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This paper presents the results from molecular-dynamics calculations on a lattice-dynamical

system which undergoes a structural phase transition. The characteristics of the model system

used for the calculations are described in detail; the model is two dimensional, has an antiferro-
distortive structural change, and is in the category of displacive structural transitions. The fol-

lowing results are obtained from the molecular-dynamics calculations. First, some equilibrium
properties are shown, including the static correlation function, to establish that the system has a

second-order phase transition. Second, the results for the time-dependent order parameter or
soft-mode correlation function are given. Near the transition the spectral function for this

correlation function exhibits a very narrow and intense central peak, in addition to the soft-
mode peak. The temperature dependences of the soft-mode frequency and the central-peak

width are given. The results obtained here are very similar to experimental observations, partic-

ularly on SrTi03, and they are used to argue that only intrinsic anharmonic mechanisms are

needed to explain the origin of central peaks. Third, extensive results are given for the tem-

perature and wave-vector dependence of the displacement correlation function, which give the

wave-vector dependence of the central-peak characteristics. In a small temperature interval

around the transition and in a small region of wave-vector space around but not including the
soft-mode wave vector, the central peak is found to split so that the maximum is not exactly at

zero frequency. Lastly, results for the energy-density correlation function are given for wave

vectors around the soft-mode wave vector and for temperatures above the transition. Near the

transition the corresponding spectral function is found to develop a pronounced high-frequency

peak.

I. INTRODUCTION

The recognition that nonlinear interactions can pro-
duce phenomena which are qualitatively different
from the situations occurring in the related linear sys-
tems is one achievement of much recent research in
physics. Practically all areas of physics have been af-
fected by this realization, and furthermore a rather
small set of nonlinear equations has been found to
describe a wide variety of physical systems and ef-
fects. '

Lattice dynamics is one established area of physics
that has experienced new activity as a result of the
discovery of the new effects which can result from
nonlinearity. Traditionally, anharmonic lattice forces
have been treated as weak perturbations to the linear
forces, and on this basis, understanding of the finite
lifetimes of lattice vibrations and of transport
phenomena has been obtained.

%hen the anharmonicity is not weak, one conse-
quence can be that structural phase transitions occur.
A mean-field type of perturbation theory for such
transitions leading to the so-called "soft-mode" pic-
ture was proposed some years ago by Cochran and

by Anderson. 5 According to this picture, the fre-
quency of one of the lattice modes goes to zero at the
temperature of the structural transition and the static
distortion of the lattice which occurs is described by
the polarization vectors of that particular mode. Ear-
ly experiments confirmed the correctness of this
soft-mode theory. 6

More recent experiments have shown that structur-
al phase transitions are not adequately described by
the mean-field theory. One such experiment is the
measurement of the temperature dependence of the
order parameter in strontium titanate (SrTi03) show-
ing that the value of the corresponding critical ex-
ponent is not that predicted by mean-field theory, but
is consistent with the measured values for other
second-order phase transitions, particularly magnetic
and order-disorder systems. More closely related to
the subject of this paper are measurements of the
neutron scattering spectrum of SrTi03 by Riste et al.
and subsequently by Shapiro et a/. ' These meas-
urements showed, in addition to the soft-mode peak,
that there is a very intense and very narrow peak
about zero frequency —. the so-called "central peak".
This central peak exists in a large temperature inter-
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val about the transition, being observable at least 60
K above the transition temperature which is near 100
K in SrTi03. This interval is much wider than the 5-
K interval below the transition in which the non-
mean-field temperature dependence of the order
parameter is observed. '

Since the original observation on SrTi03, central
peaks have been observed in other crystals with the
same lattice structure9" " (KMnF3, LaA103,
RbCaF3), in other insulating crystals" (Pb4Ge30()),
in metals'4 (Nb3Sn), in order-disorder systems'5

(KH2PO4), and in a molecular crystal" (C6C1402).
Determination of the width of the central peak has
not been possible in most of the neutron scattering
experiments, since it has become narrower than the
spectrometer resolutions. Recent high-resolution
light scattering experiments on lead germanate"
(Pb4Ge30~~) using novel techniques, have measured
the central-peak width to be about 5X10 eV full:
width at half maximum (FWHM). For SrTi03 in-
direct measurements from EPR data" and one high-
resolution neutron scattering measurement' estimate
the width to be about 0.5&&10 eV. These experi-
mental results have motivated considerable activity in
search for the mechanism which produces such an
extremely narrow peak.

Since the experimental observations from a wide
variety of materials are so similar, the assumption
has been widely made that they are a general result
of anharmonicity, independent of any particular force
law, and therefore simple models can be used for
their analysis. Most theoretical work on this problem
has been based on a Hamiltonian for an n-component
continuum displacement field incorporating quartic
anharmonic interactions, of the typ'e made popular by
renormalization-group theory. At least three dif-
ferent approaches can be distinguished in the work
that has been done.

One approach, taken by Aubry, ' ' and by
Krumhansl and Schrieffer and their collaborators" "
has been to explore the consequences of the fact that
the nonlinear equations of motion generated by this
Hamiltonian have certain solutions which exist only
by virtue of the nonlinearity. These solutions are an-
tithetical to the familiar lattice wave solutions in that
they are spatially localized whereas the lattice waves
are spatially diffuse and are instead localized in
wave-vector representation. Most but not all of this
work has been on one-dimensional models where
analytic derivations can be done in terms of elliptic
functions and their limiting forms. These intrinsical-
ly nonlinear solutions take-the form of propagating
domain walls or cluster boundaries between large or-
dered regions of the crystal; the direction of ordering
changes in passing through one of these walls. Non-
rigorous but compelling arguments have been put
forward by Aubry2' and by Krumhansl and
Schrieffer that the motion of these domain walls is

the cause of the central peak in the scattering spectra.
The limitations on their arguments are the restriction
to one dimension, where the only motion possible for
a domain wall is simple propagation, and the conse-
quent lack of a useful prediction for the temperature
dependence of the intensity and width of the central
peak in higher dimensions where the phase transition
occurs at nonzero temperature.

A second theoretical approach to the central-peak
problem has been to use the extension to dynamic
critical phenomena'4 of the techniques of the renor-
malization group (RG)."' The microscopic Hamil-
tonian for the structurally transforming system is as-
sumed to be equivalent to the semiphenomenological
"Model C" in a classification made by Halperin,
Hohenberg, and Ma."This is a model with a non-
conserved order-parameter field coupled to an addi- .

tional conserved field, which for this case is the ener-
gy density. A proof of this equivalence for a one-
component order parameter has recently been given
by Bausch and Halperin. " So far calculations of
scattering lineshapes using the RG are based on the
expansion in 4—d„where d is the dimensionality, and
are strictly applicable only near four dimensions.
Thus at the present time there is no close relation
between this approach and the previously discussed
approach, " which has achieved results only for low
dimensionality. The RG calculations predict no cen-
tral peak in the spectrum of the order-parameter flu-
ctuation. '

The inability of these theories to give a central
peak which is as narrow as the experimental observa-
tions has led to consideration of impurity mechan-
isms. ' " These theories conclude that a small con-
centration of impurities which couple to the order
parameter can produce a sufficiently narrow central
peak. In support of this position, electron paramag-
netic resonance experiments have shown that impuri-
ties with the proper symmetry exist, and purposeful
enhancement of the impurity concentration in SrTi03
has been shown to increase the central-peak intensi-
ty. These experiments show that impurities must
certainly play a role in the dynamics producing the
central peak, even though at the present time no de-
finite impurity with a known coupling to the order-
parameter fluctuations has been identified as the
responsible agent.

The recent light scattering experiments on lead ger-
manate by Fleury and Lyons" must be considered in
conjunction with the results mentioned in the previ-
ous paragraph. These high-resolution experiments
have identified two coexisting central peaks. One is
so extremely narrow that it must be considered elas-
tic and due to static impurities. The other is still very
narrow compared to the soft phonon peaks and is at-
tributed by these authors to an intrinsic anharmonic
mechanism of the pure crystal. This experiment
seems to indicate that the failure of current RG cal-



ANALYSIS OF STRUCTURAL PHASE TRANSITIONS BY. . . 5775

culations to find a central peak is not definitive and
that impurities are not a necessary agent to have a
central peak even though they are undoubtedly im-
portant in determining its characteristics, i.e., its in-

tensity and width.
A third theoretical approach to understanding non-

linear systems which may improve understanding of
these controversies, is the use of computer simula-
tion. or molecular dynamics. With this technique
one-dimensional systems have been studied by Au-
bry, "Koehler et al. , and Schneider and Stoll, "
two-dimensional lattices by Schneider and Stoll, "
by Bartolome and Kerr, ' and by the present work,
and three-dimensional lattices by Schneider and
Stoll. "2 One advantage of the computer simulation
studies is that the impurity content of the system can
be precisely controlled. All simulation studies which
have been reported up to the present time have been
on completely pure systems; in all cases where the
spectrum of the order-parameter fluctuations has
been computed a central peak has been obtained.

This paper gives the results of a study of a two-
dimensional lattice which exhibits a structural phase
transition. The model differs in several important
respects from that used in the other study of a two-
dimensional system by Schneider and Stoll' "; the
differences are pointed out in the descriptions which
follow. When this system is near its transition, the
results for the spectral function for the order-
parameter correlation function show a very intense
and narrow central peak —so narrow that this result
is used to argue that only intrinsic anharmonic
mechanisms are necessary to explain most of the ob-
served experimental results. In addition this work in-
cludes a more extensive analysis of the temperature
and wave-vector dependence of the displacement
correlation function than has been undertaken previ-
ously, and it presents results for the energy-density
correlation function.

The outline of the paper is as follows. Sec, II
describes the model used for the calculations, and
Sec. III presents some of its properties. A brief dis-
cussion of some aspects of molecular-dynamics calcu-
lations is in Sec. IV. The results are presented in the
following four sections: static properties in Sec. V,
the order-parameter correlation function in Sec. VI,
wave-vector-dependent displacement correlation
function in Sec. VII, and energy-density correlation
function in Sec. VIII, The conclusions are summar-
ized in Sec. IX.

II. THE MODEL

In this section the model used for the calculations
is described. This two-dimensional model has been
constructed to be as simple as possible in the physical
characteristics involved in the structural change; thus,
it has a square lattice in both high- and low-

JL

f(

4 'fr

a) =a e], a2= a e2, (2.1)

where e~ and e2 are Cartesian unit vectors. The set
of lattice vectors is given by

R =l„a)+l,a2, (2.2)

where l„and l„are integers. The reciprocal lattice of
the high-temperature phase is also square with basis
vectors

g~ =(27r/a) e~, g2=(2vr/a) e2 .
l

The first Brillouin zone of the high-temperature lat-
tice is the large outer square shown in Fig. 2.

The potential-energy function of the system is the
sum of harmonic and anharmonic parts

(2.3)

y(h) + y(a) (2.4)
The harmonic part 4 "' consists of pair interactions
extending out to second nearest neighbors. Its expli-
cit form is

FIG. 1. Structure of the crystal lattice. The dots show the
square structure of the high-temperature phase with lattice
parameter a. The arrows show the displacement pattern of
the unstable mode and the static displacements occurring at
the transition. The dashed lines show the square structure
of the low-temperature phase.

temperature phases. In order to have simple disper-
sion relations for the lattice waves, the number of
atoms per unit cell is as small as possible, namely,
one atom per unit cell in the high-temperature phase
and two atoms per cell in the low-temperature phase.
In addition, the range of the interparticle forces is
kept as short as possible, consistent with having the
bare harmonic modes of the lattice stable throughout
most of the Brillouin zone.

