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Impurity scattering and residual resistivity of transition metals

Raju P. Gupta* and R. Benedek
Materials Science Division, Argonne National Laboratory, Argonne, Illinois'60439

(Received 22 September 1978)

%'e derive an expression for the residual resistivity of impurities in metals that incorporates both the Bloch-
wave character of the electron states and backscattering by the host lattice. This expression, which involves

the Friedel phase shifts, is closely analogous to a familiar relation for the jellium model, but its derivation is
much more general. Calculations of impurities in noble-metal hosts based on our formula are in excellent
agreement with the numerical calculations of Coleridge, Holzwarth, and Lee.

The calculation of the residual resistivity of
impurities in metals requires both a knowledge of
the scattering T matrix and a solution to the ap-
propriate Boltzmann equation. The standard s.olu-
tions to the Boltzmann equation lead to expres-
sions for the resistivity that involve an integration
of the square of the T matrix weighted by the mo-
mentum transfer. This Fermi-surface integral is
tedious to evaluate in practice.

For simple-metal impurities in simple-metal
hosts the T matrix is often calculated in the Born
approximation under the assumption of weak
pseudopotentials. If the electron states can be
expressed as single orthogonalized plane waves
(OPW), as in alkali metals, the Fermi-surface
integrations are considerably simplified. If two
or more OPW's are required, as in polyvalent
simple metals, ' a tedious Fermi-surface integra-
tion is necessary. For transition- and noble-
metal hosts, the 1' matrix is more difficult to
evaluate; however, a useful procedure based on a
phase-shift formalism has recently been develop-
ed for this purpose. ' Nevertheless, only a few
calculations of the resistivity of impurities in
noble-metal hosts' have been attempted so far be-
cause of the large amount of work involved in
calculating the integrals over the Fermi surface.
The purpose of this paper is to show that the
residual resistivities of impurities may be esti-
mated directly from the Friedel phase shifts,
without elaborate Fermi-surface integrations. We
demonstrate that a formula very similar to the
familiar jellium result can be derived in a much
more general framework. The formula is applied
to impurities in noble-metal hosts and is found
to agree well with the results of Coleridge, Holz-
warth, and Lee' (CHL), who performed detailed
numerical integrations over the Fermi surface.

The residual resistivity p can be expressed
in terms of the vector mean free path Ak and the
Fermi velocity vk as an integral over the Fermi
surface'4:
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where vg =Iv-„ I and e is the electronic charge.
CHL have pointed out that a good approximation
to the resistivity is obtained by assuming that the
vector mean free path is parallel to the velocity.
One then obtains
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Here c is the concentration of the impurity and Q

is the unit-cell volume. The transition matrix
1&k~ is give&, by

P-'~(E, r) =pa'a', „~(k E)R'~(E r)Y (r) (4)

where R, (E, r) is the radial wave function and r"

=r/r. The superscript i (h} corresponds to the
case of an impurity (host) atom at the origin. In

principle, a cubic-harmonic representation would
be more appropriate here; however, if the phase
shifts for /& 3 are negligible, as is usually the

which describes the scattering of an electron with
wave function g" in the pure host, by the extra

k
potential of the impurity a V, to a final state P-',k'
in the solid with the impurity.

In order to evaluate Tk k. we make use of the
muffin-tin approximation familiar from the aug-
mented-plane-wave (APW} and the Korringa-Kohn-
Rostoker (KKR) methods of band-structure calcu-
lation. ' For simplicity, we confine ourselves to
cubic lattices with one atom per unit cell. The
potential of the impurity atom is assumed to be
localized so that b.V(r) vanishes outside the muffin-
tin well centered at the origin. We expand the
Bloch function at the origin in terms of spherical
harmonics:
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case, the results are essentially unchanged. ' Out-
side the muffin-tin radius, the radial wave func-
tion may be written as

Substituting Eq. (7) into Eq. (10}, we obtain

R';"(E,r) =g, (zx)+isinq, exp(iqI' )k, (ar) .

Here j, and A, are the spherical Bessel and Han-
kel functions, respectively, g, is the phase shift
of the scattering potential, and E =8'z'/2m is the
energy measured from the muffin-tin zero, where
m is the electron mass. By a standard manipula-
tion T„-~, can be converted into a surface integral.
Employing Eq. (5), one canthen show that

&& sinaq, exp(iraq, ) . (6}

Here ~~ =—~~, and ~~ =a~ A.
—= IA, I exp(ig, ) is the renormalization factor that
describes the effect of backscattering by the host
lattice. ' Since we are interested in scattering
between states on the Fermi surface, Eq. (6) is
evaluated at E =E' =E~, the Fermi energy.
=q', —q", is the difference between the phase shifts
of the impurity and the host. Following Gaspari
Gyorffy, ' we invoke a spherical band approxima-
tion to the coefficients a7

a,~(k, E) =ag (E)Y, (k) . (7)

Although this is clearly a severe approximation,
it nevertheless retains most of the nonstructural
features of a real band structure. Equation (7}
has been employed in the calculation of the elec-
tron-phonon coupling constant ~, which i' olves
similar integrations over the Fermi surface and
essentially similar matrix elements between scat-
tering states. These calculations have yielded ac-
curate values of ~ for a large class of materials. ~

Substituting Eqs. (7), (6), and (2) into (1) and per
forming the integrations we find
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where U~ is the average Fermi velocity and 8,
=A, exp(i47, ) sinDq, . Using the optical theorem,
CHL have shown that the scattering factor S, can
be expressed in the form

(9)

0 5
' 8~22m~ (10)

Si =I s sink exp(iver)

where Q, =Aq, +8, is referred to as the Friedel
. phase shift and

where N(E~) is the density of states of one spin at the
Fermi energy. With the help of Eqs. (9) and (11),
we can rewrite Eq. (8) in the form

One notes a remarkable similarity between Eq.
(12) and the corresponding relation in the free-
electron approximation. The presummation con-
stant on the right-hand side of Eq. (12) reduces
to 4'/e'&~ in the free-electron case. Equation
(12) does, however, incorporate several aspects
of band structure, viz. , the average velocity of
the electron at the Fermi surface, v„, the density
of states per spin at the Fermi energy of the host
N(E„), and the backscattering phase shifts 8,.
Moreover, bg, contains nonstructural informa-
tion about the host, in contrast to the free-elec-
tron formula, in which only the impurity phase
shift appears.

