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Two-dimensional anisotropic N-vector models are discussed in three contexts. (i) A

comprehensive approach to the description of phase transitions in two-dimensional physical sys-

tems is outlined. It involves the identification of discrete models for critical phenomena in

two-dimensional systems (such as adsorbed thin films) and their investigation by symmetry, du-

ality, and Migdal renormalization-group methods. The identification is based on the Landau-

Ginzburg-Wilson Hamiltonian concept and universality arguments. (ii) Relations among aniso-

tropic continuous-spin Hamiltonians and discrete models are established by the Hubbard

transformation and the Migdal renormalization-group transformation. Discrete models are con-

jectured to be equivalent to ¹omponent continuous-spin models with local anisotropies. For
example, it is shown that the Migdal recursion relations map the continuous-spin, cubic Heisen-

berg Hamiltonian onto the discrete cubic model. (iii) Many of the anisotropic N-vector Hamil-

tonians can be associated with discrete models that have the form of a generalized Potts model.
Such a model, termed (N, N&) model, is defined in terms of two interacting Potts-like vari-

ables associated with each lattice site, and is analyzed by duality and renormalization-group
methods. The (N, N&) Hamiltonian provides a unified description for large classes of discrete

models. The concepts are exemplified by a detailed discussion of the two-dimensional Heisen-

berg model with cubic anisotropy, which has applications to the magnetic n-P phase transition in

overlayers of molecular oxygen on graphite. New experiments for the study of this system are
also discussed.

I. INTRODUCTION

In two-dimensions models possessing continuous
symmetry (such as the classical XY and Heisenberg
model) do not exhibit conventional long-range order
at finite temperatures. ' In contrast, models with
discrete symmetry do undergo phase transitions into
conventionally ordered phases. Obviously, a model
has discrete symmetry when the underlying micro-
scopic variable ("spin") is restricted to point into a
finite number of allowed directions. Examples are Is-
ing, Potts, ' Ashkin-Teller, eight-vertex, ' discrete cu-
bic, ' and discrete planar models. s Those Hamil-
tonians will be referred to as discrete models. %hen
the basic variable is continuous (of fixed or varying
length), the underlying symmetry of the model will

be still discrete if the Hamiltonian includes local an-
isotropy fields. Examples are the classical XY and
Heisenberg models with cubic anisotropy. " Those
Hamiltonians wi11 be referred to as anisotropic
continuous-spin models. In the limit of infinite an-
isotropy, the appropriate discrete model is regained.
A Landau symmetry analysis of discrete models" re-
veals also that they are related~to anisotropic
Landau-Ginzburg-Wilson (LGW) Hamiltonians of
N-component order parameters. "' In this sense,

the whole set of models with discrete symmetry will

be referred to as anisotropic N-vector models. '4

The qualitatively different behaviors of models
with continuous and discrete symmetries indicate that
anisotropies play a very important role in two dimen-
sions. Most theoretical studies have concentrated on
the isotropic and extremely anisotropic limits.
Continuous-spin models with finite anisotropy were
only studied recently. Pelcovits and Nelson' con-
sidered the stability of isotropic N-vector spin systems
against weak anisotropic perturbations in D = 2+ e

dimensions; Jose, Kadanoff, Kirkpatrick, and Nelson'
studied the role of weak symmetry-breaking fields in
the XY model in two dimensions. These studies indi-
cate that the cubic anisotropy is relevant for Heisen-
berg and X ) 3 models. ' For the XY model the
fourfold or "cubic" anisotropy is marginal, whereas
the sixfold symmetry-breaking term is irrelevant. '
In this paper, a renormalization-group argument for
continuous-spin models with relevant symmetry-
breaking terms is presented that applies also to the
case of finite anisotropy. Since such perturbations
iterate to larger values, the approach enables one to
map a weakly anisotropic continuous-spin model onto
a discrete spin model. In the limit of infinite aniso-
tropy, the preferred directions of the continuous-spin
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model become equivalent to the allowed directions of
the discrete model. Here, Migdal's approximate
renormalization-group method' is applied to the clas-
sical Heisenberg model with cubic anisotropy. The
mapping constitutes the first step of a two-step
renormalization-group approach to continuous-spin
models.

Continuous-spin models are of great conceptual
significance, On the basis of a universality hy-
pothesis formulated by the authors, "one expects
that the critical behavior of t~o-dimensional models
and physical systems may be classified according to
the appropriate LG% Hamiltonians. Effective LGW
Hamiltonians can be constructed by Landau sym-
metry arguments"" for physical systems and by the
Hubbard transformation' for discrete models. The
universality hypothesis is then used to relate the phy-
sical system and a discrete model. Various order-
disorder transitions in adsorbed monolayers'9'0 ar|d
magnetic systems" give rise to LGW Hamiltonians
that correspond to those of anisotropic A"-vector

models.
The second step of the renormalization-group pro-

cedure presented here concerns the treatment of
discrete model's. The first and crucial question is the
choice of the "most appropriate" position space
renormalization-group method. ' ' ' In the present
paper the method is identified by, first, observing
that the model of interest (i.e., the discrete cubic
model) is a special case of a more general one. For
the general model, termed the (N, N&) model, a
number of exact results are derived by symmetry and
duality arguments, which yield strong clues concern-
ing the possible phase diagrams. Then, the appropri-
ate renormalization-group method is selected by re-
quiring that it preserve the symmetries of the model
and yield as many of the exact results as possible.
For the (N N&) model, these conditions are best sa-
tisfied by the Migdal-Kadanoff approximate
renormalization-group scheme. ""We expect this
method to yield quite reliable phase diagrams, but
poor estimates for exponents.

The (N Np) modei is of considerable interest in
its own right and, therefore, occupies a large part of
this paper. It is defined as a system with two cou-
pled, Potts-like variables (n= 1, . . ., N and

P =1,... , Np) associated with each site of a two
dimensional lattice. The model provides a unified
description of a large variety of discrete models, in-

cluding the Potts, Ashkin-Teller, planar and other an-
isotropic N-vector models. For example, the % =3,
X&=2 model encompasses the planar six-state
model, which has attracted attention recently. '

The approach is exemplified by a discussion of the
two-dimensional Heisenberg model with cubic aniso-
tropy. This model has applications" to the magnetic
n-P phase transition in overlayers of molecular oxy-
gen physisorbed on the basal plane of graphite. The

II. MIGDAL RECURSION RELATIONS
FOR CONTINUOUS-SPIN MODELS

Jn this section, we present the first step of our
renorrnalization-group treatment of anisotropic
continuous-spin models in two dimensions, using the
Heisenberg model with cubic anisotropy as an exam-
ple. Under the Migdal transformation, it maps onto
the discrete cubic model.

We start from the Hamiltonian for continuous
spins of fixed length i S;i2 = 1, on a square lattice,

(2.1)

The first term represents the nearest-neighbor isotro-
pic exchange interaction and the second one the local
anisotropy field of cubic symmetry. For v )0 the
spins point preferredly along the six (1,0,0) direc-
tions, and for v ( 0 along the eight (1,1,1) direc-
tions.