The structure of the high-temperature phase is
square, as shown in Fig. 1. The lattice constant is a,
and the two basis vectors of the structure are
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O'"' = —'Mu&o2 g ( —[u„(R+a, ) —u„(R)]2+ ,
'

(1+—r2 r4 —g) [—u~(R+a~) —u~(R)]
R

+ —(1+r2 r4+—g) [u„(R+a2) —u„(R )] + 4 [u~(R+a2} —u~(R)]

—
—, (1+r2) ([u (R+a, +a2) —u (R)] + [u (R —a~ +a2) —u (R)] )

+
4

r 5([u„(R +a~ +a2) —u„(R)][u~(R+a~+aq) —u„(R)]
/

—[u„(R—a, +a2) —u„(R )][u~(R —
a~ +a2) —u~(R)]]) (2.S)

Here u ( R ), o. =x,y, denotes the ath component of
the displacement of the particle associated with site R
away from that lattice site, Each atom has two de-
grees of freedom; this is one of the major differences
between this model and that of. Schneider and Stoll, 4p

which has a two-dimensional lattice but each atom
has only one degree of freedom. M is the mass of a

particle, cop is a constant with the dimensions of fre-

quency, so that
4

M~p is one of the nearest-neighbor

harmonic force constants. The quantities 12,r4, r5,
and g are all dimensionless constants. 3

The harmonic part of the potential can be separat-
ed into a sum of single-particle terms 4 "' and a sum

of pair terms 4 " ', involving products of displace-
ments at different sites, by multiplying out the brack-
ets in Eq. (2.5). The single-particle part is

4&™=-,' M,' $ [-,' (l-r-, +g) u„'(R)
R

+ —,
'

(1—r4—g)uy'(R)] . (2.6)

The classification of the structural change exhibited
by the system as being either a displacive transition
or an order-disorder transition is made essentially on
the basis of the sign of the coefficients in this equa-
tion. If both coefficients are positive, then the transi-
tion is displacive. If one or both coefficients are
negative, then the classification of the transition
depends on the comparison of the thermal energy per
particle at the transition to the depth of the well in
the total (harmonic plus anharmonic) single-particle
potential. 44 The coefficients are chosen so that this
model has a displacive transition, as will be discussed
in detail below.

The anharmonic part of the potential-energy func-
tion is

$ [uo[u (R)+u (R)]2a'
R

+ vo[u„'(R) +u,'(R)]] . (2.7)

FIG. 2. Brillouin zones of the lattice. The outer and
inner squares are the high- and low-temperature Brillouin
zones, respectively. The dotted area is the region ~here the
harmonic frequency co, (q) is negative. F (R) =F t"~(R) +F t'~(R) (2.8)

Here Mp and vp are additional dimensionless con-
stants. This form of the anharmonic potential-energy
function is taken from the renormalization-group
analysis by Bruce and Aharony ' of .the possible
phase diagrams of stressed perovskite c'rystals.

The force on the Rth particle obtained from the
'

potential-energy function 4 also separates into har-
monic and anharmonic parts,
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and the explicit forms of these are as follows:

F„"(R) =Mcup2{
~ [u„(R+a)) —2u„(R) +u„(R —a~)]

+
4 (I+r2 r4+—g) [u„(R+aq) —2u„(R) + u„(R —a2)]

——,
' (I+r2) [u (R+a, +a2) —2u„(K) +u„(R —a) —a2)

+u„(R —a~+aq) —2u„(R) +u„(R+a, —aq)]

+ —,rs[ur(R+a~+a2) —2u„(R) +ur(R —a~ —aq)

—u„(R —a~+a2) +2ur(R) —u„(R+a~ —a2)]];

Ft"'(R) = Mcus { 4 (1+r2 r4 g) [u—r(R—+a~) —2u„(R) + u„(R —at)]

+ —,[ur(R+aq) —2u„(R) + u, (R —aq)]

—
&

(I+r2) [ur(R+a~ +a2) —2u„(R) + u„(R —
a~

—a2)

+ u, (R —a~+a2) —2u„(R) + u„(R+a& —aq)]

(2.9)

+
p

rq[u„(R +a~ +aq) —2u„(R) + u„(R —a~ —a2)

—u„(R —a~+a2) +2u„(R) +u„(R+a~ —a2)]);

F„' (R) = —(Mcu /a ) {up[u (R) +u (R)]u„(R) +vpu„(R)],

Fy"(R) = —(Mppp2/a') {up[u„'(R)+u (rR)] (urR)+vpur3(R)] .

(2.10)

(2.11)

(2.12)

The quantities in square brackets in Eqs. (2.9) and
(2.10) have the familiar form describing harmonic
nearest-neighbor pair forces. In this case the har-
monic force on the Rth particle comes from the four
nearest neighbors at R + a~, R + a2, and the four
next-nearest neighbors at R + a~ + a2. The terms in
these equations proportional to r5 couple the x and y
components of the motions. Also, the harmonic
force is seen to be translationally invariant. The
anharmonic force is not translationally invariant;
rather it restricts each particle to remain within a re-
gion around a lattice site fixed in space,

Although the lattice of the system has the point
symmetry of a square, the harmonic potential energy
4'"' has only rectangular symmetry, as can be seen
from the terms proportional to the parameter' g in
Eqs. (2.5), (2.6), (2.9), and (2.10). If g =0, then
the potential-energy function has square symmetry.
This anisotropy parameter is the same as the parame-
ter g in the paper by Bruce and Aharony. 4' It
describes the essential effects of the application of a
uniaxial stress to the system. The most important ef-
fect for critical phenomena is to change the point
symmetry of the lattice, which changes the universal-
ity class to which the system belongs and thus
changes the critical exponents. The calculations re-
ported here are for a single nonzero value of g. Im-
portant changes in the behavior of the system can be
expected as a function of g, expecially near g =0. A

qualitative discussion of these possibilities is given in
Sec. III.

The mechanism causing the system to have a struc-
tural phase transition can be understood by analyzing
the harmonic approximation for the system. Using
only the harmonic forces of Eqs. (2.9) and (2.10),
plane-wave solutions to the equations of motion are
found in the standard fashion, and the squares of the
frequencies of these lattice waves are obtained as the
eigenvalues of the 2X2 dynamical matrix whose ele-
ments are

D (q) =cop[2(1+r2) sin —q„a sin —q„a

—r2sin'2 q„a —(r4 g) sin —,
' q„a], —

(2.13)

D„„(q)=2&upr5sin q„a cos q„a —sin
2 q„a c—os —q„a,

(2.14)

D»(q) = «&p [2(1+r2) sin —q„a sin —,qra

—(rq+g) sin'2 q„a —r2sin —,
'

q„a] .

(2.15)

For illustration, it can be seen that for wave vector q
parallel to the x or y axes, the dispersion relations
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have the same q dependence as the one-dimensional
linear chain with nearest-neighbor forces.

In order to have a structural phase transition, there
must be an unstable mode among the bare harmonic
modes of the system, i.e. , at least one of the vaues of
~ obtained from the dynamical matrix in Eqs.
(2.13)—(2.15) must be negative. For the calculations
reported here, the waVe vector of the unstable mode
is chosen to be at the Brillouin-zone corner

(2.16)

f4+g (0,
f4 —g (0,

(2.24)

(2.25)

—f4-A' & -f2,

f4+g ( f2,

0 ( 4rs ( (r2+r4) —g

(2.26)

(2.27)

(2.28)

The set of parameters satisfying these conditions
which has been used for the calculations is

For 'the mode with this wave vector, the phase factor
for the motion of the Rth particle is

f2 =. 2,7

f4 = —0.5,
(2.29)

(2.30)
iq R I +l

e ' =(—1)" ~, (2.1 7)

m„'(q, ) = co02(2 + r, —r4+g),

o)y2(q ) =o)0(2+r2 r4 g)

(2.18)

(2.19)

The difference of these two quantities is proportional
to the anisotropy parameter g; this nondegeneracy is
a consequence of the rectangular symmetry of the
potential-energy function.

The condition

2+f2 —f4 (0
is imposed on the parameters so that in the g =0
case with square symmetry the two (degenerate)
modes at q, are unstable. Then, for the calculations
reported here, g is chosen to be positive and suffi-
ciently large that rv„(q, ) is positive. This gives two

additional conditions,

so that adjacent atoms move in opposite directions.
The arrows in Fig, 1 show one example of such a dis-
placernent pattern; other possibilities have the dis-
placements parallel to some other direction. The
dynamical matrix as given in Eqs. (2.13)—(2.15) is

diagonal at q =q„so for that wave vector the modes
are polarized parallel to the x and y axes. The
squares of the corresponding frequencies are

g =+0.4,
fg =+0.5 .

(2.31)

(2.32)

(2.33)

Kith this choice of parameters both coefficients in

Eq. (2.6) are positive, so this system undergoes a
displacive transition. The bare harmonic dispersion
relations resulting from these parameters are shown
in Fig. 3 for selected directions in the Brillouin zone,
The negative value of cu„(q, ) is evident in this fig-
ure. The region around q, where ru„'(q) has negative
values is shown by the dotted region of the Brillouin
zone in Fig. 2. These modes are also unstable, but
the mode at q, determines the properties of the sys-
tem because the absolute value ~o&„'(q)

~
is largest at

q =q, and this mode is thus the "most" unstable.
.The anharmonic forces, whose specific form is

derived from the potential in Eq. (2.7), stabilize the
lattice against the instability of the harmonic forces.
The structure of the low-temperature phase which
results from the interplay of these two forces is most
easily obtained at zero temperature by finding the
configuration which minimizes the total potential en-
ergy 4 =4"'+4". The displacements of the atoms
in the unstable mode with wave vector q, have no x
component, and the y component is

2+f2 —f4+g )0,
2+f2 —I4 —g (0 .

(2.21)

(2.22)

f2 &0, (2.23)

Thus only the mode with y polarization is unstable.
The particle displacements occurring in this unstable
mode are shown by the arrows in Fig. 1.

Additional restrictions are imposed on the parame- .

ters by requiring that all other modes are stable [ex-
cept for a small region around q, where o&~2(q, ) must
be negative by continuityl, that longitudinal modes
have higher frequencies than transverse modes, and
that the number of accidental degeneracies of dif-
ferent branches of the dispersion relations be a
minimum. These requirements lead to the conditions

~0 I~

0

~t
'~

0 ~ gytOIOOOO4
~ei

Oog

~~
O~ ~o~y ~yg

0

~ ~OP ~Ot'

~t
~ ~

~0

~o~g
~ o+~

0
' ~0

Xp

~~ ~
O~ 4

~ ~~eo~-

~Q~
~ ~

0 4~+0
~~0

~ ~ ~ei
E+

FIG, 3, Square of the bare harmonic lattice frequencies
plotted for selected directions in the Brillouin zone. The la-

bels of the vertical axes correspond to the labelled points in

Fig. 2. The dots are placed at the allowed wave vectors f'or
a 40&40 lattice with periodic boundary conditions.
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where S is the constant magnitude of the atomic dis-

placements in this mode. For this particular displace-
ment pattern, the total potential energy per particle is

MQ)p (2 + rp r4 g) S4 1 2

2 S/a = (0.03)' ' =0.173, (2.37)

potential energy in Eqs. (2.29) —(2.32) and from Eq.
(2.36), the magnitude of the static displacement of
the particles at zero temperature is obtained from
Eq. (2.35) to be

M &do
2'

4+— (up+ vp)S
41, a' (2.34)

and the minimum potential energy per particle is ob-
tained from Eqs. (2.34) and (2.35) to be

S'= —[(2+ r2 r, —g)/—(up+ up)]a', (2.35)

which is obtained by minimizing 4 in Eq. (2.34),
Thus the atoms shift by a finite amount up and down
parallel to the y axis, producing an antiferrodistortive
structural transition. The resulting crystal structure is

shown by the dotted lines in Fig. 1. This structure is
also a square structure, but the primitive unit cell
contains two atoms, and it has twice the area of the
high-temperature unit cell. The first Brillouin zone
of the low-temperature structure is shown by the
inner square in Fig, 2. From Fig. 2 it is evident that
the wave vector q, of the soft mode, which is at the
corner of the Brillouin zone of the high-temperature
phase, becomes a zone-center point in the low-

temperature phase.
For the calculations presented in this paper, the

two parameters of the anharmonic interaction have
been given the values

0=30 ~0= —10 . (2.36)

From the values of the parameters of the harmonic

For global stability of the system, this equation shows
that uo+vo must be positive. The coefficient of the
quadratic term is negative, as shown by Eq. (2.22),

, so that the potential energy in configuration space
along the direction specified by Eq. (2.33) has a
double-well shape.