We have used Eq. (12) to calculate p for a var-
iety of impurities in noble-metal hosts. ' The re-
sults are presented in Table I where they are
compared with the results of calculations by CHL,
who integrated Eqs. (1) and (2) numerically. Ex-
perimental values are'also given. In the present
calculations, we employed the phase shifts given
by CHL, which were determined by fits to Dingle
temperatures' and/or Fermi-surface data' ob-
tained from de Haas-van Alphen experiments on
dilute alloys. The present results agree with
those of CHL and with experiment to within a few
percent in essentially all cases. Only in the case
of Au(Zn) does a substantial (&10/z) discrepancy
exist; its origin is not presently understood. In
view of the simplicity of Eq. (12}, the overall
agreement is remarkably good.

On the basis of Eq. (12), qualitative predictions
can be made about trends in the residual resistiv-
ity for a series of transition-metal impurities in
a given host material. Although the s and P phase
shifts of transition metals are not necessarily
small, d-wave scattering normally dominates the
resistivity, which reaches a maximum when P,
= &&. For transition-metal impurities in simple-
metal hosts, g,

' constitutes the largest contribu-
tion to P,. The phase shift q,'(E~}decreases mon-
otonically as one crosses -a transition-metal per-
iod. For impurities that belong to the first transi-
tion series in an Al host, the resistivity peaks at
Cr." For this impurity a near-resonance occurs;
the phase shifts for elements on either side of Cr
depart increasingly from the resonance condition
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TABLE I. Friedel phase shifts and residual resistivities for dilute noble-metal alloys.

Alloy expt. Eq. (12)

Residual resistivity
(p ~ cm/at. /p)

Eq. (1)

Cu(Ni)"
Cu(Ge)
CG(Au)
Cu(Fe) '
AK(AU)

"
Ag(Sn)
Au(Ag) "
Au(Cu)
Au(Zn) "
CQ(Al)
Au(Ga)

-0.069
0.15
0.182
0.0
0.176
0.201

-0.277
-0.210

0.255
0.21
0.98

-0.038
0.748

-0.087
0.0
0.087
0.786

-0.072
0.077
0.180
0.48
0.41

-0.258
' 0.18
-0.147
-0.93
-0.085

0.223
0.051
0.103
0.237
0.28
0;16

1.11
3.79
0.55

11 5c
0.38
4.3
0.36
0.45
0.95
1.1
2.15

1.11
3:79
0.55

12.0'

0.39
4.30
0.36
0.46
1.00
1.6

1.10
3.76
0.54

12.2
0.38
4.37
0.34
0.48
0.76
1.44
2.09

' Resistivity values from Reference 3.
Phase-shift values from Ref. 3.
From Ref. 4.
Phase-shift values from P. T. Coleridge, J. Phys. F 5, 1317 (1975).
Phase-shift values from Ref. 9.

and therefore lower resistivities are observed.
For transition-metal impurities in transition-
metal hosts, the trends are more difficult to pre-
dict-because of cancellation between the phase
shift of the impurity and that of the host. Further-
more, Eq. (12) is not strictly applicable to the
case of an impurity with a localized spin."

We were unable to test Eq. (12) on transition-
metal hosts other than the noble metals, since
accurate impurity phase shifts are not known.
The spherical band approximation, Eq. (7), may
seem inappropriate to materials with extremely
anisotropic Fermi surfaces such as Mo, W, etc.
It is possible, however, that this approximation
still gives reasonable results i.n calculations
of properties that involve averages over the Fer-
mi surface. As mentioned earlier, surprisingly
accurate values of the electron-phonon coupling
constant ~ were obtained for transition metals on
the basis of the spherical band approximation. '

Two additional consequences of the present re-
sult, Eg. (12), deserve mention. The first con-
cerns the sign of the Friedel phase shifts @, .
Dingle-temperature data may be analyzed to de-
termine sin P„but not the sign of the individual
phase shifts. ' The resistivity is often used to help
resolve this ambiguity and the present formula
greatly simplifies this task. The second point
concerns the ab initio calculation of the resistivity
of vacancies. The calculations presently available

are ba,sed on pseudopotential treatments" or the
jellium model, "which are applicable only t'o sim-
ple metals, at best. Recently an APW technique
was developed to calculate the electronic charge
density in a vacant lattice site in a metal. " This
approach opens up the possibility of calculating
the scattering potential of a vacancy in virtually
any metal. The resistivity calculation would re-
quire the phase shifts of the host atom, the phase
shifts associated with the vacancy potential (which
can be calculated from the charge-density pro-
files), and the backscattering phase shifts 0, .
The latter can be determined by the method des-
cribed by Lee, Holzwarth, and Coleridge. ' There-
fore, the calculation of the resistivity of vacan-
cies in nonsimple metals should now be feasible.

Throughout our discussion we have assumed
that the lattice relaxation around the impurity or
point defect may be neglected, except insofar as
it can be represented by a slightly modified Fried-
el sum, ' according to the effective charge concept
of Blatt. '4 For defects that produce a large distor-
tion field, some reformulation of the theory be-
comes necessary. "
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