The model (2.1) is investigated here by Migdal's
approximate renormalization-group method. ' First,
the Hamiltonian is expressed as a sum over contribu-
tions associated with bonds

=- g U«&(s, , s, ),
k+7 (jj)

Lr&"&(s„s,) = rc s,'s,
+ —,

'
v $ [(S; ) '+ (SJ. )']

(2.2)

latter system is being studied experimentally by neu-
tron diffraction, ' specific heat, and magnetic sus-
ceptibility measurements. ' Several other anisotropic
W-vector models are realized experimentally. "' '

This paper is organized as follows. In Sec. II the
continuous-spin cubic Heisenberg model is mapped
onto the discrete cubic model by the Migdal transfor-
mation. In Sec. III the (N, Na) model is introduced
and discussed. Section IV deals with a symmetry
analysis of special cases of the (N, Np) model in
terms of LGW Hamiltonians, obtained by the Hub-
bard transformation. The Migdal-Kadanoff recursion
relations for the (N, N&) model are derived in Sec.
V. This section deals also with the phase diagrams
for the cases N = N&=2 (Ashkin-Teller model) and
N = 3, N& = 2 (six-state model) as obtained by the
Migdal-Kadanoff method. The various concepts con-
verge in Sec. VI, where a comprehensive approach to
phase transitions in two-dimensional physical systems
is outlined. The validity of the universality hy-
pothesis is discussed and the methods are applied to
the n-P transition in molecular oxygen on graphite.
Finally, the work is summarized in Sec. VII.
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F1G. 1. Schematic representation of the Migdal
renormalization-group procedure for A. =2. The new in-

teractions are represented by double wavy lines.
0=

The "splitting" of the single-site anisotropy term has
been used previously. Second, the renormaliza-
tion-group procedure is realized as indicated in Fig. 1.
Every other vertical bond (i.e., Uto') is shifted and
the traces over spins connected to only two (horizon-
tal) neighbors are performed. Then every other hor-
izontal bond is shifted, which yields the new cou-
pling, U ' . Upon iteration, this procedure generates
a recursion relation of the form

—l.0&
0

(I + K)
I.O

1

exp[U "+' (Si, S2)] = I d S exp [Ut" (Sl, S)

+ U'"&(S, S,)]
i

2

FIG, 2. Flow diagram t'or the two-dimensional Heisen-
berg model with cubic anisotropy, as obtained by the Migdal
recursion scheme, Eq. (2.3).

After each iteration, the expansion coefficients

do=co .

@t C1S1 ' S2

$2=C2[3 X(S )'(S )' —1] (2.4)

@ = C, (S",S]'s"S$ +S]'S',S)S* + $', 5fS',S",)

@4=C4 $[(St )'+(S2 )'] —2.4
a

The constants C; ensure orthonormality, i.e.,

d Si d S2$1(SiS2 )@J'(SiS2 ) = &I'J (2.5)

(2.3)

The integration is over the surface of a unit sphere.
We performed the integration in Eq. (2.3) numeri-

cally and at each stage of the iteration characterized
U~" by its projection onto the first few functions of
an orthonormal set. The functions U'"' were
evaluated on a discrete set of points. For a function
of a single spin that possesses cubic symmetry, the
unit sphere can be divided into 48 equivalent trian-
gles. Allowing n points in each triangle, a function of
t~o spin variables, S~ and S2, has to be evaluated at
48n' points; i.e., the same number of integrals has to
be determir|ed for each iteration. To keep the compu-
tation manageable we did not work with a very dense
mesh (high n) For n =10.our integration routine
had about 1% accuracy. Thus, for this value of n the
recursion relations can be used as a qualitative tool to
study the renormalization-grpup flows and to obtain
the global phase diagrams. The functions used to
characterize the coupling Ut")(Sl, Sq) are given by

A "' =
J d Si d S2U'"'(St, Sg) $;(Sl, S2) (2.6)

were evaluated. Of these, Ao"' represents a constant,
](~) was identified as K —T ', and the pn-site an-

isotropy parameter v is proportional to A4.
The projections of the renormalization-group tra-

jectories onto the ((1+K) ', v/(1+ ivy)) plane are
shown schematically in Fig. 2, for both v ~ & 0 and
vto' (0. The isotropic Heisenberg model (vt -0)
does not exhibit a phase transition in two dimen-
sions. ' ' Only twp fixed ppints exist pn the v =0
line, an unstable one at zero temperature and a stable
one at infinite temperature. When the initial aniso-
tropy is nonzero, the recursion relations take the
model (2.1) to the extremely anisotropic limit as dis-
cussed in Sec. I. In this limit the spins can point only

into the preferred directions determined by the aniso-
tropy term. A separatrix between high- and low-

temperature behavior does exist and the critical
behavior is controlled by a fixed point at infinite an-
isotropy, i.e., that of a discrete spin Harniltonian.

Once the appropriate discrete model is identified,
the first stage of the procedure is complete. For
further investigations of the critical behavior and
phase diagram we will use the discrete model as a
starting point.

One notes, that although the initial nearest-
neighbor interaction is isotropic, S; ~ S&, the recursion
relations generate a more general one through the
functions @2, @3,.... Therefore, the Migdal
renormalization-group procedure maps the
continuous-spin cubic Heisenberg Hamiltonian onto a
discrete cubic model exhibiting the most general in-
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—K'(I —5, ,) . (2.7)

In terms of angles between neighboring spins the
correspondence is

E(0) = Ko o, E(180) = Ko &, E—(90) =—K'

A more general discrete model that encompasses the
cubic one is discussed in the next sections.

III. THE (N, Np) MODEL

In this section, we define the (N, N&) model, dis-
cuss it by symmetry and duality arguments, and list
special cases.

A. Definition

The (N, N&) model is a generalization of the Potts
model. 3 Consider a square lattice (or for general D a
hypercubic lattice) and associate with each lattice site
t~o discrete variables that assume N and Np values,
respectively,

a(= I, . . . , N~; P;= I, . ,Np. . (3.1)

teraction consistent with cubic symmetry. For exam-
ple, for the case v & 0 the interaction between two,
nearest neighbors depends on two parameters. The
relative angle between two neighboring spins can as-
sume the values 0, 90, 180, and the two parame-
ters that define the discrete model are the energy
differences E(90) —E(0), and E(180) —E(0). This
general discrete cubic model was investigated by Kim,
Levy, and Uffer and Aharony. ' It can be described
by placing at each site of a square lattice a three-state
Potts and an Ising variable, n = 1, 2, 3 and P = 1, 2,
respectively. The most general nearest-neighbor in-

teraction consistent with cubic symmetry is

—Koo5, 5p, p
—Ko i5, (1 —

5p, p)

Then the (N, N&) model is defined by the Hamil-
tonian

0 0 a., e. p. , p~
[K 5 5

&~.i)

+Ki o(1 —5 )5p p

+Ko i5 (1 —5p p)

+Ki i(I —5 )(1 —5p p)] (3.2)

x =exp(K, o Ko o); xp=exp(Ko ] Koo)

z =exp(K& ~

—Ko o) (3.3)

In the case of a ferromagnetic ground state (i.e.,
Ko o «K~ o, Ko &, Kt ~) the physical parameter space
is in the cube 0 «x,xp, z «1.

Systems described by the Hamiltonian (3.2) exhibit
a rich variety of critical behavior. The models con-
tained in Eq. (3.2), their geometrical interpretations
and symmetries will be discussed in detail in Secs.
III C and IV. Some results for the general (N, N&)
model are summarized belo~.

By rewriting the Hamiltonian (3.2) in the form

The Hamiltonian is invariant under the direct product
of the permutations of the u and P indices. Each
nearest-neighbor pair (i,j ) is associated with four
possible energies. If the variables a;, P; at one site, i,
are fixed, the N N p states at a nearest-neighbor site,
j, divide into four classes characterized by the ener-
gies Ko 0, K~ 0, Ko &, and K~ ~ with the respective
multiplicities 1, N —1, Np —1, and (N —1)
(N& —1). Hence the thermodynamic properties of
the model can be described in terms of the values of
three parameters. A convenient choice is

$ [(Koo Ki, o Ko, i+K&, i)5a, a.5o., p. +(Ko, i Ki, i)5 ., '. +(Ki, o K&, &)5p., p. +K&, il
3e
B

(3.4)

one sees that it reduces to two decoupled Potts
models (of N and N& components) when

X~xp = Z (3.5)

X~ =Xp =Z

i.e., K~ o-Ko ~
=K~ ~. The "decoupled" surface (3.5)

and line of special symmetry (3.6) are shown in

i.e., Koo K'& 0 Ko &+K~ ~
=0, and to a N Np-state

Potts model when

Fig. 3. The special points x =xp = z =0 and
x =xp=z =1 describe the general model at the tem-
peratures T=O and T=~, The points x =1,
xp=z =0 and x =z =0, xp=1 correspond to the si-
tuation of one system at T =0 and the other at
7 =oo,

The phases that exist on the decoupled surface are
exhibited in Fig. 4, which shows the projection of
that surface onto the z =0 plane. The intersection of
the decoupled surface (3.5) with the plane

x = [I +(N )' '] '
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FIG. 4. Projection of the "decoupled" surface, x x& = z, of
Fig. 3 onto the z =0 plane. There are four phases: com-
pletely ordered (I), complete disordered (II), P disordered
and a ordered (III) and vice versa (IV).