The magnitude of the static displacements occur-
ring at zero temperature is given by

4„„„/WMo)o'a'= —4.5&10 3 . (2.38)

III. CHARACTERISTICS OF THE MODEL

Two properties of the model introduced in Sec. II
are presented here. First, the possible phase di-
agrams of the system in the plane defined by the an-
isotropy parameter g and the temperature T are
described using mean-field theory. This is included
in order to illustrate the different possibilities con-
tained in the model, even though it is known that
mean-field theory does not give an accurate descrip-
tion of phase transitions. Secondly, the nonlinear
equations of motion which describe the system in the
continuum approximation are given.

A. Mean-field approximation

The derivation of the mean-field theory for this
model closely follows that given by Thomas for a
one-dimensional case. Since the form of the anhar-
monic potential is the same as that used by Bruce and
Aharony, ' the results obtained here are very similar
to theirs.

The mean-field theory first calculates the properties
of the single-particle system defined by the
potential-energy function

(3.1)4-„=—,
'

M~o [—,(1 r4+g) u„'+—,
' (1 r4 g) uy'] +——,

'
(M—oyo2—/a') [uo(u,'+ u„')'+ vo(u'+ u')] —F '"' u .

The harmonic and anharmonic single-particle potential energies in Eq. (3.1) are the terms from Eqs. (2.6) and
(2.7), respectively, which refer only to atom R; the last term is the interaction with an external force. The ther-
modynamic and response functions of this single-particle system are calculated by assuming a single-particle den-
sity distribution of the form appropriate for a harmonic oscillator46

-(u -U ) /2~2
X X X

( )=-
-(u -U ) /2~~2

V V V

(2 vr o „)'~2 (3.2)

in which the parameters U, cr, n=x, and y are determined by minimizing the single-particie free energy. This
Ansatz assumes that the single-particle density contours have elliptical shape and that the principal axes of the
contours remain parallel to the coordinate axes. This assumption is justified by the rectangular symmetry of the
model. Using Eq. (3.2) gives the expectation value of the configurational energy as

Z = —,
' M 2[—,

' (l-r, +g)(U„'+ „)+ —,
' (1-r-;g)(U„'+,)]

+ —'(M~o2/a2) [(uo+~o) [(Ux+6Ux (rx+3(rx) + (Uy4+6Uy (ry+3cry2)] +2uo'(Ux+(rx) (Up~+cry) ], (3.3)
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and of the configurational entropy as

S = —ks(lnp) =ks+
2 ks in(2m o.„)+

2
ksin(2r«a») .1 1 (3.4)

The four parameters U, o, n =x. and y, are chosen to minimize the free energy E TS—(T is the temperature)
and are the solutions of the four equations

Mrs' U ( (1 r4+g) +a [(up+up) (U2+3(r ) +up(U»2+a'»)]} =F (3.5)

Mpoo U» {—(1 r4 —g) +—a [(uo+&o) (U«+3a«) + uo(Ux+o'x)1) = F»'"
Meson�„(

—(1 r4+g—) + a 2[3(up+up) (U„'+o„)+ up(U«+o«)]) = ksT,

(3.6)

(3.7)

M o (
—(1—r —g) +a '[3(up+up)(U +o. ) +up(U +a.„)])=kaT (3.8)

In mean-field theory the effects of the interparticle
interaction are accounted for by including as part of
the total force acting on the Rth particle, the inter-
particle forces from the neighbors of that particle
evaluated at the mean position U (K) for those parti-

cles. That is, in Eqs. (3.5) and (3.6), the following

replacements are made:

F:"'-F:"'(K)+ X r..(K-K')U. (K'),
I ' I

R a
R'& R

displacements occurring, at the transition have the
spatial dependence

U (K) =(—1)" «S, (3.10)

M(uo {(2+r, r4+g)—

where S is independent of position and is the order
parameter for the transition. When Eq. (3.10) is sub-
stituted into Eqs. (3.5) —(3.9), then Eqs. (3.5) and
(3.6) become

o., 0. =X,P . (3.9) +a '[(uo+vo)(s„'+3o.„)+up(s,'+a„)]}S„=O,
The force constants 1 (R) which are nonzero may

be found by inspection from the potential-energy
function 4t"' in Eq. (2.5) and are listed in Table 1.

To determine the values of the parameters where a

phase transition occurs, solutions of Eqs. (3.5) —(3.9)
must be found with U ( R ) W 0 but with F '"'( R ) =0.
To do this, the fact from Sec, II that the soft mode
has wave vector q, is used, and therefore the static

TABLE I. Harmonic force constants used for calculat-

ing the mean force in Sec. III and for calculating the energy

density in Sec. VIII.

Malp ( (2+I'2—r4 —g)

(3.11)

Mcuo2 (3+2r 2
—r4+g ), —

~ =cx =X,

+ '[( o+ o)(s„'+3 „)+,(s„'+ „)])s„=0.
(3.12)

Equations (3.7) and (3.8) remain the same except for
the replacement of U by S . To get Eqs. (3.11) and
(3.12) th'e relations

I,(R)

g r„.(K)(—1)" «=
R

RWO

0, o. =X, n =P,
Mrs (3+o2r 2 r4 —g), — —

a = o'=y

+ a}

+a2

+(a}+a2)

+(—a1+a2)

xx,yy

xy,yx

xx,yy

Xy,yX

1

4
1

4 (1+r2 —r4 —g)
1

4 (1 +r2 —r4+g)
I

4
1——(1+r2)B

1
f5

—
B

(1+r2)
1

8 r5

(3.13)

S„=S cos8, S, =S sin8, (3.14)

and the auxiliary quantities

obtained from Table I, have been used.
To solve Eqs. (3.7), (3.8), (3.11), and (3.12), the

polar representation of the order parameter

0 =Ox+(rv « ~u=(rx (rv « (3.15)
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are convenient to use. In terms of these variables the four equations to be solved are

S sin28[2g + (2up+3vp)a t) a. + vpa 2S2cos28] =0, (3.16)

S'[(2+r2 r4)—+gcos28+ —,(4up+3vp)a a. + , (2—up+3vp)a 't)crcos28 +upa 2S + —,vpa 'S'(1+cos'28)] =0,
(3.17)

r4) a a +
2

ga ~o +
2

(up+vp) a S (cr+5a' cos28) + u—pa 4S (oQ' —tr cos28)

+
2 (up+vp) a [ o' +(5 a)'] + , upa —4[a~—(ho.)'] =2ktt T/Mtv a' (3.1g)

1 — 2 1. 2 3 4 3
2

(1—r4)a Aa. +
2 ga o +

2
(up+vp)a aha+ . (u.—p+vp)a S (ho+cr.cos28) + upa —S (d acrcos. —28) =0 .

(3.19)

To solve these equations, use is made of the
knowledge from Sec. II that for the case of a positive
anisotropy parameter g )0, the soft mode is polar-

ized parallel to the y axis, whereas for g & 0 it is po-
larized parallel to the x axis. Thus, for the solution
of Eq. (3.16), the appropriate root is

8 = rr/2, g ) 0
sin28=0' 8=0, & 0

For the case g )0, Eq. (3.17) can be solved for the

order parameter

(3.20)

a S = [—(2+re r4 g) —
2

(4—up+—3vp)a a

+ —,(2up+3vp) a 'Ao]/(up+vp) . (3.21)

For this solution to be physically possible, the
numerator must be positive; thus the condition defin-

ing the phase boundary is

(4up+3vp)a 2 tr, —(2up+3vp)a Acr,

= —'2(2+r2 r4 g) . (3.22—)—
The other relation between o. and Ao. is Eq. (3.19),
which becomes, on the phase boundary,

&
(1 —r4) a Ao., +

2
ga 'rr, +3(up+vp)a "o,t) o, =0. . .

(3.23)

a function of the anisotropy parameter g; the results
are shown in Fig. 4. This phase diagram is very simi-

lar to that in. Fig. 2 of Ref. 45. For g )0 the order-

ing is parallel to the y axis, and for g & 0 it is parallel

to the x axis. There is a discontinuous change in the
ordering direction where g changes sign, so the por-
tion of the g =0 axis out to the intersection of the
two phase boundaries is a "flop line". The point
where the flop line and the two phase boundaries in-

tersect is a "bicritical point".
At g =0.4, which is the value used for the

molecular-dynamics calculations, the mean-field tran-
sition temperature is 8.312&&10 3Mcop2a~/ks.

For nonzero g values, the system is in the same
universality class as the two-dimensional Ising model.
For g =0, the system is still anisotropic with square
symmetry due to the vo term in the anharmonic po-
tential, and it is then in the same universality class as
one of the models studied by Schneider and Stoll. 4'

If the parameter eo is set to zero, then this model be-

5-

The mean-field transition temperature is obtained by

substituting the solution of Eqs. (3.22) and (3.23)
into Eq. (3.18) with S =0,

2kB TC 1 — 2 1

2 2 2
(1 r4) a a—, +——ga tt. cr,

&do 0
c 2

+ —', (up+vp) a '[(r,'+ (h(r, )']

+ ,
'

upa 4[tr,' ——(Aa-,)'] . (3.24)

A similar set of equations can be derived for the
g &0 case.

Substituting the values of the parameters from Eqs.
(2.29)—(2.32) and (2.36) except for g, Eqs.
(3.22) —(3.24) (and the corresponding set for g (0)
can be solved to give the transition temperature T, as

FIG. 4. Phase diagram in the anisotropy-param-

eter —temperature plane. The arrows show the direction in

which ordering occurs for. positive and negative values of g,

respectively.
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comes equivalent to the two-dimensional XV model,
for which it is well known there is no phase transition
with long-range order. ' The XY model in two di-
mensions evidently has a phase transition involving a
divergence of the susceptibility below some critical
temperature but no long-range order. ' So far,
though, no numerical work has been done with this
model to study the crossover either to the g =0
square symmetry case or to the v0=0 isotropic case.

The mean-field theory outlined here would give yet
another solution by setting the expression in brackets
in Eq. (3.16) to zero. This solution would have the
angle 8 change continuously with g and would have a

phase diagram in mean-field theory like Fig. 3 of Ref.
45, with a tetracritical point. According to Ref. 45
this would be the chosen solution if the parameter vo

were positive rather than negative. This parameter
has been chosen negative here in order to do the
molecular-dynamics calculations for the simpler of
the two possibilities.

This discussion shows that there is considerable
variety available in the model concerning the type of
ordering that occurs in the low-temperature phase.
The calculations presented here are for a single,
negative value for vo and a single, positive value for g.

B. Continuum equations of motion

The model system orders by taking on a static dis-

placement pattern which alternates in direction in go-

ing from one atom to any of its nearest neighbors, as
shown in Sec. II. This displacement pattern varies ra-

pidly on the scale of interatomic distances, and thus
the displacement field is not the proper function to
use in a continuum description of the system near the

a S (R, r) = (-1)" "u (R, r) . (3.25)

The first factor on the right-hand side of Eq. (3.25)
eliminates the rapid alternations of the displacement
field.

Near the transition the system is expected to break
up into ordered regions where S (R, t) is spatially
practically constant, separated by boundaries through
which S (R, t) changes sign. Because the parameters
of the potential-energy function are appropriate for a
displacive transition, these boundary regions are
several lattice constants wide. Thus, near the transi-
tion the staggered displacement field varies slowly on
the interatomic scale, and writing continuum equa-
tions for this quantity is appropriate.

