2A_{\rm II}\chi_{\rm I}/Ng\,\mu_{\rm B}\hbar\gamma_n +\chi_{\rm L}S_{\rm II}^D/N , \qquad (2a)$$

5944

$$(2\pi\nu/\gamma_n - H_{\parallel}^z)/H_{\parallel}^z = 2A_{\parallel}\chi_{\parallel}/Ng\,\mu_B\hbar\gamma_n$$
$$+\chi_{\parallel}S_{\parallel}^D/N , \qquad (2c)$$

$$(2\pi\nu/\gamma_n - H_1^z)/H_1^z = 2A_\perp \chi_{\parallel}/Ng\,\mu_B \hbar \gamma_n$$
$$-\chi_{\parallel} S_{\parallel}^D/2N \qquad (2d)$$

Where H_{\parallel} , H_{\perp} refer to resonance fields at frequency ν for parallel and perpendicular sites, whereas H^z , $H^{x\nu}$ denote resonance fields for d_z and d_x , d_y domains, respectively. A_{\parallel} and A_{\perp} in Eqs. (2) are components of the hyperfine tensor in the local coordinate system.¹² S_{\parallel}^D is a dipolar sum for parallel fluorine sites, N is Avogadro's number, g is the Ni²⁺ g factor, γ_n is the ¹⁹F gyromagnetic ratio, and μ_B is the Bohr magneton.

Equations (2c)-(2d) imply that the resonance shifts for d_z domains are proportional to the parallel molar electronic susceptibility χ_{\parallel} . Typical values of χ_{\parallel} in antiferromagnets¹¹ for $T \ll T_N$ indicate however, that $H_{\parallel}^{z} - H_{\perp}^{z}$ should be much smaller than the resonance linewidth of each line. Thus for fluorine nuclei in d_z -type domains one expects a single line at the undisplaced field $2\pi \nu/\gamma_n$ as observed in our KNiF₃ sample for $H_0 \approx 5$ kOe [Fig. 1(b)]. In domains of d_x -, and d_y -type however, the sublattice magnetizations are canted. The corresponding shifts in Eqs. (2a) and (2b) are proportional to χ_1 which is comparatively large and temperature independent. Thus for a crystal containing only perpendicular domains one expects a spectrum of only two lines as observed for v = 29.828 MHz [Fig. 1(a)]. Moreover the shift between both lines is given to a very good approximation by

$$H_{\perp}^{xv} - H_{\parallel}^{xv} = \frac{2\pi\nu\chi_{\perp}}{\gamma_{n}} \left(\frac{2(A_{\parallel} - A_{\perp})}{Ng\,\mu_{\rm B}\,\hbar\gamma_{n}} + \frac{3S_{\parallel}^{D}}{2N} \right).$$
(3)

Substituting into Eq. (3) the following numerical

- ¹P. H. Cole and W. J. Ince, Phys. Rev. <u>150</u>, 377 (1966). ²R. H. Petit, J. Ferré, and J. Nouet, J. Phys. (Paris) 36, 431
- (1975).
- ³M. Safa and B. K. Tanner, Philos. Mag. B <u>37</u>, 739 (1978).
 ⁴Y. Shapira and N. F. Oliveira, Jr., Phys. Rev. <u>18</u>, 1425 (1978).
- ⁵C. C. Bezerra, Y. Shapira, and N. F. Oliveira, Jr., Phys. Rev. B (to be published).

values obtained from Ref. 10:

$$g = 2.28 , A_{\perp} = 25.1 \times 10^{-4} \text{ cm}^{-1} ,$$
$$A_{\parallel} = 51.5 \times 10^{-4} \text{ cm}^{-1} ,$$
$$S_{\parallel}^{D} = \left(\sum_{i} \frac{1}{r_{i^{3}}} (3 \cos^{2} \theta_{i} - 1) \right)_{\parallel}$$
$$= 5.636 \times 10^{23} \text{ cm}^{-3}$$

(corrected for nonspherical Ni²⁺ ions), yields for $\nu = 29.828$ MHz,

$$H_{\parallel}^{xv} - H_{\perp}^{xy} = 58.9 \text{ Oe} , \qquad (4)$$

in good agreement with $(\Delta H)_{expt}$. A value

 $\chi_1 = 1.755 \times 10^{-3} \text{ cm}^{3/\text{mole}}$

corresponding to the measured 13 susceptibility at the Néel temperature corrected for orbital contributions¹⁰ was used in Eq. (3).

From this discussion we are led to the conclusion that domain reorientation has indeed taken place in our KNiF₃ crystal as the magnetic field, parallel to [001], was decreased from $H_0 \approx 7$, 4 kOe to $H_0 \approx 5$ kOe with a large reduction of d_x and d_y domains in favor of d_z domains. The existence of a single line at low fields would also confirm the presence of a comparatively large volume fraction of parallel domains as was suggested in Ref. 2. It is also apparent that AF-SF domain structure can have a considerable effect upon the nuclear resonance of a cubic antiferromagnet and must probably be taken into account in any detailed study of the NMR line shape or the spin-lattice relaxation mechanism in these systems.

ACKNOWLEDGMENTS

We wish to thank Dr. P. A. Fleury of Bell Laboratories for kindly providing the KNiF₃ crystal, Professor J. Marcílio C. Ferreira for his x-ray work, and Professor S. M. Rezende for useful discussions. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Techlógico, FINEP (Financiadora de Estudos e Projectos) and CAPES (Comissão de Apereiçoamento de Pessoal de Nível Superior).

- ⁶L. Néel, Proceedings of the Kyoto Conference on Theoretical Physics 1953 (unpublished).
- ⁷A. R. King and D. Paquette, Phys. Rev. Lett. <u>30</u>, 662 (1973).
- ⁸J. M. Kosterlitz, D. R. Nelson, and M. E. Fisher, Phys. Rev. B <u>13</u>, 412 (1976).
- ⁹M. Engelsberg, S. M. Rezende, and E. A. Soares, J. Appl. Phys. 50, 1929 (1979).

¹⁰R. G. Shulman and S. Sugano, Phys. Rev. <u>130</u>, 506 (1963).

- ¹¹S. Foner, in *Magnetism*, edited by G. T. Rado and H. Suhl (Academic, New York, 1963), Vol. 1, Chap. 9.
- ¹²E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance

in Ferro and Antiferromagnets (Halstedt, New York, 1972), Chap. VIII.

¹³K. Hirakawa, K. Hirakawa, and T. Hashimoto, J. Phys. Soc. Jpn. <u>15</u>, 2063 (1960).