FIG. 3. Physical parameter space for the (N, N&) model
of Eq. (3.2), O~x, x&,z ~1, On the surface x x&=z (solid
lines) the model describes two decoupled Potts models with
N and N& components, and on the line x =x&=z (dashed
line) a N N&-component Potts model. All points on the
dotted line are self-dual. The heavy dots represent fixed
points of a renormalization-group calculation discussed in
Sec. V C.

with

U p p =exp [K(a;, P;;a, , p, )] (3.10)

Consider first the case N&= l. The matrix U reduces
to a N x N matrix, U, =exp[K(u, n')]. The ma-
trix is cyclic,

defines a line of phase transitions of N -state Potts
type. A similar relation defines a N& Potts transition
line. These two lines meet at the special decoupled
multicritical point

x =[1+(N )'~2] ' x =[1+(Np)' ] '

U .=u(n), n=a —a'(modN )

and has the eigenvalues

N

X(q) = X u (a) exp-
+=]

! 1

(3.11)

(3.12)

Z =X~Xp (3.7) and eigenvectors

at which both types of behavior occur. On the line
(3.6), the N Np-state Potts model exhibits a phase
transition at

z=[1+(N N)' ] (3.8)

Note that the transition of the Potts model in two di-
mensions is second order when N ~ 4 and first order
when N & 4. In three dimensions first-order transi-
tions are expected for N «3.30

B. Duality transformation

%u and Wang ' have given a formulation of the
duality transformation for two-dimensional spin
models that can be easily applied to the (N, Np)
model. The partition function for the (N, Np) model
1S

(3.13)

where the index q =O, ..., N —1. The results (3.12)
and (3.13) hold for arbitrary cyclic matrices, i.e., in-
teractions satisfying K (a;, uj) = K(ns) with
aig =a& —

ug (mod N ). ~u and ang ' have shown
that the partition function of a system with couplings
u (n) on the lattice L is equal (up to multiplicative
constants) to that of a system defined on the lattice
LD, which is dual to L, with couplings X(q). Hence
Eq. (3.12) defines a duality transformation.

Consider now the case of general N and N&. The
matrix (3.10) can be expressed by a Np x Np matrix
of N x N matrices,

(3.14)

which are defined by

(3.9)
U p'p = Uto~ ~ gp p+ Ut'~ (1 —5p p) (3.15a)
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and

U"' =e ' 8 ~ +e '0(1 —8 )
K K

(3.15b)

(3.13),

~ (q, $) ~ (q) (()lJ~ j —U~ Qp (3.16)

U ' =e '8 +e "(1—8~, „)
This matrix is block cyclic. Hence the eigenvectors
can be written as direct products of eigenvectors

with rt =O, .. ., N —1 and ( =O, ... , Np —1. There are
four distinct eigenvalues, X„&, that correspond to
eigenvectors with q = (=0; rt % 0, ( =0; q =0,
(%0; and rt&0, (%0,

Xoo=e =e 0+(N —1)e ' +(Np —1)e '+(N —1)(N —1)e
K K K K K

' ''+(N~-')(' "K K K K ' K

0, 1 e 0,0 e 0. 1+(N 1)(e 1,0 e l, l)K K K K K

K K K K K
e oo e &o e oi+e

1, 1

(3.17)

x = [1 —x +(Na —1)(x&—z)l/b

xp= [1 —xp+(N —1)(x —z)]/5

z =(1 —x —xa+z)/5
(3.18)

5 = 1 + (N —1)x + (N& —1)xp+ (N —1) (N& —1)z

Defining x = (x,xp, z), we shall use the notation

x=D(x) (3.19)

for this mapping.
We list several properties of the transformation. It

is self-inverse, i.e. , D [D (x)] =x. The zero-
temperature point maps onto T = ~, and vice versa.
When x is on the decoupled surface of Eq. (3.5), so

is x. In this case the transformations for the vari-
ables x and x& decouple; each satisfies an equation
of the form (y = n or P)

x'„= (1 —xy)/[1 + (N„—1)x~] (3.20)

and z =x xp. Thus in Fig. 4, the transformation
maps region I onto II, III onto IV, and vice versa.
The multicritical point maps onto itself. The N Np
Potts symmetry (e.g. , x =x&=z) is also preserved by

D; in this case the Eq. (3.19) reduce to

x =(1 —x)/[1+(N Np —1)x] (3.21)

and the N N&-component transition point is self-
dual.

The plane defined by [see Eq. (3.18)]

This transformation maps the (N, N&) model (3.2)
onto a similar model, in which the couplings KI are
replaced by the dual couplings Kl . For N&=1 the
equations reduce to the duality transformation for the
N -state Potts model. In terms of the variables x,
xa, z of Eq. (3.3) the duality transformation reads

maps onto itself. The transformation has a set of
fixed points, i.e., D (x) = x; these points lie on the
straight line defined by the intersection of the planes
(3.22) and

x +xp + [(N,Na) '~ —1]z = 1 (3.23)

This straight line passes through the decoupled mul-'

ticritical point and the N N&-component Potts transi-
tion point, and is also shown in Fig. 3. For N & N&,
the model exhibits a phase transition at all points of
the self-dual line. This is not the case for.
N = Np=2. 32

I

C. Special cases and geometric interpretations

(3.24)

The (N, N&) model (3.2) encompasses a large
number of discrete models for special choices of N
and N&. The kinds of transitions that these models
exhibit depend on the relative magnitude of the cou-
pling constants (3.3).

a. Potts Models. In the limit of general N and
Ns= 1, the model (3.2) equals the N -component
Potts model. ' The nearest-neighbor energies split
into two classes with 1 and N —1 states of energy,
Ko p and K~ p, respectively. A geometrical interpreta-
tion in terms of a set of N vectors with N —1 com-
ponents has been given by Zia and Wallace. The
general (N, Np) model exhibits transitions of the
Potts type on various planes (lines) in the (x,xp, z)

space as discussed in Sec. III A.
b. ,Cubic models. For general N and N& =2 and

x =z, the (N, Np) model specializes to the discrete
cubic mode16 ~

4(x,xp, z) = (N N&)'~' (3.22) Here the identity 5& &
= —(1+o;crj) has bee.n used,I' j 2



TWO-DIMENSIONAL ANISOTRQPIC N-VECTOR MODELS 5823

+ Ao;r; a i'. +C). (3.25)

The coupling constants K, K„A are related to the
variables (3.3) by

x =exp[—2(K +A)]; x, =exp[ —2(K, +A)];

z =exp[—2(K +K,)] (3.26)

The model is invariant under all permutations of
(K,K„A). On the plane x =x„ the model can be
interpreted as an XY model with fourfold anisotropy"
of infinite strength. When x =x„ the nearest-
neighbor energies of the Ashkin-Teller model
separate into three classes with 1, 2, 1 states of ener-

gy Kpp, K&p = K~p, and K]~, respectively. Equivalent-
ly, the model can be expressed in terms of two-
component vectors at each lattice site pointing into
the four directions (+1,0), (0, +1) and the nearest-
neighbor interaction energies

E(@=0)/k Ta= 2K + A + C = Ko 0

—E (@= 90 ') /ks T = —A + C = Ko ] = K ~ 0

—E(/=180 )/ksT= —2K + A+ C = K&, i

(3.27)

In Sec. IV 8, we will return to the discussion of the
symmetries of the Ashkin-Teller model.