The derivation of the continuum equations of mo-
tion is straightforward so the details will be omitted.
The equations of motion obtained from the force ex-
pressions in Eqs. (2.9)—(2.12) are first rewritten in
terms of the staggered displacement field. Then it is
assumed that the site variable R can be treated as a
continuous variable r and that at any of the neighbor
sites r+5 of the position r, S (r+8) can be ex-
pressed in terms of S (r) by a Taylor expansion,

S.(r+8) =S.(r) + X8„7„S.(r)

, + 2 $ 8„8„V„,S ( r )+, (3.26)

where V„=—f)/f)r„. The following coupied nonlinear
partial differential equations are then obtained for the
components of S (r, r):

transition. Instead the proper function to use is the
(dimensionless) staggered displacement field
S (R, t), defined by reversing the displacement on al-
ternate lattice sites,

~ ~x2
—cop g [ ——(2+r2 r4) —

&
(rp+r4)]V—S„+cup(2+r2 r4+g)S»—2 2

t'

p»pa (r2 r4)(V„S—„—V„S„—) + p»pa gV„S„—copa r5V, »S+»cop[up(S, +S»)S„+vpS„]=0, (3.27)

2
—a&pa [ —

4
(2+r2 r4) —

s (r2+r4—)]V S»+ fop(2+r2 r4 g)S»——
t'

—
8

rppa2(r2 —r4) (V2S» —V»2S») —cap2a~g V„S„—culpa r5V„»S„+cop [up(S„+S»)S»+ upS»] =0 . (3.28)

The origin of the terms in these equations can be
readily identified. The first three terms form the
familiar Klein-Gordon (KG) equation. The coeffi-
cient of the Laplacian is positive by the inequalities in

Eqs. (2.20) —(2.28). The third term (the "mass-
squared" term of the KG equation) enters because
the harmonic part of the Hamiltonian does not
remain invariant under a uniform staggered displace-

ment field, as it does for a uniform displacement
field. The coefficient of the third term in the equa-
tion for S„ is positive [cf. Eq. (2.21)1 because that
mode is stable, whereas the coefficient of the third
term in the equation for S» is negative [cf. Eq.
(2.22)] describing the instability of that mode in the
harmonic approximation. The remaining linear terms
of these two equations describe the reduced sym-
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rnetry of this lattice system. The KG terms are iso-
tropic; the reduction to square symmetry is described
by the fourth term. The further reduction of the
symmetry to rectangular is described by the fifth
term, proportional to the anisotropy parameter g.
The sixth term gives the coupling between the x and

y components. Finally, the last terms describe the
nonlinear forces.

Coupled nonlinear partial differential equations
such as these have been studied very little. Some
references to work on similar equations are given in a
recent review article by Makhankov. "

For simple situations, the equations reduce to more
familiar forms. For example, if attention is restricted
to motions which have only a y component and
depend only on the y coordinate, then the equations
reduce to

9 Sy
2

+
4 top a (2+2r2 rq)'7»S»—

gt

+o»p(2+r2 r4 g)S +—too—(uo+&o)S» =0 (3 29)

This equation is essentially identical to the ones stu-
died by Krumhansl and Schrieffer and by Aubry, '

including having the same signs for the coefficients.
[There is a similar equation describing motions paral-
lel to the x axis, but in that equation the coefficient
of the linear term is positive, using the condition on
the model expressed in Eq. (2.21), and its solutions
are not so interesting. l Thus, the domain wall solu-
tions discussed at length by Krumhansl and
Schrieffer and by Aubry are among the motions of
this lattice. Presumably there are also other more
complicated, intrisically nonlinear solutions of the
Eqs. (3.27) and (3.28).

IV. MOLECULAR-DYNAMICS CALCULATIONS

information that can be obtained for a classical sys-
tem. The limitations of the method are that the fin-
ite difference techniques used to integrate the equa-
tions generate numerical inaccuracies and that com-
puter limitations restrict both the number of particles
which can be used and the time interval over which
the solution can be obtained, and thus there are diffi-
culties obtaining adequate statistics for the averages.
Furthermore the force law for the system to be stu-
died is usually not known exactly, and approximate
representations of the forces must be used for the
calculations.

The calculations presented here are for a system of
1600 particles arranged on a 40X40 lattice with
periodic boundary conditions. An integration algo-
rithm developed by Beeman' was employed because
it allows the use of a long time step while still main-
taining good accuracy in the solution. Beeman's al-

gorithm has been shown to be closely related to
another. one developed by Verlet"' which has been
extensively used.

Information concerning the several MD runs made
for these calculations is given in Table II. For most
of the runs the time-step 4t used for the integration
was 0.3 in units of ~0 ', . where ~0 is the parameter
with dimensions of angular frequency appearing in
the potential-energy function in Eq. (2.5). With this
time step the total'energy oscillated very slightly
about a mean value; these mean values (in units of
Mtooa') and the corresponding relative root-mean-
square deviations are shown in Table II. At the two
lowest energies where the particles are moving more
slowly, At was increased to 0.4, which caused the

TABLE II. Information concerning the molecular-

dynamics runs. b, t is the time step in units of ~0, N, is the

number of time steps calculated, E/N is the energy per par-

ticle in units of Meooa, and bE is the rms deviation in the

energy.

Some of the details of the molecular-dynamics
(MD) method used to obtain information about the
model system are given in this section.

The MD method is the numerical solution of the
classical equations of motion for the positions and
velocities of all the particles for a system containing a
relatively small number of particles interacting
through the forces of the model. This solution is the
phase-space trajectory of the system, and by suitable
averaging over this trajectory thermodynamic func-
tions and correlation functions can be calculated.
The method was first used for fluids with hard-
sphere interactions by Alder and Wainwright, ' ex-
tended to liquids with continuous potentials by Rah-
man, ' and since then has been used successfully to
study many other situations including plasmas, mol-
ten salts, lattice vibrations, superionic conductors,
etc. In principle the method gives the most detailed

bt

(0)0 ')

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.4
04

N

36 000

36 000

12 600

36 000

56 000

36 000

36 600

36 000

36 000

36 000

(E/N) x10'
(M0)0 a )

20.880

16.006

12.055

10.386

9.662

9.263

8.911
8.569

7.205

6,533

(hE/E) x10'

0.040

0.039
0.043

0.054

0.066

0.072

0.081

0.081

0.141

0.147
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C

(A ) = W X A (.,)
j~]

and correlation functions are computed from

(A (r) A (0) ) = (A (r + r) A (7))

(4.1)

(4.2)

W, denotes the number of different phase-space con-
figurations used in the sums.

Special problems arise when the MD method is
used to study systems which have a phase transi-
tion. " These arise because finite systems with
periodic boundary conditions can not have phase
transit'ions. A particularly graphic discussion of this
fact has been given by Gallavoti. ' The problem may
be understood by considering the temporal behavior
of the instantaneous order parameter P(t) which for
this system is the average of the staggered displace-
ment field, defined in Eq. (3.25), averaged over all
the lattice sites R [see Eq. (5.2) in Sec. V]. At high
temperatures the system point in phase space moves
back and forth between regions of phase space in
which P(t) has opposite signs many times in the
course of one MD run. The average value (P) is ap-
proximately zero, and averages calculated over this
run give a good description of the high-temperature
phase. At low temperatures, since the finite system
has no phase transition, the phase-space point must
continue to move between regions where P (r) has
opposite signs, but the time interval between sign
changes becomes very long. The MD run can then
be entirely contained within a time interval where the
phase-space point stays in the region of phase space
where P (t) has a constant sign. It is assumed that

variation in total energy to increase. These values of
4t are on the order of

~p
of the period of the

highest-frequency vibrational mode of the lattice.
This is rather longer than the time interval used by
Schneider and Stoll, 6 who state' that they have 70
time steps in each period of the highest-frequency vi-

bration. Being able to use a time step longer is an
advantage since it means that more of the phase
space has been sampled for a given amount of com-
puting effort and thus more statistically independent
configurations are available to compute averages.

Table II also shows the total length of each of the
MD runs in terms of the number of time steps 4t.

'These runs were all taken after the system was al-
lowed to "age" for a considerable time in order to el-
iminate effects of the rather special initial conditions
used to start the calculations.

Once the positions and velocities of all the particles
are known as functions of time, the average values of
dynamical variables which depend on these positions
and velocities are computed by the formula

TABLE III. Units.

Quantity Unit

Length

Time

Mass

Frequency

Force

Energy

Temperature

Specific heat

Susceptibility

a
—1

OJp

M

GJp

Mcup a2

M~p2 2

Mcupa /kg

kg

1/Mo)p2

averages over this finite MD run give good approxi-
mations for the order parameter and other properties
of the infinite system in the low-temperature phase.
All MD calculations on the ordered phase of systems
having a phase transition must be interpreted in this
way. Furthermore, there must be a temperature in-
terval around T, of the infinite system in which MD
calculations can not give reliable information. In this
interval the phase-space point makes a small number
of transitions between regions in which P(r) has op-
posite signs, so the results can not describe the low-

temperature phase, but not enough of these transi-
tions are made to give an adequate sampling of the
phase space for the high-temperature phase. The size
of this temperature interval is decreased by increasing
the number of particles in the system.

As the last item in this section, the units for the
calculation and presentation of the results are intro-
duced. All calculations are done in dimensionless
form, with all lengths expressed in terms of the lat-
tice constant a, and time in units of ~p, where cop is
the parameter in the potential-energy function in Eq.
(2.5). There is only one mass M for all the particles
so this is used for the mass unit. The units of some
other quantities are given in Table III. All of the
results in Secs. V —IX are presented in terms of these
units.

V. STATIC QUANTITIES

This section contains the results for the static ther-
modynamic properties of the system. The results for
quantities which integrate over all the modes of the
system are presented first, followed by those quanti-
ties which are more sensitive to the mode directly in-
volved in the transition.

All of the results here and in Secs. VI—IX are given
in terms of the dimensionless units described in Sec. IV.
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The total energy of the system as a function of the-
temperature is shown by the points in Fig. 5(a). The
solid line shows the energy of a harmonic system
(with a specific heat per particle equal to two) which
has the same energy at zero temperature. The har-
monic contributions are seen to be the major part of
the total energy. Also, the total energy is positive at
all the temperatures for which calculations were
done, including points both above and below the
transition. Thus even in the ordered phase the sys-
tem can have sufficient energy that if it were all con-
centrated in the.soft mode, the system could cross
over the potential barrier in configuration space [cf.
Eq. (2.34)]. Both of these properties are characteris-
tic of displacive transitions. It should be recalled
from Sec. II that this system has a displacive transi-
tion because each single-particle potential has a
minimum at the lattice site and the transition is
driven by the elastic interaction energy.

Figure 5(b) shows just the anharmonic energy
versus temperature. It rises sharply from zero at
zero temperature, passes through a maximum, and
then declines more slowly. The derivative of this
function is the excess specific heat above the har-
monic value. The derivative becomes largest at a
temperature slightly less than 6&&10 ', indicating that
a phase transition takes place near that temperature.

The specific heat can be obtained by direct calcula-
tion from the molecular-dynamics data, from the
fluctuations in either the kinetic or the potential en-
ergy. The relation is

(AK) '
1

(Ae) '
Nr2

'
NT2

(5.1)

Here(d, K)' and (54&)' denote the mean-square fluc-
tuation in kinetic and potential energy, respectively.
Equation (5.1) is the modification appropriate for two
degrees of freedom per particle'9 of a result obtained
by Lebowitz, Verlet, and Percus, and it is a rnodifi-
cation appropriate to the microcanonical ensemble
with conserved total energy of a familiar result for
the canonical ensemble relating the specific heat to
the fluctuations in the total energy.

In principle the mean-square fluctuations of kinetic
and potential energy are equal, since the total energy
is conserved. In molecular-dynamics calculations
there are differences between these two quantities
resulting from the errors generated by the numerical
integration of the equations of motion. In the calcu-
lations here these two quantities deviate from their
average by amounts up to 10%. Since the denomina-
tors in Eq. (5.1) become small near the transition,
the values of the specific heat obtained from the two
parts of Eq. (5.1) differ by amounts up to 17%.

The results for the specific heat obtained from Eq,
(5.1) are shown in Fig. 6. Each point is the average
of two values, and the error bars show the spread
between those two values. The dashed line at the
value two is the harmonic value for two degrees of

Io

(b) ~ ~

2 it
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O
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3

FlG. 5. Energy vs temperature. (a) shows the total ener-

gy, and (b) shows only the anharmonic part.