d. Six-state planar model. With N =3, N&=2 and
general K;&, the nearest-neighbor interaction energies
separate into four classes with 1, 2, 2, 1 states, with
energies Kp p, K] ], K] p, Kp &

respectively. The
states in this model can be represented in terms of a
planar vector that can point in six equivalent direc-
tions. The relative angle between two nearest

where o-; = +1. The nearest-neighbor interaction en-
ergies separate into three classes with I, 2(N —I), 1

states of energy Kpp, K~p = K~~, and Kp~, respective-
ly. A spin representation of Eq. (3.24) in terms of
the N -component vectors (+1,0, .. . , 0); .. .;
(0,... , 0, +1) is possible. The duality transformation
(3.18) maps the plane x = z onto x& = z (and, simi-
larly, xa=z onto x =z). On the plane x& ——z, the
nearest-neighbor energies separate into three classes
with 1, N —1, N states of energy Kp p, K& p,

Kp ~
= K& ~, respectively. A vector-spin representa-

tion of this 2N -state model requires a set of
2(N —I)-component vectors. Although the sym-
metries of the models on the x = z and x& = z planes
are different they are expected to exhibit the same
kinds of phase transitions since they are related by
duality.

c. Ashkin-Teller model. With N = NP=2 and
5 = —,(I+a.o.'), 8&&

=
2

(1+7r') where o-, r =+I,
the (N, Na) model yields the Ising-spin representa-
tion of the Ashkin-Teller model, 4 34

JC $ (K~0((re + KYT(T)
AT &,,)

IVo SYMMETRY ANALYSIS 'OF (S~~Np) MODELS

In this section, we determine the symmetry proper-
ties of discrete models by deriving by a Hubbard
transformation" the corresponding continuous-spin
LGW Hamiltonians. Specifically, the (2,2), i.e.,
Ashkin-Teller model, with x =x, and the (3,2)
model with x =z are investigated. Based on the
LOW Hamiltonians, the forms of the phase diagrams
that can be expected are discussed. The phase transi-
tions are characterized in terms of the different
representations of the symmetry groups of the
models; various types of multicritical behavior are
found. The question arises whether the universality
classes of two-dimensional models can be determined
by the leading terms of LGW expansions. The calcu-
lations presented in Sec. V confirm the validity of the
expectations based on the symmetry analysis.

A. Hubbard transformation

Consider the model with nearest-neighbor cou-
pling,

= —K $(;(J=——K(A$ (4.1)

defined in terms of a set of discrete variables (; asso-
ciated with the sites i of a lattice or, equivalently, in
terms of the NL-component vector ( (NL denotes the
number of lattice sites) and the matrix A with com-
ponents A„"=1, when i, j are nearest neighbors, and
A,&=0, otherwise. Using the identity

p +oo

exp( —,K $A () = C „gdS;
I

x exp( — S A 'S+S $)2K
(4.2)

with C =(detA) '~' and a continuous variable S; as-
sociated with each site i, the partition function for

neighbors can take the values / =0, 60', 120',
180', the respective energies associated with these
angles are listed above. The planar vector model
with scalar product interactions
E(S~, S2) = A —J S~. S2 corresponds to a line in the
general (x,x&,z) space, defined by x =z', x& =z .

e. Eight-state cubic model. For the model with
. N =4, N& = 2 the nearest-neighbor interaction ener-
gies separate into four classes, with 1, 3, 3, 1 states
in each. The eight states of this model can be
represented by a three-component vector that can
point along the diagonals of a cube. The case of
scalar product interaction corresponds to the line
x =z, x& = z', in this case the Hamiltonian is
equivalent to three decoupled Ising models.
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where

exp[ —g(S)] = $e" . (4.4)

The coupling between sites is contained in the first
term in the exponential; expansion of g(S) into

this model is expressed as'

Z = /exp( —,K (A ()
t&l

+oo
= C J g dS;exp[ — S A 'S —Xg(S;)]

I (4.3)

powers of S yields the appropriate local anisotropy
terms. The procedure is easily generalized to models
where more than one discrete variable is associated
with each lattice site.

B. Ashkin-Teller model

The Ising-spin representation of the Ashkin-Teller
mode! is given by Eq. (3.25). Here the model with
the special symmetry x =x, is considered. By intro-
ducing three continuous variables S;, k = 1, 2, 3, for
each site i, the partition function can be written

Z = C ff dS;"& dSt2& dSt3&exp[ — (S & 'S"'+S A 'S"')—— -S A 'S"' —gg(S, "&,St2&,St3&)]
OO I

I I

(4.5)

with

g(st'&, St'& S"&)=-ln g exp(o.St'&+.S"&+0TS"&) . '

cr, 7=+1
(4.6)

Expanding g in powers of S " yields

(S(t& S(2& S(3&) ln4
& g S(k&2 S(i&S(2&S(3& + &

XS(k&4 + O (S(k&6)
k k

(4.7)

.What is the phase diagram of the model in the (E, A)
plane~ Consider first the quadratic terms in Eqs.
(4.5) —(4.7). Up to this order, the Hamiltonian is
identical to that of a magnetic system with tetragonal
symmetry. When K » A, one expects XY type
ordering in the "easy plane" (St»,St"), while, when
K (( A, one expects the S ' component to undergo
an Ising type transition. " In the absence of the
coupling term of third order, S"'S~' S ", these two
lines would meet at a multicritical point of Heisen-
berg character on the K = A line. However, the
third-order coupling term changes the Hamiltonian at
this point to that of the four-state Potts model. '

For K » A the S ' component is not critical and
can be eliminated by integration, treating the cou-
pling term in perturbation theory. This yields a re-
duced Hamiltonian that depends on S~' and S ' with
a coupling term of the form —A(S"'S"')'+ O(S').
Thus the reduced Hamiltonian is that of an XY model
with fourfold (or "cubic") anisotropy. Previous stu-
dies of such a model indicate the existence of a mar-
ginal operator, and continuously varying ex-
ponents. " Since our treatment shows a continuous
variation of the anisotropy with A, a continuo'us vari-
ation of the exponents along the line of XV type tran-
sitions is expected for the Ashkin-Teller model in the
K & A regime. ' One notes also that. the sign of the
fourth-order anisotropy is such that (St"St ') &0 in
the ordered phase. Thus as the S"', S components
order, they induce via the third-order coupling term
an effective ordering field on S"', so that no further

transitions associated with this field are expected in
the ordered phase.

In the regime E ( A, the situation is different.
Then one expects an Ising-like transition into a phase
with (S 3') &0. Replacing S 3 in Eq. (4.6) by (St3'),

4L

FIG. S. Schematic phase. diagram for the Ashkin-Te)ler
model with x =x,. The coupling parameters are defined
by Eq. (3.26). The system undergoes either one or two
transitions, depending on the relative magnitude of the cou-
pling constants. The transition at x =x, =z is in the class
of the four-state Potts model. The heavy dots represent
fixed points of a renormalization-group transformation and
are explained in Sec. V E.
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a reduced Hamiltonian of the form

r[(S') +(S ) ]+ e(S )S'S
+higher —order terms

is obtained. Upon performing a 45' rotation in the
(S ',S ~ ) plane, it becomes

r [(S(+&)'+(S'-') '] +g f(S(+')'- (S(-&)'] +".
Since g ~ (S '), one of the component (S +) or S( ',
depending on the sign of (S(3))) will order for suffi-
ciently iarge values of

~

(S(3)) ~, while the other will be
noncritical. Thus, when K ( A a second line of Ising
transitions is expected to exist in the ordered phase.
These considerations lead to the phase diagram of
Fig. 5.