F16. 6. Specific heat per particle vs temperature. The dots
show the average of two values calculated separately from
the fluctuations of kinetic and potential energy, and the er-
ror bars show the difference between those two values, The
dotted line is the specific heat of a harmonic system with
two degrees of freedom per particle.
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FIG. 7. Average order parameter vs temperature, and the
eighth po~er of the average order parameter vs temperature.

freedom per particle. The large increase in the
specific heat is evidence that the system undergoes a

phase transition near the temperature value 6&10 ',
The system orders by having the particles shift a

finite amount parallel to the y axis with adjacent par-
ticles moving in opposite directions, as described in

Sec. II. Thus the order parameter of the transition is

the average value (P) of the fluctuating quantity

(5.2)

The calculated values of (P), relative to the zero-
temperature value from Eq. (2.37), as a function of
temperature are shown in Fig. 7. From that figure it
can be concluded that the system undergoes a con-
tinuous structural phase transition and that the tran-
sition temperature is near 6&10 ', as also estimated
previously from the specific heat.

The order-parameter susceptibility measures ihe
response of the system to a time-independent exter-
nal force which acts parallel to the [01] direction and

pushes adjacent particles in opposite directions. This
susceptibility can be calculated from the mean-square
fluctuations in the order parameter, as

Xs = (W/ks T) ((P') —(P)2) .

The subscript denotes that the molecular-dynamics
calculations give the susceptibility at constant energy
rather than at constant temperature; the relation
between the two quantities is

ks T 8(P) g

C. BT

Above T, the two quantities are equal, but there is a
difference in the low-temperature phase. The results
for X~ are shown in Fig. 8. There is an increase of
three orders of magnitude in this quantity near the
temperature 6X10, again indicating the existence of
a continuous phase transition in this system.

P IL'p 4 8 l2

IG T
I IG. 8. Order-parameter susceptibility vs temperature.

T, = (5.90 + 0.03) x10 3

and for the critical exponents,

P =0.17, y = 1.18 .

(5.5)

(5.6)

Near the transition the temperature dependence of
the order parameter and the susceptibility should be
given by power laws of the form

l
T —T, l-+'. Furth-

ermore the universality hypothesis asserts that the
values of the critical exponents are the same for all
systems in the same universality class, which is deter-
rnined only by the dimensionality of the system and
the number of components of the order parameter.
This system is two-dimensional and the order param-
eter has only one component, since the rectangular
anisotropy described by the parameter g allows the
system to order parallel to the [01] direction only, as
discussed in Secs. II and III. Therefore this system is
in the same universality class as the two-dimensional
Ising model for which exact values of the, critical ex-
ponents are known. ' The value for the order-

1
parameter exponent is P =

8
and for the susceptibili-

7
ty exponent is y = 4.

The inset to the order-parameter graph in Fig. 7
shows the eighth power of (P) versus temperature,
from which it is seen that there is a region of nearly
linear behavior of this quantity, but that the data is
too sparse and spaced over too large a temperature
range to make a definite statement. A fit of power-
law functions to the order-parameter data and to the
susceptibility data above T, gives the following
numbers: for the transition temperature,
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These values for p and y lie between the mean-field

values, pMF = —, and yMF =1, and the exact values;
the agreement with the exact values is not particular-

ly good. The exact critical exponents should describe
the temperature dependence in a small interval
around T, where the correlation length is much larger
than both the lattice constant and the range of the
forces. These results indicate that molecular-
dynamics calculations with a 40&40 lattice seem not

to have reached this asymptotic critical region.
As the transition is approached from the high-

temperature side, the state of the system should be
characterized as consisting of large regions which are
ordered in one or the other of the two possible confi-
gurations of the low-temperature phase corresponding
to different signs of the order parameter. The growth
of these regions as the temperature decreases can be
seen from the static correlation function, defined by

g(R) = N ' $(—1)" -"(u,(R+R', t)uy(R', t)}—(P}' /Pp2 .
~i
R

(5.7)

Here Po denotes the square of the zero-temperature
order parameter [given in Eq. (2.37)]; this factor is

included to have a convenient normalization.
If the two particles at R ' and R '+ R are found in

positions appropriate for either of the configurations
of the low-temperature phase corresponding to dif-
ferent signs of the order parameter, then the contri-
bution of that pair of particles to the sum in Eq. (5.7)
is positive. Thus for temperatures somewhat above
T, and all temperatures below T„ the sum in Eq.
(5.7) is large. Subtracting the square of the average
order parameter cancels most of the sum for tem-
peratures less than T„so that for each R, g(R) be-

comes large only for temperatures in an interval
around T,. This increase in the range of the pair
correlations is the mechanism for producing the in-

crease in the susceptibility near T„since

half, and for T & T, . The increase in range of the
correlations as T approaches T, is clearly evident. At
high temperature the correlations are anisotropic, ex-
tending further in the [10] direction than in the [01]
direction, but this anisotropy decreases as T, is ap-
proached. The results for g(R) for T ( 7; look
quite similar to those in Fig. 9 for T & T, . At the
larger R values g (R ) decreases quite rapidly with de-
creasing temperature below T, .

The correlations at T =5.901&10 ' decrease very
slowly and are non-negligible if extrapolated to 40 lat-
tice constants. This fact and anomalies in other data
at this temperature, which is very close to the es-
timated value of T, in Eq. (5.5), lead to the suspicion
that the data at this temperature are affected by finite
size effects, so the results at this temperature are om-
itted from the remainder of the paper.

Xe=(Pp2/ksT) gg(R) . (5.8)
VI. ORDER-PARAMETER CORRELATION FUNCTION

4

.2

Oo

d .

C

b 'o
Rx Ry

FIG. 9, Static correlation function vs distance for a se-
quence of temperatures above T,. The left-hand half is for
R parallel to the x axis and the right-hand half f'or R parallel
to the y axis.

The results for g(R) are shown in Fig. 9, for R
parallel to [10] in the left half and to [01] in the right

fa oo

D(co) = J dt e ' 'D(t) . (6.2)

The quantity (P} is the average order parameter
given in Sec. V, This becomes nonzero for T & I"',

and subtracting it off in Eq. (6.1) then becomes im-

portant.
I +I

Since the alternating sign factor (—1)" ~ in Eq.
(5.2) is the plane-wave phase factor evaluated at the
soft-mode wave vector q„as shown in Eq. (2.17),

The results for the time-dependent order-
parameter correlation function and its spectral func-
tion are presented in this section. This function is
closely related to the scattering law measured in neu-
tron and light scattering experiments in which the
central peak has been observed. ' '

The instantaneous order parameter has been de-
fined in Eq. (5.2). The correlation function for the
fluctuations of this quantity is defined by

D(t) = ([P(t+r) —(P}][P(r) —(P}]}, (6.1)

and its spectral function by the Fourier transform re-
lation
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the order parameter is proportional to the q, th spatial
Fourier amplitude of the y component of the dis-
placement field,

P(t) =N '$e ' uy(K, r)
.80 20 t

=N 'u„(q„r) .

Thus the order-parameter correlation function is also
the yy tensor component of the qth Fourier com-
ponent of the displacement correlation function, and
the spectral function D(cu) is proportional to the
one-phonon approximation to the experimentally
measured scattering cross section. A third interpreta-
tion of D(t) as the correlation function for the q =0
Fourier component of the staggered displacement
field is obtained using Eq. (3.25).

The molecular-dynamics results for the time-
dependent correlation functions at temperatures both
above and below the transition and fairly far from it
are shown in Fig. 10; the transition temperature is in
the temperature interval marked by the bar in the fig-
ure. The results for temperatures in a narrow inter-
val around T, are in Fig. 11. The corresponding
spectral functions are in Figs. 12—14. The graphs of

500
I

' 1000 t
6 022

5.798

.5
IO 20 t

D
I

C3 .9-
IO 20 t

Q 500 t IOOO
CI

I2.582 9.652

t 40

7.357

0
I

40 0

FIG. 11. Time-dependent order-parameter correlation
function, normalized to the value unity at zero time. The
numbers identifying each graph give the temperature as in
Fig. 10. The higher-temperature graphs have T ) T„and
the lower-temperature graph has T ( T, . The time scale on
the large graphs has been compressed by a factor 10 relative
to Fig, 10. The small insert graphs show the short-time
behavior.

0 0
I

D
0

C)

40
6.469

40 t

5.345

80

80
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O
II

Oo0 .2 4

I2.582

.6
0 40

5.084
80

-l0 40 80 OO
'

.2
s I
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FIG. 10. Time-dependent order-parameter correlation
function, normalized to the value. unity at zero time. The
numbers identifying each graph are 10 T, where T is the
temperature for that graph. The top four graphs are for
T ) T„and the bottom two graphs are for T ( T, .

FIG. 12. Spectral functions of the order-parameter corre-
lation function vs frequency at the two highest temperatures.
The numbers identifying each graph are 103Twhere T is the
temperature. The functions have been normalized by the
initial value of the corresponding correlation function.
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FIG. 13. Spectral functions of the order-parameter corre-
lation function vs frequency for temperatures T ) T, . The
numbers identifying each graph are 10 T. The functions
have been normalized by the initial value of the correspond-
ing correlation function.

FIG. 14. Spectral functions of the order-parameter corre-
lation function vs frequency for temperatures T ( T, . The
numbers identifying each graph are 10 T. The functions
have been normalized by the initial value of the correspond-
ing correlation function.

TABLE IV. Initial values of the order-parameter corre-

lation function at different temperatures T.

12.582

9.652

7.357

6.469

6.145

6.022

5.798

5.345

5.073

D(~ =0)
6.039 x10 '
8.156 x10 2

2.196 x10 i

7.544 x10 i

1.902

5.055

5.403 x10 i

2.334 x10 2

1.670 x10 2

the correlation functions have been normalized to the
value unity at t =0, and the spectral function graphs
are the transforms of these normalized functions.
The initial values D(t=0) are listed in Table IV.
These initial values are the mean-square fluctuations
in the order parameter, hence are related to the

order-parameter susceptibility as shown in Eq. (5.3)
and diverge at T,.

At the two highest temperatures T =12.582 x10 '
and 9.652 x10 ~, D (t) has the appearance of the
correlation function for an underdamped simple har-
monic oscillator, with well-defined oscillations that
die out after a few cycles. The spectral functions at
these two temperatures are shown in Fig. 12. They
show a phonon mode with well-defined frequency
and lifetime, and the softening of the mode as the
temperature decreases.

At T =7.357&&10 the oscillation frequency has
decreased further, but in addition there is a change in
the character of the correlation function. At the
higher temperatures the areas under the positive and
negative parts of the correlation function are nearly
equal, as reflected in the smail value of D(co=0).
However at this temperature the positive part is clear-
ly predominant. A possible interpretation of this
correlation function is as a combin'ation of an oscilla-
tory component and a decaying component. The
spectral function at this temperature, one of the
graphs in Fig. 13, shows that a central maximum has
emerged. The central peak and the soft-mode peak
have roughly the same intensities and widths at this
temperature.
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There is an additional maximum near ao =0.1 on
this spectral function. Its existence has been checked
by varying the time and manner of the cutoff on the
correlation function, and it persists throughout these
modifications. It is believed to be a real effect caused
by some subtlety in the way that D (t) decays to zero.
Similar peaks additional to the central peak and soft-
mode peak have been found by Aubry in calculations
for a one-dimensional system. '

At T =6.469x10 the correlation function has
essentially completely ceased oscillating and has be-
come a very slowly relaxing function. It passes
through zero at t =516, beyond the scale of the
graph. For the (normalized) spectral function shown
in Fig. 13 the central peak has increased by a factor
of about 8 over its value at the previous temperature,
The soft-mode peak is near au =0.07 with an intensity
that is small relative to the central peak but which
has about the same intensity as at the previous tem-
perature. In addition there is a broad shoulder on
D (co) in the region cu =0.03—0,04 whose origin may
be related to the additional maximum near eo =0.1

that was observed at the previous temperature.
The time correlation functions at temperatures fair-

ly far from the transition shown in Fig. 10 decay on a

time scale extending approximately to t =100. For
temperatures closer to the transition, the time varia-
tion occurs on a much longer time scale, so the
correlation functions for these temperatures are
shown in Fig. 11, where the time axis is extended out
to t =1000. The short time behavior is shown by the
inserts at each temperature.