Finally, note that the LG% Hamiltonian of Eqs.
(4.5) —(4.7) can be viewed as that of a system with

the point-group symmetry 4mm. The two com-
ponents (S"),S(z)) transform)' as the two-
dimensional irreducible representation F., whereas
S ' belongs to the one-dimensional representation

. B2. On the line, K = A, exhibiting the four-state
Potts symmetry, the two representations become de-
generate; thus the Potts multicritical point is analo-
gous to the more standard case of bicritical points. '

C. Cubic model

As discussed in Sec. 111 C, the (3,2) model on the
x =z plane possesses cubic symmetry. In order to
demonstrate this point in terms. of a continuous-spin
LGW Hamiltonian, we first rewrite Eq. (3.24) in
terms of new variables. The six states associated
with each site can be represented by means of a
three-component vector S; = (S;(&),S;('),S;O)) that as-
sumes the values (+1,0, 0); (0, +1,0); (0, 0, +I). In
terms of these variables the Hamiltonian (3.24) takes
the form (for x =z)

[K S .S +J (Q
(&)

Q
(1) + Q

(2)
Q (2))]

where

Q(() = 2-(&2[(S()))2 (S()))2]

Q(2) (
2 )-)/2[(S(3))2 '

[ S (2]

The correspondence between K and J and the relative
angles between spins is: E(90 ') = —J/3 and
E(180 ') = —K +2J/3. To perform the Hubbard
transformation, we introduce for each site five fields:
@, o. =1,2, 3 and (I(~, &8=1, 2. The partition func-
tion can be expressed in terms of @ and (1)&) as

Z =Jf g d$;d p&); exp — $@.A '@.——$ (]((& & '(J&&)
—Xg (@., ;. ([((),,)

ia, P 0( P I

(4.10)

where
1

g(4a )t(p) ln6
6 X4 +x(])p + 54 (A2 3(]1%2) +2 )l)1(41 42) + 3 (I)2 343 $ 4

( i
A

r 'I

$@4, X y2 + O(y6 @2y2 y4) (4.11)

The symmetry and expected phase diagram of this
model can be analyzed in a manner similar to that
used for the Ashkin-Teller model. The fields $,
transform like the three-dimensional representation
T) of the cubic group, 3& while the (I(p span the two-
dimensional representation E At K = J, the two
representations are degenerate and the system has
the symmetry of the six-state Potts model. For
K )& J, the P fields can be integrated out leaving a
reduced Hamiltonian that will exhibit a transition in
the universality class of a Heisenberg system with cu-
bic anisotropy. Again, ordering of the $ fields in-

duces an ordering field on P, so that in this regime
the transition takes the system to a phase with both

(@) W0 and ()i)) &0. In the regime K ((J, order-
ing of the (]) fields [which have the symmetry of the
three-state Potts model, as seen by Eq. (4.11)] does

not produce an ordering field on $, but rather singles
out one @ component, lowers its quadratic coeffi-
cient, and leads to an Ising-like transition within the
partially ordered (((])) WO) phase. Thus, on grounds
of these considerations one expects a phase diagram
as shown in Fig. 6. At the "multicritical" six-state
Potts point the transition is first order. Therefore,
one may expect (two or three) first-order transition
lines to extend from the Potts point and new tricriti-
cal points that separate them from the second-order
lines.

Finally, we note that the duality transformation
discussed in Sec. III B maps the cubic model onto the
x&=z plane of the (3,2) model. Repeating an
analysis along similar lines as above, yields for this
model a LG% Hamiltonian that is not identical with

Eqs. (4.10) and (4.11). Thus two Hamiltonians of
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4E e j'
P ~~~ I

approximate Migdal recursion relations for the
(N, Np) model yield phase diagrams in agreement
with all exact results, except questions related to the
first-order nature of the A' & 4 Potts transition. The
latter question has not yet been resolved by any of
the approximate position space renormalization-group
methods. 38

B. Migdal recursion relations

FIG. 6. Schematic phase diagram for the N =3, N&=2
model on the cubic plane x =z. The coupling parameters
are defined by Eq. (3.3). The system undergoes either one
or two transitions depending on the relative magnitude of
the coupling constants. The different phases (1—111) are de-
fined as in Fig. 4. The transition at x =x&=z is in the class
of the six-state Potts model and is expected to be of first
order. The precise character of the phase diagram in the vi-
cinity of this point, P, is unknown. The heavy dots
represent fixed points of a renormalization-group transfor-
mation and are explained in Sec. V F.

different symmetry are expected to yield the same
critical behavior since the original systems are related
by a duality transformation.

V. MIGDAL RECURSION RELATIONS
FOR THE (W.,N~) MODEL

Migdal proposed a remarkably simple method for
obtaining approximate recursion relations for compli-
cated systems. ' The Migdal method' 3 offers itself
for a first, approximate investigation of the (N, Na)
model since duality relations exist for the latter.

A. Hamiltonian flow and phase diagrams

The Migdal method uses a bond-shifting and deci-
mation procedure to generate recursion relations, as
shown schematically in Fig. I." First, n vertical
bonds are shifted. This leaves horizontal chains of n

sites that connect sites with (n +1)-fold vertical
bonds. Second, the trace over the degrees of free-
dom associated with the n internal sites of each chain
is performed. This yields horizontal effective cou-
plings between the vertically coupled sites. Finally,
by shifting n of these effective coupling, the new hor-
izontal bonds are defined, Now the vertical chains of
n sites are contracted, which defines the new vertical
bonds. It is sufficient to follow the renormalization
of the horizontal bonds.

For a complicated model, such as the (N, Np)
model of Eq. (3.2), carrying out the decimations is
the crucial step in Migdal's procedure. It amounts to
raising the transfer matrix Uof the system [see Eqs.
(3.14) and (3.15)] to the power h. = n +1. This is

conveniently done by first diagonalizing U and then
raising its eigenvalues to the A. power. According to
Eq. (3.17), the eigenvalues of U are e", where it

denotes the dual couplings. Thus the decimation
yields an effective interaction whose dual is e"~. A

duality transformation on these yields the "direct" ef-
fective couplings, e~. The last step of adding A. of
these effective couplings produces the fina1 result in
the form e~ =e"~. In terms of the variables x and
functions D defined by Eqs. (3.3) and (3.18), the
Migdal transformation for the (N, Ns) model as-
sumes the form

Determining the phase diagram for a specific
(N, Ns) model amounts to finding in the physical re-
gion of coupling parameters, 0 «x, x&,z « I, the
surfaces that separate different phases. This informa-
tion can be obtained by studying the Hamiltonian
flows generated by renormaliiation-group recursion
relations. In order to obtain a phase diagram that is
consistent with the exact results summarized in
Fig. 3, it is essential to define a renormalization-
group transformation that preserves all symmetries of
the model. An attempt to formulate recursion rela-
tions for the (N, N&) model based on the
Nierneijer —van Leeuwen method ' was unsuccessful
in that respect. A formulation based on Migdal's
scheme proved successful and is described here. The

x' = D '[D '(x)] (5.1)

Note that D (x) gives the dual couplings x, which are
then raised to the power A. ; a duality transformation
on D "(x) gives the direct effective couplings (after
the decimation), which then are raised to the power

Equations (5.1) define approximate recursion re-
lations that generate the renormalization-group flow
in the space of coupling parameters (x,xp, z). The
critical points of the (N, N&) models are given by the
fixed points of the recursion relations. In analogy to
Kadanoff's result, one expects that the equations
yield the exact values for all Potts-like transition tem-
peratures in the limit A. 1.
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C. Conservation of symmetries D. Recursion relations in the limit A, ~1

The recursion relations (5.1) preserve the sym-
metries and special cases of the (N, Np) model dis-
cussed in Sec. III.

In the case x x& = z, which corresponds to that of
two decoupled, N -component and Np-component
Potts systems, Eq. (3.20) implies

The rescaling parameter A. in the recursion relations
(5.1) can be analytically continued to h. = 1. Some
properties of the resulting differential recursion rela-

tions are discussed below.
For simplicity consider first the recursion relations

for the ¹omponent Potts model,

x~ = D~( x~, xp, x~ xp) = D~p(x~) (5.2)
with

x' = D"[D'(x)] (5.6)

where D ~ denotes the duality transformation for an
N -component Potts system. A similar relation holds
for x& and, of course, z =x x&. Using these results
in Eq. (5.1) one obtains

D(x) = (I —x)/[I + (N —l)x] (5.7)

By substituting into Eq. (5.6) X=I+8, expanding in

5, and taking the limit 5 0, one obtains the dif-

ferential recursion relation

x.'=D.'[D.', (x.),Dp, (xp) . D~, (x.)D~,(x,)] —=x lnx+D (x)D(x) lnD(x)
dl

(5.8a)

Dx [Dk (» )]

xp'=DP p[DP p(xp)]

I r J
z =x~ xp

(5.3)

where

D ( ) dD(y)

, .p = D(x)

= —N '[1+(N —l)x] (5.8b)
Thus the decoupled surface is invariant under the
Migdal transformation, and the fixed-point structure
on this surface is that of Fig. 3.