At T =6.145x10 the time variation of the order
parameter hap become very slow, and the correlation
function gets through only two oscillations over this
extended time interval. The intensity of the central
peak in the spectral function (Fig. 13) has increased
again. The soft-mode frequency is near co =0.035,
and there is a hint of a shoulder on the side of the
central peak near ~ =0.01.

The correlation function at T =6.022X10 ', which
is the lowest temperature above T, for which calcula-
tions were done, is the center graph in Fig. 11. Over
the time interval from t =0 to t =1000, D(t) decays
only by about 30% from its initial value. At this tem-
perature, the order parameter has become practically
a stationary quantity.

The spectral function at T =6.022X10.' is shown
in the two graphs on the left-hand side of Fig. 13.
These two curves are continuations of each other; the
smaller one has an expanded vertical scale and
compressed horizontal scale to bring out the soft-
mode peak at cu =0.0119. This soft-mode peak
results from the very small and slow oscillations
which are barely visible in'Fig. 11 superimposed
on the even slower decay of the correlation function.

The central peak at T =6.022x10 is very strong
and very narrow. Its intensity is about 450 times that

of the soft-mode peak, and its width is about one-
tenth the width of the soft-mode peak at the same
temperature. Furthermore the ratio of the width of
the central peak at this temperature to the width of
the soft phonon peak at T =9.652 X10 ' where there
is no central peak is about 4&10 . This very large
magnitude of the central peak is the major feature by
which the results of these molecular-dynamics calcu-
lations differ from the results obtained, by Schneider
and Stoll, " who find central peaks which are of the
order of 20 times the soft-mode pea'ks obtained at the
same temperature. The spectral functions illustrated
in these figures have been normalized by the initial
value of the correlation function D(t=0). Experi-
mental spectra are not usually normalized that way,
and for experimental comparison it is more useful to
use the un-normalized value at zero frequency. Over
the temperature range shown in Fig. 13, D (co=0) in-

creases by a factor of 8000. The magnitude of the
growth of the central peak found here is quite com-
parable to the experimental results obtained for
SrTi03, and it increases confidence in the viewpoint
that the experimentally observed central peaks can be
explained as the result of anharmonic mechanisms
intrinsic to the pure crystal and that it is not neces-
sary to invoke impurity mechanisms. ' "

The correlation function at the bottom of Fig. 11 is
for temperature T =5.798&&10 ' which is in the or-
dered phase. The order parameter has now obtained
a nonzero value, and this is the correlation function
for the fluctuations about that value. The rate of
variation has now increased so that this correlation
function appears similar to the one at T =6.145X10 '
above T, . The short-time behavior of this function is
rather interesting. As shown by the small insert in
Fig. 11 over the interval from t =0 to t =10 the
correlation function decays rapidly through about
10% of its initial value, and then a slower decay takes

'
over. Correlation functions with this type of initial
behavior will be seen again in Sec. VII where the
dependence on wave vector will be studied. The
spectral function for this temperature is shown in Fig.
14. The central-peak intensity has decreased consid-
erably, and the soft-mode peak has moved out to
higher frequency.

The correlation functions for order-parameter fluc-
tuations at lower temperatures are shown back in Fig.
10 at the bottom of the figure. These correlation
functions again have the appearance of damped sim-
ple harmonic oscillator functions, as at the highest
temperatures discussed above, except that they have
a part which decays very slowly at long times. It is
possible that this tail is due to numerical errors in the
calculation of the correlation function. Since T ( T,
here, the square of the nonzero order parameter
must be subtracted from the calculation of the corre-
lations in order to obtain the correlation function for
the fluctuations. If an incorrect value were subtract-
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ed, then the correlation function will approach some
nonzero value for long times. An argument that this
has been done properly is that these correlation func-
tions do pass through zero, although at times that are
beyond the scale of the graph in Fig. 10. At
T = 5.345 X10 the correlation function passes
through zero at t =142, and at T =5.084&10 it

passes through zero at t =328. In addition, care was
taken in calculating these correlation functions,
namely, they were calculated as
(P (t+r) [P(r) —(P)]), the averaging interval on r
was kept the same for all t values, and that same in-
terval was used to calculate (P). For these reasons it
is felt that the long tails on D(t) at the lowest tem-
peratures are a real effect, even though taking differ-
ences of large numbers is involved in calculating
D(r) for T ( T, .

The spectral functions for these two lowest tem-
peratures are shown in Fig. 14. They have central
peaks due to the slow decay of the correlation func-
tions. The soft-. mode frequency increases as the tem-
perature decreases, and the soft-mode peak has a
substantial fraction of the total spectral weight. The
central-peak height at the lowest temperature
T =5.084X10 is slightly higher than at the higher
temperature T =5.345 &10 ', i.e., it appears that as
the temperature decreases below T, the central-peak
height first decreases and then starts to increase
again. The mathematical reason for this is that the
slowly decaying tail on these correlation functions
lasts longer at the lowest temperature, as is evident
from the numbers given in the preceding paragraph,
Kith only one data point showing this effect it is dif-
ficult to be certain that it is real, but it is consistent
with the experimental results on lead germanate ob-
tained by Axe, Cowley, and Iizumi, ' who found that
the central-peak intensity decreased below the transi-
tion and then increased again.

The correlation functions at the two lowest tem-

peratures can be understood to have evolved continu-
ously from that at T =5.798&10 if the correlation
functions are considered to be superpositions of a ra-

pidly varying contribution and a slowly varying con-
tribution. At T =5.798X10 the rapidly varying part
causes the initial rapid decay, but it has small ampli-
tude and damps quickly at this temperature so that
after t =10 the slowly varying component is all that
remains. At the lowest temperatures the relative
magnitudes of the two components are interchanged.
The rapidly varying component has become oscillato-
ry, and it dies out near t =30, leaving the slowly

varying component which has a much reduced ampli-
tude at these lower temperatures.

The square of the soft-mode frequency as obtained
from all of the previous graphs for the spectral func-
tions is plotted versus temperature in Fig. 15. Ex-
cluding the points near T„cu'(q, ) can be closely fit
by linear functions of temperature above and below T„

' 28 55
I
T —6 278 x10 'I, » T. ,~'(q, ) =

,
277.3~T —6.278&&10 '~, T ( T, .

(6.4)

The intercept of these lines on the temperature axis
is at a slightly higher temperature than was estimated
for the critical temperature from the static properties
in Eq. (5.5). A linear dependence on temperature is
predicted by mean-field theory. 3 Near T„co'(q, ) de-
viates from this linear behavior and seems to remain
nonzero at T, ; this is not obvious from Fig. 15, but
from Fig. 13 it is clear that co2(q, ) is nonzero at

.04—

W

p~2- 02—

0+/

FIG. 15. Square of the soft-mode frequency vs tempera-
ture. The straight lines are fits to the points away from the
immediate neighborhood of T, .

FIG. 16. Full width at half maximum of the central peak
vs the temperature. The solid curve is the fit of the power-
law formula in Eq. (6.5) to the data, using T, =5.90X10
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T =6.022x10 3. This overall behavior of the soft-
mode frequency is precisely the same as is observed
for SrTi03.9

A plot of the full width at half maximum of the
central peak W(T) versus temperature is given in

Fig. 16. The solid lines are fits of a power law

A
~
T —T, ~i' to all the data except the point at

T =6.022x10 ' and the lowest temperature at
T =5.084x10 ', using the value for T, determined in

Eq. (5.5). Constraining the exponent to have the
same value above and belo~ T„ the best fit is given
by the functions

0.08835 —1
5.90x10 3

'i 0.55

, T&T~

W(T) = ~

i

0.1392 1-
5.90x10 ' T&~c

(6.5)

i.e., with the value of the exponent close to 2. Thus

one can say that in the temperature interval where
co (q, ) has a linear dependence on temperature, the
central-peak width has essentially a square-root
dependence. The central-peak width at
T =6.022 x10 is excluded from this fit because it is

clearly considerably narrower than is given by the
function in Eq. (6.5), and a crossover between two

different temperature dependences may occur very
near the transition. The point at T =5.084x10 3 is

excluded because the width decreases at that tem-
perature in conjunction with the increase in the mag-
nitude of the central peak which was noted in the
previous discussion in this section; this low-

temperature phenomenon should bc excluded from a

power-law fit designed for use near the transition. It
seems reasonable to conclude from these calculations
that the central-peak width has a power-law depen-
dence on temperature near T„but in view of the lack
of agreement of the static critical exponents obtained
in Sec. V with the theoretical values and the paucity
of data here, any numerical values determined for
the exponents must be taken curn grano salis.

The results for the order-parameter correlation
function presented in this section are in substantial
agreement with the experiments with respect to the
temperature dependence of the soft-mode frequency
and the very large intensity and very narrow width of
thc central peak. .This agreement is in favor of the
view that the anharmonic forces of the model used
for the calculations have captured the essential
features of the phenomena observed at structural
phase transitions.

VII. WAVE-VECTOR-l3EPENDENT
CORRELATION FUNCTIONS

The time-dependent order-parameter correlation
function D(t) was written in several different forms
in Sec. VI: as the correlation function either for dis-

placement fluctuations at q =q, or for the staggered
displacement fluctuations at q =0. In this section
those calculations are extended to correlation func-
tions for displacement fluctuation patterns which
differ from the soft-mode pattern, i.e., for other
values of the wave vector.

The doubling of the unit cell of the lattice and the
resulting change in the Brillouin zone of the lattice at

T, introduces a complication into the calculation; the
wave vector region of interest is around q, which is a

zone corner for T ) T, and a zone center for T & T, .

This change is shown in Fig. 2 and in the related dis-

cussion in Sec. II. It is desirable, both for obtaining
the correlation functions from the molecular-
dynamics data and for displaying the results, to use a

unified description which applies to both the high-

and low-temperature phases. The way to do this has
been given by Nelson and Fisher and by Kosterlitz,
Nelson, and Fisher. 6

The lattice points are partitioned into two inter-
penetrating sublattices, A and 8, according to the
value of the phase factor

;q .R +1, R 6A-

,
—1, ReB (7.1)

q 6ZL~, (7.4)

and the displacements on these two sublattices are
considered to be two separate functions u '"'(R, t)
and ut ~(R, t), respectively. It is necessary to intro-

duce these two functions to describe the low-

temperature phase, and it is acceptable to use them
for describing the high-temperature phase.

The spatial Fourier transforms of these two func-
tions are defined by

u "'(q, r) = X e ''i "u (R,r),
R EA

q EZLg (7.2)

and by a similar equation for the B sublattice. The
wave vectors in Eq. (7.2) are restricted to the Brii-

louin zone of the low-temperature phase, which is

the inner square in Fig. 2 and is denoted by ZLr in

Eq. (7.2). The correlation functions are now most
usefully described in terms of the functions

u'+-'(q r) = —tu'"'(q r) +u' '(q, t)1. (7.3)

The function u '+t(q, t) is related to the lattice dis-

placements by

+)(, r) = —+ —iq R (R, r)—
2

R
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q 6ZLT ~ (7.5)

with the sum being over all of the lattice sites, In the
high-temperature phase where all the lattice sites are
equivalent, u '+'(q, t) is proportional to the spatial
Fourier amplitudes of the displacement field, but
only for q E ZLr. Similarly. , by using Eq. (7.1),
u t '(q, t) is related to the lattice displacements by

u' '(q r) =-,' $e 'q e " u(R r),
R

with the sum again being over all of the lattice sites.
In the high-temperature phase, u' '(q, t) can be
thought of either as being proportional to
u (q, +q, t), the Fourier amplitudes of the displace-
ment field in the portions of the high-temperature
Brillouin zone which are not in the low-temperature
Brillouin zone, or as being proportional to S'(q, t),
the Fourier amplitudes of the staggered displacement
field, but only for q ~ ZiT. Furthermore, for all
temperatures, as q approaches zero u) '(q, t) be-

TABLE V. Initial values of the displacement correlation function at different temperatures T
and wave vectors q. The wave vector q' with integer components identifies q in the manner

described in the text in Sec. VII.

103T D(q, t -0) 103T D(q, t =0)

7.357

6.469

6.145

6.022

(0,2)

(0,4)

(2,0)

(4,0)

(2,2)

(4,4)

(0,2)

(0,6)

{2,0}
(4,0)

(2,2)

(4,4)

(0,1)

(0,2)

(0,3)

(0,4)

{0,6)

(1,0)

(2,0)

(3,0)

(4,0)

(1,1)

(2,2)

(3,3)

(4,4)

(0,1)

(0,2)

(0,3)
(0,4)

{0,6)

(1,0)
(2,0)

(3,0)

(4,0)

7.525 x1Q 2

3.404 x 10-'
3.038 x10 2

1.078 x 10

2.986 x10 2

9,658 x10 3

1.152 x10 i

1.970 x10 2

3,252 x1Q 2

9.071 x 10

2.806 x10 2

8.615 x 10-'
4.161 x 10-i

1.32S x10 i

6,317 x10 2

3,778 x10 '
1.801 x10 2

1.15] x10 ~

3.262 x 10 2

1,529 x 10 2

8.617 x 10

1.008 x10 ~

2.768 x 10-2

1.308 x10 2

8.229 x10 3

2.957 x10 i

1.057 x 10-'
5,433 x 10

3.274 x 10

1.619 x10 2

9.569 x10 2

2.755 x 10

1.375 x10 '
7,778 x10 3

5.798

5.345

(1,1)

(2,2)

(3,3)

(4,4)

(0,1)

(0,2)

(0,3)

(0,4)

(0,6)

(1,0)

(2,0)

(3,0)

(4,0)

(1,1}
(2,2}

(3,3)

(4,4)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(2,0)

(3,0)

(4,0)

(1,1)

(2,2)

(3,3)
(4,4)

7.524 x10 2

2 254 x 10-2

1.221 x 1Q 2

7.392 x 10-3

2.002 x10 ~

5.658 x 10 2

3.433 x 10

2.351 x10 2

1359x10
5.228 x 10 2

2.077 x10 2

1.088 x10 2

6.615 x10 3

4.832.x 10—2

1.841 x 10 2

9.721 x 10-3

6.594 x ]0 3

1.722 x 10 2

1.403 x10 2

1,308 x10 2

1.144 x 10

1.494 x 10 2

1.062 x10 2

7.095 x1Q 3

5.236 x10 3

1.429 x10 2
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D( t') =(N/2) '(u' '( t)u' '(— 0))

and the corresporiding spectral function

D(q, cu) = 'f dt e '"'D(q, t),

(7.6)

(7.7)

comes proportional to the instantaneous order param-
eter P(t) defined in Eq. (5.2). Therefore it is the
correlation function and spectral function of
u~' '(q, t) for q around zero which should be com-
puted to investigate how the features of the order-
parameter correlation function depend on wave vec-
tor, both above and below T, .

Consequently, the correlation function

)) Q

0 50
l

(2,0)

o
Cl

0 t
I

T=6.469 x l0 ~

(0,6)

0

l00 t 0 t 50

l q (4,0)

0 't 50

have been computed as a function of temperature
and wave vector from the molecular-dynamics data.
This correlation function is related to the order-
parameter correlation function defined in Eq. (6.1) by

0 V
0

(2, 2)
l q (4 4)

0 t 50

D(q=O, t) =(/it/2)D(t) . (7.8)

The results obtained for these functions are shown
in Figs. I7 through 2'7. These calculations were done

FIG. 18. Time-dependent and wave-vector-dependent
correlation function at temperature T =6.469x10 . The in-
teger pair with each graph identifies the wave vector as
described for Fig. 17. Each function is normalized to the
value unity at zero time.
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periodic boundary conditions as described in the text. . Each
graph is normalized by the initial value of the corresponding
correlation function.
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FIG. 19. Spectral functions vs f'requency for the normal-
ized wave-vector-dependent displacement correlation func-
tions shown in Fig. 18. The integer pair with each function
identifies the wave vector for that function as described for
Fig. 17.
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frequency is found to increase slightl as c

The spectral functions for T =7.357&10
..is is the highest temperature for which

central eak ispea is obtained in the order-parameter corre-
lation function, shown in Fig. 13. At nt nonzero wave
vector there is still spectral weight at zero frequency
at q

' = (0,2), (0,4), and (2,0), and then the line
non pea s at largershapes revert to well-defined phonon eaks

wave vectors. Anisotropy is evident fr h
p s in hat the zero-frequency spectral wei h

re slowly for the wave vectors parallel to
[01] than for those parallel to [10]. Th'is anisotropy

tro
persists at lower temperatures and re lln reca s the aniso-

(K
ropy observed in the static correl t' fe a ion unction

a y e rectangularg shown in Fig. 9. Presumabl th
s m - rgy unct~on is respon-symmetry of the potential-energ fu
si e for this anisotropic behavior. The fie inal point to

is e additional maximum near ~ =0.07 for
q =(0, 2); this is related to the addit
in the order- ara

e a itional maximum
e or er-parameter correlation function at this

temperature (see Fig. 13).
The time-de pendent correlation functions and spec-

tral functions at T =6.469x10 3 are in Figs. 18 and
, respectively. The behavior of th e correlation

function at q
" = (0, 2) near t = 15 hr = s ows a feature

for all the temperatures for which the molecular-

results for the spectral functions are shown here. In
addition, for T ~6.469X10 ' th e time-dependent
correlation functions are presented, because the
behavior of these fse functions changes considerabl with
wave vector and it is not always clear what tha e time

of t
p ence is from seeing the frequenc d dcy epen ence

o e Fourier transform. In all ca thases e time corre-
ation unctions have been normalized to the v

unit at t =0
o t e value

the

'
y =, and the spectral functions shs ownare

T ei
e ourier transforms of these n 1' d forma ize functions.
e initial values of the correlation functions are

given in Table V. At each temperature functions for
several wave vectors parallel to the [01] [10]

irections are shown. The periodic boundar
sed in the calculation require that the

wave vectors have the form q = (2rr/W a) ~

where m

q= rr, a (m„,m„),

cal
ere m and m~ are integers and N =40 '

in these

4'

ca culations. The integer pair (m )
'

d„,m, is enoted by

th
q and used to identify the graph

'
th f'

t e text.
s in e igures and

The spectral functions at T =9.652x10 ' "
be

have

have t i

en calculated but are not sho~n h bwn ere |;cause they
ave typical anharmonic phonon line sha

' '1s apes similar
o a shown for the order parameter spectral func-

tion at the same temperature in Fig. 12. The phonon

-6 I45x IO & l00

0- -6, I45 x lO &

0)

.6 00
lo

I a ~

;I .2
.2

I

IOO
0
0 50 t IOQ

I „go)
V

0 t 50
(4 0)

C)
II

Ta. 0
0 50 t IOO

- (0,4)
~a

(2,o)

0 ——— 0 t 50I
O t 5Oo, (o,6)

0 t 500UA
0 t 50O

Q 50
(4,4) (5,5) (2,2)

oi ltA nIA-0 ' Pl Q

o t woo' t 5oo

0 t 50

0—
0o 40

TU

Cl
00

20
T"

00
I
0'-

a a ~ I

.l

0,5}

.2

'0
IO (06
00 '

IO. (4,

0 —
I ~ ~ ~ l

0 .5

00
IO- (g,o}

00
(4,0)

u 00
40-

00
I 0-

00'
+ IO-

l GJ

(2 2}

5 G)

FIG. 20. Time-de e
correlation

p ndent and wave-vector-depend t

e ation function at temperature T =6.145X10 3. The in-
n ent

teger pair with each graph identifies the wave vector as
described for Fi . 17'. Eor ig. '. Each function is normalized to the
value unity at zero time.

FtG. 21. 8pectral functions vs frequency for the no
ized wave-vector-d

cy or t e normal-

tions sho~n in Fi .
or-dependent displacement corr l

t' fe a ion unc-
wn in ig. 20. The integer pair with each function

identifies the wave vector for that f
F'. 1lg. 7.

a unct~on as described for



5796 WILLIAM C. KERR 19

which becomes more extensive in wave vector space
at lower temperatures. Namely, this particular corre-
lation function initially decreases rapidly up to about
t =15, and after that it is dominated by a slow decay
going on to about t =100. The same behavior was
noted in Sec. VI for the order-parameter correlation
functions. This is further corroboration of the ex-
istence of processes in the dynamics of the system
which occur on two different time scales. The slow

decay of course manifests itself in the spectral func-
tion for this q value by the dominating central peak.
The same inference concerning the existence of
processes with two different time scales but with a
much reduced strength of the slow process can be

made from the spectral functions at q
' = (2, 0) and

(2,2) because these functions have small maxima at
zero frequency in addition to the phonon peaks.
Continuing on out to larger wave vectors, the zero-
frequency spectral weight decreases to nearly vanish-

ing intensity and the spectral functions revert to the
normal anharmonic line shapes. The anisotropy not-
ed previously is again evident in the persistence of
greater zero-frequency spectral weight out to larger
wave vectors parallel to [01] than for other direc-
tions.

T=6.022 x!0 ~

Figures 20 and 21 show the correlation functions
and spectral functions for T =6.145&10 . Consider-
ably more wave vectors were studied at this and
lower temperatures than at the higher temperatures.
The correlation function at q = (0, 1) consists al-
most entirely of a slowly decaying component,
although there is a small initial interval extending out
to about t =10 over which the decay appears to be
more rapid. The rapid initial decay and then the on-
set of the slow decay is more clearly seen in the
correlation functions at

q = (0, 2), (0, 3), (0, 4), (1,0), (2, 0), (1, 1) .

Looking at the spectral functions, a new effect first
appears very weakly at this temperature. Namely, at
the wave vector q

' = (0, 2) the central peak shifts
slightly or splits so that the maximum is at a small
finite frequency rather than at precisely zero frequen-
cy. This splitting becomes more pronounced at lower
temperatures and extends to a larger region in wave
vector space. Schneider and Stoll have also found
such a splitting in their calculations.

The correlation functions and spectral functions at
T =6.022X10 ' are in Figs. 22 and 23, respectively.
This is the temperature at which the central peak in
the order-parameter correlation function is most in-
tense. Comparison of the sets of spectral functions
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foror different temperatures shows that the cs a t e central peak
ex en s over the largest region in wave t
a is temperature. The existence of two time scales
is again evident in the correlation functions at

q
" = (0, 1), (0, 2), (0, 3), (O, 4),

(1,0), (2, 0), (1, 1), (2, 2) .

Atq'=(0, 1) th e initial rapid decay is very small and
lasts only out to about t =10. As
ltlal ra id

s q increases, the in-

when q reaches (0,3), (2,0), or (2,2), the initial de-

cay has become a fairly long lived oscillation superim-
posed on a slowly decaying corn o t. Tp nen. urnirig to
the spectral functions in Fig 23 th e most notable
new feature is the increase in the size of th
vector r

e size o t e wave
region in which the central peak splits, which

now occurs at q
' = (0,2), (0,3), and (1,0). The

magnitude of the splitting here is much more pro-
nounced than in the spectral functions for the previ-
ous temperature. The region in wave-vectc or space

is split central peak occurs is a small region
around but not including q =0. A

out rom zero, the maximum returns to zero fre-

quency, as seen at q = (0,4) and (2,0), and then for

even larger wave vectors, the central peak completely
disappears. Thus the region with the s 1'

pea is contained within the region of wave-vector
space where the central peak appears.