When x =xp=z, the (N, Np) model assumes the
symmetry of an N N&-component Potts model.
Equation (3.21) implies

D.(x) =Dp(x) =D, (x) = D.„,(z), (5.4)

which yields x ' = x&' = z', therefore, the transforma-
tion has a fixed point which corresponds to the
N N&-component Potts model transition.

In the cases when either x = z or x& = z, the
(N, Np) model can be viewed as a discrete spin
model with two special symmetries. [See Sec. III C
(b).] The Migdal transformation preserves these
symmetries. According to Eq. (3.18), x =z and

x& = z imply x& = z and x = z, respectively. There-
fore, when x =z then

x.'=D." (x",z ",z ')

Dk(x& -L -x) (5.5)

and, similarly, when x&=z then xp'=z'. Thus the
two planes x =z and x&=z are invariant under the
transformation (5.1). As exhibited in Fig. 3, the in-

tersection of the decoupled surface, x x& = z, and the
plane x =z contains the line x =z =0 and also the
line x&=1, x =z. Hence the x =zplane contains
five of the fixed points exhibited in Fig. 3. The
N N& Potts fixed point is on the x =z plane, too.
Similar statements hold for the x& = z plane.

Kadanoff' found that the Potts transition point,

x~' =(.1+N'~2) ' (5.9)

is a fixed point of Eq. (5.8a). A self-dual point, x",
is a fixed point of Eq. (5.8a) only if it satisfies also

D(x') = —1 (5.10)

Linearizing Eq. (5.8a) about the fixed point (5;9)
yields the thermal eigenvalue

Xr =2[1 —N '~'ln(1+N'~ )] (5.1 I)

dxl.—'- =x;lnx;+ gD;JD&(x) InD&(x)
)

(5.12a)

ij =1,2, 3, where the functions D& are defined by

Eq. (3.17), and

(5.12b)

These differential equations exhibit the same fixed-

The recursion relation (5.8a) exhibits a critical fixed

point for all values of N, in contradiction to an exact
result by Baxter 9 according to which the transition of'

the two-dimensional Potts model is first order when

N ~ 5. The failure to produce this exact result is

shared by all approximate position space
renormalization-group methods. 3~

For the (N, Np) model, the differential recursion

relations are
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point structure as the discrete recursion relations.
However, they also preserve the self-duality sym-

metry. A self-dual point x is a fixed point only if it.
satisfies also the condition

det(g,~+D~) =0 . (5.13)

The results in Sec. V E are based on the differential
recursion relations (5.12); those in Sec. V F were ob-
tained numerically using the discrete recursion rela-
tions (5.1) with h. =2.

E. Phase diagram for the
Ashkin-Teller model

The approximate Migdal recursion relations (5.12)
reproduce the phase diagram proposed by Wu and
Lin' for the Ashkin-Teller model. As shown in

Fig. '7, the phase diagram exhibits five phases and
contains fifteen fixed points. The low-temperature
fixed point L and the high-temperature fixed point H
are completely stable and their three-dimensional
domains of attraction constitute fully ordered and
disordered phases, respectively. There are three
more completely stable fixed points, Lk, at (1,0,0),
(0,1,0), and (0,0, 1). the domain of attraction of
each of these corresponds to an a (or P) ordered and

P (or u) disordered phase. These five three-
dimensional phases are separated by two-dimensional
surfaces. These surfaces are the domains of attrac-
tion of singly unstable fixed points. Three of these
surfaces constitute the boundaries of the ordered
phase, i.e., of the domain of attraction of L. The
renormalization-group trajectories originating on
these three surfaces flow into one of the three fixed

points Jk at (u', 0, 0), (O, u', 0) or (0, 0,u'), where
u' =1/(1+2' '). ' The other three surfaces bound
the fully disordered phase, and are the domains of at-

traction of the fixed points lk at (u', u', 1),
(u', l, u"), or (l,u, u ). The two-dimensional sur-
faces join alorig three lines. On each line lies one of
a set of three doubly unstable fixed points Dk, which
is the sink for the flow along the line. The coordi-
nates of the fixed points Dk are (u', u', u'),
(u, u ', u ), and (u ',u, u ). The three lines meet
at a completely unstable fixed point, P, located at
(u, u', u ), where u =(1+4' ~). At the fixed
point P the model has the symmetry of a four-state
Potts model. For the physical interpretation of the
other fixed points, note that each one of them lies on
at least one decoupled surface (as discussed in Sec.
III A, there are three such surfaces, namely x x, = z
and its permutations). For example, the x x, =z
surface [corresponding to A =0 in Eqs. (3.25) and
(3.26)] contains L and H, where both the cr and r
variables are at T=0 and T=~, respectively; at L~

the cr system is at T = ~ while the ~ system is at

T =0, and at L2 vice versa. At the two points J~, J2
one system is critical while the other is at T =0; at
l~, 12 one is critical and the other at T = ~. At D&

both systems are critical, i.e., Dt is a decoupled rnul-
ticritical point. Jk, Ik, and Dk are Ising fixed points;
thus on all surfaces and lines the Migdal approxima-
tion yields Ising-like behavior. However, since the
Ashkin-Teller model maps onto a staggered eight-
vertex model, nonuniversal behavior is expected to
occur on the lines that contain Dk. Such behavior
would manifest itself in the existence of a marginal
operator along these lines, The approximation does
not yield this result. Finally, the phase diagram in
the x =x, plane (i.e., for K =K,), is given in Fig. 5.
As discussed in Sec. III C, on this plane the sys-
tem exhibits the symmetry of an XY model with
fourfold anisotropy. However, depending on the re-
lative magnitude of z vs x =x„ the critical behavior
is either one transition with continuously varying ex-
ponents, or of the four-state Potts type, or two Ising
transitions. The discussion in Sec. IV B had yielded
these results based on symmetry arguments.

L,
=X

II

FIG. 7. Phase diagram of the Ashkin-Teller model for
general x, x„z. A completely ordered and a completely
disordered phase are separated by three distinct partially or-
dered phases. The latter are bound by surfaces of Ising-like
transitions. These surfaces meet at lines on which
nonuniversal critical behavior is expected. The approximate
Migdal renormaliz'ation-group method yields no marginal
operator and the Ising-like fixed points on these lines are
stable. The three lines meet at a fixed point P of four-state
Potts character,
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F. Phase diagram for the (3,2) model

The phase diagram of the (N. , Np) model with
N =3, N&=2 is shown on Fig. 8. There are four
completely stable fixed points, whose domains of sta-
bility constitute four phases. The low-temperature
and high-temperature fixed points L and H are asso-
ciated with the completely ordered and completely
disordered phases. The fixed point L governs the
domain in which the n system is ordered while the
Ising-like P system is disordered, and vice versa for
L&. The four phases are separated by five two-
dimensional surfaces. These surfaces are the
domains of attraction of five singly unstable fixed
points. Four of these, J~, Jq and I~, I~ lie on the
decoupled surface x x&=z. At 1~ and lq the P sys-
tem is critical while the a system is in the state T =0
and T = ~, respectively, whereas at J~ and Jq the
three-state Potts a system is critical. and the P system
is at T =0 or T = ~, respectively. Thus on the four
surfaces that flow into I& and Jk, k =1,2, either Ising
or three-state Potts critical behavior is expected. The
four- surfaces meet on a segment of the self-dual line
defined by

1+2x~+xp+2z =6'~

x +xa+(6'i' —1)z = I

z &(I+6' ') ' (5.14)

This line is the domain of attraction of the doubly
unstable decoupled multicritical fixed point D. No
marginal operator is expected on this line, since Ka-
danoff and Wegner's' criterion for nonuniversal
behavior is not satisfied for the (3,2) model. The
fifth surface in Fig. 8 separates the completely or-
dered and completely disordered phases. This surface
is the domain-of attraction of the self-dual fixed point
S. The surface merges with two other surfaces along
a line that lies in the x =zplane, and along a line in
the x&=z plane. Each of these lines is the domain of
attraction of a fixed point. The fixed point C on the
line in the x = z plane describes cubic critical
behavior. The fixed point C, on the line in the x&=z
plane is the dual of C. These two lines and the self-
dual line meet at the completely unstable six-state
Potts fixed point, P.

For any specific system, varying the temperature
defines a line L (T) in the (x .xa, z) space. The line

connects the points (0,0,0) andi(l, l, l) in Fig. 8 and,
in general, will cross either two or one critical
surface(s). When two surfaces are crossed, the sys-
tem will undergo an Ising plus a three-state Potts
transition, even though the two types of variables are
coupled in the (3,2) model. In the special case when
the trajectory crosses the segment of the self-dual
line defined by Eq. (5.14), the Ising and three-state
Potts transitions occur at the same temperature and
conventional scaling breaks down.

yP
-&a

pig

H

FIG. 8. Phase diagram of the N =3, !@&=2model, as

obtained by Migdal recursion relations. The fixed points are
L(H), low (high) temperatures; D, decoupling Ising and

three-state Potts; P, six-state Potts; S, self-dual; C, cubic;

1&, 1&, Ising; J&, J~, three-state Potts. The plane x =z
corresponds to the subspace of cubic symmetry; it contains
cubic, Ising, and three-state Potts transition lines that meet
at P.

The phase diagram of Fig. 8 contains information
about the special cases of the (3,2) model that were
discussed in Sec. III. If the parameters of a system
satisfy z & x,x&, at the phase transition point, the
system will exhibit a single phase transition with criti-
cal behavior determined by the self-dual fixed point
S. The six-state planar model of Sec. III C belongs to
this category. Jose et al. proposed a phase diagram
for an LY system with weak sixth-order anisotropy.
They found the anisotropy in a region of tempera-
tures, T~ ( T ( T~, to be irrelevant with the
renormalization-group trajectories flowing into a seg-
ment of the isotropic Berezinskii line. ' The model
discussed here represents the extremely anisotropic
limit of the model considered by these authors.
Therefore, on the basis of the Migdal approximation
presented here, the two lines that bound the domain
of stability of the Berezinskii line must join in order
to allow for a single transition in the infinite anisotro-

py limit.
The phase diagram of the model on the cubic

plane, x„=z, is sho~n in Fig. 6. The Migdal calcula-
tion yields incorrectly the result that all phase transi-
tions, including the six-state Potts one, are of second
order. For x& & x = z the system undergoes one
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Fixed Point

X

xp
z

0.183
0.183
0.183

0.209
0.084
0.209

0.055
0.0065
0.469

0.250
0.295
0.074

0.97
0.26
0.26

0.92
0.50

—0.33

0.17
—1.10
—3.58

0,75
0.83

—0.42

TABLE I. Fixed-point coordinates and exponents for
the N =3, NP=2 model from M-igdal's recursion relations,
Eq. (5.1), with A. =2. For the notation of the fixed points
see the text and Fig. 8.

VI PHASE TRANSITIONS IN QUASI
TWO-DIMENSIONAL SYSTEMS

Two-dimensional, discrete models and phase tran-
sitions in adsorbed systems are related in a three-step
approach. The important assumption is the hy-
pothesis that if a discrete spin model and an experi-
mental system are described by the same LGW Ham-
iltonian, then all three belong to the same universali-
ty class. ' Similar ideas can be applied to phase tran-
sitions in layered magnetic compounds. Here the
general ideas are described and then applied to the
a-P phase transition in overlayers of molecular oxy-
gen on the basal plane of graphite. ' ' The transition
is shown to be in the universality class of the two-
dimensional Heisenberg model with cubic anisotropy.
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FIG. 9. Procedure by which the relation between two-
dimensional discrete models and physical systems is esta-
blished. The connection is made via a LOW expansion of a
continuous-spin Hamiltonian.

phase transition governed by the cubic fixed point.
When x = x& = z a six-state Potts transition occurs,
and for x& )x = z the system undergoes a three-
state Potts transition and at a lower temperature an
Ising-like transition. Again, these results agree with
the discussion of the phase diagram by symmetry ar-
guments. On the x& =z plane the system has a dif-
ferent symmetry (see Sec. IV C). However, since the

x& = z plane is dual to the x = z plane, the critical
behavior of these two systems is expected to be
identical even though their symmetries are different.
The locations of the fixed points and re'suits for the
exponents are summarized in Table I.

Finally, for the (4,2) model we expect a phase di-

agram similar to that of Fig. 8, however, with four-
state Potts fixed points and surfaces replacing the
three-state Potts ones, and an eight-state Potts point
replacing the six-state Potts point. Also, in this case
the self-dual fixed point, S, describes three decoupled
Ising systems.

A. Microscopic models for
two-dimensional systems

Implicit in our discussion of phase transformations
in overlayers is the assumption that the latter consti-
tute ideal films over distances large compared to the
correlation length. There are two general assump-
tions on which the theoretical approach is based. (i)
The characteristics of phase transitions in two dimen-
sions are determined by the dimensionality of the
order parameter, by the symmetry of the system, and
by the range of the forces. (ii) The LGW Hamiltoni-
an concept can be used to establish the connection
between a physical system and an appropriate discrete
model. We proceed in three steps as summarized in
Fig. 9 and outlined below,

The first step toward the determination of the ap-
propriate model is the symmetry analysis of discrete
models in terms of a LOW expansion of the
corresponding continuous-spin Hamiltonians, as per-
formed in Sec. IV. The mapping of continuous spin
onto discrete models discussed in Sec. II, can be used
also to establish the connection between the two
types of models. The next step requires the
knowledge of or assumptions about the symmetries
of the ordered and disordered phases of the physical
system under consideration. By using Landau sym-
metry arguments' ' the appropriate LOW Hamil-
tonian for the system is derived. The third step con-
sists in making contact between the discrete model
and the physical system based on the following
universality hypothesis. When a discrete model and
an experimental system are described by the same
LOW Hamiltonian, all three belong to the same
universality class. Finally, the discrete model is in-
vestigated by methods of statistical mechanics.

In summary, the approach uses a generalized Hub-
bard transformation and symmetry arguments to es-
tablish the relation between discrete and continuous
spin models. The universality hypothesis of the third
step has to be tested by theory and experiment.
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B. Tests of the universality hypothesis

There are a few examples where models and/or
physical systems have been studied extensively so
that aspects of the universality hypothesis can be test-
ed.

The first example is the order-disorder transition in

overlayers of He on graphite, at —, coverage. "Alex-

ander' has shown that the appropriate LGW Hamil-
tonian is that of the three-state Potts model, for
which the latest series estimates ' yield
n =0.42+0.05 for the specific-heat exponent. This
value is consistent with measurements by Bretz, 44

who found o. =0.36.
Another example concerns the Baxter-Wu "three-

spin" model ' and the four-state Potts model, which
yield to leading order identical LGW Hamiltonians.
For the Baxter-Wu model the value for a is exactly
A

3
' which is consistent with the series expansion

result for the four-state Potts model,
a =0.64 + 0.05. Various physical realizations of this
model have been suggested, but no experimental
measurement of a has been performed so far.