Up to this point the results presented have been
for temperatures above T, . The main results are that
the central eakp exists in an anisotropic region
around the soft-mode wave vect Th'or. is region ex-
pands as T comes closer to T . With
and within

i in t is region
an within a small temperature interval above T„
there is another smaller wave-vector region in which
the central eak sp plits to a small finite frequency; this
region also grows as T approaches T . A's . m

er ou, t e spectral functions make a smooth
monic ine s apes.transition to more normal anharm

' 1'

hen T oes beh g eiow T„similar changes occur but
in reverse order. The central peak weak
si y, a t ough it never completely disappears at all the
temperatures at which the calculations dns were one.

e region with the split central peak shrinks rapidly
and disappears not too far below T, .

The results for T =5.798xl0 ' are shown in Figs.
an . Looking at the correlation functions, the

existence of two time scales is clearly evident here
even at the smallest wave vectors. At q = (0, 1),
there is a definite break in the correlation f

u = „at the higher temperatures presented
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previously this break was not so clearly present at
this small wave vector. Concerning the split central
peaks it occurs now only at q = (0, 2).

The results for T =5.345X10 are shown in Figs,
26 and 27. The existence of two time scales is clearly
seen at practically all wave vectors here, and especial-

ly at the smallest wave vectors. At q
" = (0, 1), the

correlation function is definitely oscillatory and goes
through at least five complete oscillations before they
damp out. Yet these oscillations are superimposed
on a slowly decaying component of sufficient strength
that the correlation function remains positive
throughout the oscillations. The same behavior also
occurs at q =(1,0) and (l, l). As q increases in.

magnitude, the changes in the correlation function
are characterized by the decrease in strength of the
slowly varying component, leaving only the oscillato-
ry component. Both components are clearly evident
at all but the largest wave vectors, such as q = (4, 0)
and (4,4). The same characterization holds also for
the spectral functions. At all but the largest wave
vectors there are clearly distinct central-peak and
phonon contributions. At the smallest q vectors this
is in contrast to the behavior at higher temperatures
where there was a strong central peak, but no clearly
defined phonon peak. Finally, at this temperature
there is no split central peak at any wave vector.

At T =5.345xlo ' comparison of the spectral

function at q = (0, 1) with the order-parameter spec-
tral function in Fig. 14 shows that the central peak is

more intense at q
' = (0, 1) than at (0,0). This might

be due to the possible numerical errors in the calcula-
tion of the order-parameter correlation function dis-
cussed near the end of Sec. VI, namely, that taking
the difference of large numbers is involved in calcu-
lating D(t) for T ( T, . No such problem enters in
calculating D(q, r) for nonzero q.

The correlation functions and spectral functions at
T =5.084X10 ' have been calculated. They are very
similar to those just shown for T = 5.345&10 ', so
the figures are not included here.

Most of the quantities mentioned in this section,
such as the central-peak intensity, increase as. T ap-
proaches T, from above and then decrease as T goes
below T, . Therefore it is of interest to observe that
at least one quantity changes in a monotonic way
through the transition. This quantity is the relative
strength of the rapidly varying component of the
correlation function compared to the slowly decaying
part. It can be observed in the temperature depen-
dence of the correlation function at the single wave
vector q

' = (0, 1); the same behavior is also evident
at the neighboring wave vectors. At T =6.145xlo '
there is a very slight break in this curve near t = 15
as the function changes from a slightly faster decay to
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FIG. 27. Spectral functions vs frequency for the normal-
ized wave-vector-dependent displacement correlation func-
tions shown in Fig. 26. The integer pair with each function
identifies the wave vector for that function as described for
Fig. 17.
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a slightly slower decay. This break becomes more
pronounced as the temperature decreases and contin-

'ues increasing as T goes below T,. At
T =5.798 X10 ', the rapidly changing part achieves
one oscillation before dying out, and at
T =5.345X10, there is definitely a rapidly varying
oscillatory part superimposed on a slowly decaying
part. Thus this particular feature of this function
behaves in a monotonic fashion through the transi-
tion rather than having a singular, more-or-less sym-
metric behavior about T, .

In conclusion this section has illustrated the wave-
vector dependence of the central-peak characteristics.
It has shown that as T approaches T„ the region of
wave-vector space expands where there is a central
peak and the central peak becomes more intense
throughout this region, and it has shown that there is
a smaller region both in wave-vector space and in
temperature in which the central peak splits so that
the maximum is not exactly at zero frequency.

VIII. ENERGY-DENSITY CORREL.ATION FUNCTION

The final results to be presented are for the spec-
tral function of the correlation function for the spatial
Fourier components of the energy-density. fluctua-
tions.

The energy density h(R, t) is defined to be that
lattice-site dependent quantity whose sum over the
lattice is the total energy function H, i.e.,

H=gh(R, r), (8.1)
R

Since the kinetic energy function and the anharmonic
potential-energy function of this model are sums of
single-particle terms, their contribution to h ( R, t) is
readily identifiable. The harmonic potential-energy
function, given in Fq. (2.5), is a sum of pair terms,
so the energy associated with each pair is divided
equally between the two particles to obtain the contri-
bution to h(R, t) The e. nergy-density function
can then be written

h(R, r) = T~M v (R, t) +
4 [uo[u„(R, t) +u~ (R, t)] +uo[u„(R, t) +u (R, r)]}

+ —,
'

X I „(R')[u (R+R') —u.(R) )[u (R+K') —u (R)],
R 'aP

(8.2)

the last term in this equation being the contribution
from the harmonic pair potential. The short range of
the forces restricts the sum over R ' to the nearest
and next-nearest neighbors of lattice site R. The
coefficients I' p(R ') which are nonzero can be iden-
tified from Eq. (2.5) and are given in Table I.

The spatial Fourier transform of h(R, r) is defined

by

h(q, r) =pe ""h(R, r), (8.3)

the correlation function for energy-density fluctua-
tions by

E(q, t) =N '(h(q, t)h( —q, 0)) (8.4)

and the corresponding spectral function by a temporal
Fourier transform, as given in Eq. (7.7) for example.

Since h (R, t) is a quadratic and quartic function of
the displacements, E(q, r) can be considered to be a

multiphonon correlation function. That is, if E(q, t)
were expressed in terms of phonon coordinates, it

would contain correlation functions for both two and
four phonons, the latter arising from the anharmonic
terms in h(R, t)

The total energy is a conserved quantity in this
model, so h(R, t) .is a conserved local density. Thus
the correlation function E(q, t) should exhibit hy-

drodynamic behavior for small wave vectors. The
hydrodynamic limit of E(q, r) should have diffusive
character, since h(R, t) is the only conserved local
density of the model.

The results for E(q, o&) from the molecular-
dynamics calculations are shown in Figs. 28 and 29.
These calculations were done only for temperatures
above the transition temperature. Furthermore they
were done only for wave vectors near the soft-mode
wave vector q„which is the opposite limit from
which the hydrodynamic result should apply. Figure
28 shows E(q„~) at wave vector q„ for a sequence
of temperatures coming down towards T, . Figure 29
shows E(q, co) for different wave vectors amund q,
at T =6.022X10, which is the lowest temperature at
which these calculations were done and is the tem-
perature at which the soft-mode spectral function
shows the most intense central peak. Ea'ch of the
curves shown in Figs. 28 and 29 has been normalized
by the zero time value of the corresponding correla-
tion function, and these initial values are given in
Table VI. The pairs of integers labeling the curves in
Fig. 29 identify a wave vector q ', using the same
scheme as in Sec. VII, which is the difference wave
vector from q, for that particular spectral function.

The results for E(q„a&) have a weak central max-
imum which increases and sharpens only slightly as T
decreases to T, . Around co =0.5 there is a broad
hump in the spectral function which is not very tem-
perature dependent. The most notable change in
E(q, ru) is the growth of a well-defined peak at a fre-
quency near cu =0.9. This frequency is considerably
higher than the frequencies of any significant spectral
weight in the displacement correlations for any of
these temperatures.
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FIG. 28. Spectral function for the energy-density correla-
tion function E(q, , co) at the soft-mode wave vector q„as
a function of frequency co, for different temperatures T.

The numbers with each curve are the values of 103 T. The
curves have all been normalized by the initial value of the
correlation function.

FIG. 29. Spectral function for the energy-density correla-
tion function E(q, cu), at temperature T =6.022x10, as a
function of frequency ao, for different wave vectors. The in-

tegers (m„,m~) given with each curve identify a wave vector
q'= (2n/%, a} (m„,m, ) which specifies the wave vector q re-

lative to the soft-mode wave vector q, . The curves have all

been normalized by the initial value of the correlation func-
tion.

103T E(q, t =0)

9.652

7.357

6.469

6.145

6.022

6.022

6.022

6.022

6.022

6.022

(o,o)

(o,o)

(o,o)

(o,o)

(o,o)

(o, l)
(o,2)

(o,3)
(1,o)

(2,o)

1.831 x10 ~

1.175 x10 4

9.206 x 10 s

8,447 x10 s

7.908 x10 s

8.025 x 10 s

8.121 x10 s

7.885 x10 s

7.756 x 10—s

8.022 x10 s

TABLE VI. Initial values of the energy correlation func-

tion for dift'erent temperatures T and wave vectors q. The

wave vector q
' with integer components identifies the

dift'erence between q and q, using the same scheme as in

Sec. VII.

These features change as the wave vector q
changes away from q, as shown in Fig. 29. The in-
tensity of the centrai maximum in E(q, co) de-
creases, and the high-frequency peak increases slight-
Iy in intensity. Furthermore, the position of this
high-frequency peak exhibits some dispersion, mov-
ing to higher frequencies as

~ q —q, ~
increases.

The high-frequency peak in E(q, cu) presumably
demonstrates the existence of a propagating multi-
phonon resonance in the system, which increases in
strength near the transition. The importance of this
effect for the nonlinear dynamics is not understood
at this time.

IX. CONCLUSIONS

This paper has presented a series of results from
molecu!ar-dynamics calculations for a two-
dimensional system which exhibits a structural phase
transition. The emphasis has been on the dynamical
correlations for the order-parameter fluctuations and
for the displacement fluctuations for wav'e vectors
around the soft-mode wave vector.
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The results for the spectral function for the order-
parameter fluctuations show the growth of a very
sharp and intense central peak which grows rapidly
near the transition, in addition to the soft-mode peak.
The temperature dependence found for the soft-
mode frequency is the same as has been observed ex-
perimentally, for example in SrTi03. The width of
the central peak has been found to follow approxi-
mately a square-root temperature dependence for
temperatures not too close to the transition. These
results depend entirely on the anharmonic character
of the potential-energy function of the model, since .

the model is entirely free of impurities. On the basis
of these results the viewpoint is put forward here that
the existence of sharp central peaks like those ob-
served in the experiments can be explained on the
basis of intrinsic mechanisms inherent in the pure
system.

However, it is also clear from experiments, for ex-
ample that of Hastings et af. ' that impurities do play
a role in modifying the dynamical processes that pro-
duce the central peak. Further theoretical work is

needed to delineate the relative importance and iden-
tifying signatures of different impurity effects on the
soft-mode dynamics.

Extensive results have also been given here for the
spectral functions of the displacement fluctuations for
different wave vectors, showing the extent of the
wave vector region in which the central peak exists.
The central peak has found to split so that the max-
imum is at a small nonzero frequency, for a small
temperature range around T, and a wave vector re-
gion away from q, . This result confirms an earlier
finding of the same effect by Schneider and Stoll,
who have attributed it to propagation of locally or-
dered clusters. There are no experimental results to
date showing this effect so it should still be con-
sidered controversial.

Theoretical efforts to explain the central peak
based on anharmonic mechanisms have invoked the
motion of clusters of locally ordered regions and of
the boundaries between these regions. Instantaneous
"snapshots" of the atomic displacements patterns dur-
ing the molecular-dynamics runs show the existence
of clusters (these pictures for the present calculations
are essentially the same as are shown in Fig. 10 of
Ref. 40 so they have not been included here); the
same effect is shown by the growth of the static
correlation function shown in Fig. 9. However the
precise connections of the density of cluster walls,
their thickness, and their possible motions to the
parameters of the central peak have not yet been
made. It is hoped that the results presented here,
especially for the wave-vector dependence and for the
energy-density correlations will aid in achieving an
understanding of these problems.
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