Finally we mention four distinct models that lead
to the LGW Hamiltonian of the XY model with four-
fold anisotroy. These are the Ashkin-Teller model, "
the Baxter eight-vertex model, ' the Villain model
with fourfold symmetry breaking, "and the Ising
model with competing nearest- and next-nearest-
neighbor interactions. ' All four models are expected
to possess a marginal operator, and to exhibit critical
behavior characterized by continuously varying ex-
ponents. A physical realization of a system with this
LGW Hamiltonian may be provided by oxygen chem-
isorbed on the (110) face of tungsten. 4'"

C. Magnetic phase transition

in 02 on graphite

Films of between one and two layers of molecular
oxygen physisorbed on the basal plane of graphite ex-
hibit a magnetic and a distortive phase transition at
about 10—12 K, which is apparently continous. ""
The transition will be referred to as the a-P transi-

tion. Neutron scattering investigations by McTague
and Nielsen24 have revealed information about the
structure of the phases. [See Fig. 10(a).] The n-P
transition has also been studied via specific-heat
measurements by Vilches and Stoltenberg. " In the
paramagnetic phase the structure is similar to that of
the closest-packed plane of P-02. The symmetry

group is that of a triangular lattice, P6mm. The low-

temperature phase has a distorted triangular structure
analogous to that of the closest-packed plane of bulk
a-02. This phase exhibits antiferromagnetic order.
All data are consistent with the assumption that the

02 molecular axes are normal to and the magnetic

{a) {b)

FIG. 10. (a) Structure of the ordered (o.) and disordered

(P) phases of molecular oxygen adsorbed on graphite. The
arrows denote the spin orientations on the distorted triangu-

lar lattice. (b) The Brillouin zone and wave vectors, k, that

define the different ordered states.

pi = /exp(i k& R) vj S (R) (6.1)

with the k, shown in Fig. 10(b), and the unit vectors
~z ki. The three functions Qi constitute an irreduci-
ble representation of the symmetry group P6mm of
the high-temperature phase. The magnetic part of
the LGW Hamiltonian contains all the invariants that
can be constructed from these three functions. Note
that time-reversal symmetry [under which

S(R) —S (R)] excludes all odd invariants. This
leaves, for the magnetic part, the LGW Hamiltonian
of a Heisenberg system with cubic anisotropy

+u x@J +v QQJ
J

(6.2)

The distortive part of the LGW Hamiltonian
depends on the displacements of the 02 molecules
from their positions in the high-temperature phase.
Uniform lattice distortions are described in terms of
the strain tensor e,&. For a two-dimensional system
there are three independent components, e

moments confined to the plane of. the substrate. The
n and P phases are strongly incommensurate with the
substrate lattice. Hence, for the theoretical analysis
we assume that all substrate effects can be neglected.
Bak ' showed that since the substrate potential has
the same symmetry, P6mm, as the overlayer in the
high-temperature phase, a possible modulation of the
latter does not change the conclusions concerning the
universality class of the.phase transition.

A LGW Hamiltonian for the n-P transition of 02
on graphite was proposed" that contains the effects
of both the magnetic and distortive degrees of free-
dom.

Consider first the spin degrees of freedom. The
spin structure of the ordered state shown in Fig.
10(a) yields a nonvanishing value of the (three com-
ponent) order parameter
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and hazy Of these, the combination E~+ 6yy

transforms as the unit representation of P6mm, while
the two functions

1
41=&xv A2=

2 (&xr &vv) (6.3)

constitute a two dimensional representation. The dis-
tortive part of the LGW Hamiltonian, given in terms
of invariants up to fourth order, is given by

The specific-heat and neutron scattering data"
are consistent with the interpretation that the n-P
transition takes place as a single transition. Hence,
02 on graphite is an excellent candidate for a two-
dimensional Heisenberg system with cubic anisotropy.
Further studies of the transition and determinations
of the critical exponents n and P are needed to con-
firm that the system belongs to this new universality
class. It would also be of interest to study the transi-
tion for the system in a magnetic field, H, applied
perpendicular to the substrate. Then

1

+ w (Q2 —3 Qt Q2) + tt X f; (6.4)
3v —+ JQ +a+ ~ P + blf 2

p
2 (6.7)

X...,=(&32 —@22}y)+3 '" 3yt2 —X@j 4, . (6.5)

This is exactly the LGW Hamiltonian of the three-
state Potts model.

Finally, to identify a term that couples the magnet-
ic and elastic degrees of freedom, we construct an in-
variant from @, and P;. The lowest order invariant
that can be constructed is quadratic in $& and linear
in 4v; and is given by

with a & b. If the system is in the cubic Heisenberg
regime, the field is expected to lower the transition
temperature. (Mean-field theory yields the estimate
5 T, = 2 K per 100 kG. ) The intriguing questions are
(i) whether the six-state Potts point can be reached
with the new first-order multicritical behavior becorn-
ing observable and (ii) whether, for sufficiently
strong fields, the splitting of the transition into two
branches can be found. Application of a field parallel
to the substrate should result in two-dimensional bi-

critical behavior of the usual kind. 3'

Hence, symmetry arguments yield for the total LGW
Hamiltonian describing the n-P transition in 02 on
graphite

X=&nag ++dist +coup (6.6)

The relative size of the coupling parameters in Eq.
(6.6) remains undetermined.

The Hamiltonian (6.6) is identical with the LGW
Hamiltonian (4.11) obtained by a Hubbard transfor-
mation for the (N =3,N&=2) model on the cubic
plane x =z. The phase diagram for this model is ex-
hibited in Fig. 6 and discussed in Secs. IV C and V F.
We conclude that depending on the relative size of
the coupling parameters r, and r2 in Eqs. (6.2) and
(6.4), respectively,

'

the a-P transitions consist of ei-
ther one or two transitions. The interpretation is as
follows. (Compare Sec. IV C for details. ) When
r2 (( r~, a continuous three-state Potts transition
leads to a distorted, but nonmagnetic intermediate
phase and then an Ising transition occurs into the
low-temperature distorted and antiferromagnetic
phase. When r2 )) r~, a single, continuous phase
transition of cubic Heisenberg character into the dis-
torted and magnetic phase occurs. For r~ =r2 the
transition is a first order six-state Potts tr-ansition.
The phase diagram in the vicinity of the point rj = r2
is not yet understood, and will be more complicated
than the approximate Migdal calculation predicts be-
cause of the first order nature of the Potts transition.
One might expect first-order phase transition lines to
extend from r~ = r2 and new tricritical points to
separate them from the second-order lines.

VII. SUMMARY

We have investigated two-dimensional anisotropic
N-vector models under three viewpoints.

(i) Experimental realizations of two-dimensional
anisotropic N-vector models exist. A comprehensive
approach to the description of phase transitions in
two-dimensional systems was outlined that involves,
first, the determination of a model for the system
under consideration and, second, the treatment of
the model by renormalization group and/or other
techniques. The concept of continuous-spin LGW
Hamiltonians was used to relate experimental sys-
tems and discrete models. The universality hy-
pothesis that this reasonirig employs, namely, that an
experimental system and a discrete model belong to
the same universality class when they are described,
to leading order, by identical LGW Harniltonians, has
not yet been tested extensively for two dimensions.
E'xamples were given that indicate the validity of the
hypothesis.

(ii) Relations among anisotropic continuous-spin
Harniltonians and discrete models were established by
Migdal renormalization-group arguments and the
Hubbard transformation. Discrete models were con-
jectured to be equivalent to ¹omponent
continuous-spin models with local anisotropies. In
two dimensions, symmetry-breaking perturbations of
N-vector models with N ~3 are relevant; in their ab-
sence no phase transition exists. (For the X& model
the fourfold symmetry-breaking term is marginal and
leads to the Ashkin-Teller model. ) For example, it
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was shown that the Migdal recursion relations map
the continuous-spin, cubic Heisenberg Hamiltonian
onto the discrete cubic model. A verification of this
result by a rigorous calculation would be of interest.

(iii) The discrete models with which many of the
anisotropic N-vector models are connected have the
form of a generalized Potts model. The (/V, lV&)

model was introduced and defined in terms of two
coupled Potts-like variables associated with each lat-
tice site and then analyzed by duality'and
renormalization-group methods. It provides a unified
description for large classes of discrete models with
nearest-neighbor interactions.

The concepts were exemplified by a discussion of
the two-dimensional Heisenberg model with cubic an-
isotropy, which has applications to the magnetic a-P
phase transition in overlayers of oxygen on graphite.

Also discussed were new experiments for the study
of this system.
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