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Starting with real boson particles interacting with a soft potential, it is shown that the excita-

tion spectrum and thermodynamical properties of the system in two dimensions are character-

ized by the Landau-type quasiparticlea. The structure factor, specific heat, and the pair distribu-

tion function are explicitly evaluated. The pair-distribution function decreases as r at large

distances. This decrease corresponds to the existence of a phonon spectrum for small momenta.

The normal-fluid density divided by the product of the mass density and absolute temperature

cubed is constant near absolute zero, reaches to a minimum, and increases at around 0.4'K.
The roton energy gap is given by the position of the minimum energy and the structure factor at

this point. Our value is what we might expect by extrapolating the data by washburn, Rutledge,

and Mochel. It also agrees with the recent result by Rutledge, McMillan, and Mochel. The
ground-state energy is also evaluated analytically.

I. INTRODUCTION

Recently, there has been a surge of interest in the
properties of two-dimensional liquid helium on
Grafoil, Vycor glass, and other substrates. ' The heli-
um films show amazingly complex properties, some
of which depend on the film thickness, others on
substrates. Extensive studies of the density, specific
heat, and other quantities have revealed two-
dimensionsal (2-D) peculiarities as well as bulk pro-
perties.

Although the films have complex properties, it has
been considered that at high densities they are in a
condensed state. Indeed, the specific heat of the
films on some substrates showed a quadratic
temperature-dependence characteristic of a Debye
solid in two dimensions. However, more recently
Crary and Vilches found that the specific heat on
argon-plated Grafoil showed an exponent of 3.3, indi-
cating nontrivial eNects from the substrates. ' There-
fore, real helium films are more complicated than
considered hitherto. On the other hand, at low den-
sities, it has been reported that the films are gas-like.

. In between the two regions of density, a transition
takes place. This transition is not in first order and
depends on the thickness and substrates. It is prob-
able that the low-temperature side of the specific-heat
peark of 4He on grafoil represents a two-phase re-
gion.

Since the real films are very complicated, we intend
to investigate the properties of an idealized 2-0 sys-
tem from the microscopic point of view. %e remark
that it has been shown that there is no long-range
order in a 2-0 Bose system. ' Therefore, we shall not
consider particles of zero momentum in a special

way. %e shall try to find the excitation spectrum and
thermodynamical properties of an interacting Bose
gas in comparison with the bulk case,

Miller and %oo made a variational approach to a
similar Bose system, with Jastrow-type trial func-
tions. ' Another approach was made by Padmore.
Hipolito and Lobo3 used a self-consistent method in
which the structure factor, given by the suscepbility
sum rule, determines in turn a self-consistent poten-
tial for the susceptibility.

Stimulated by these works, we shall present in
what follows yet another statistical-mechanical ap-
proach. Instead of the approach in which the excita-
tion spectrum is evaluated for absolute zero, we shall
make a finite-temperature approach. Anticipating a
Landau-type spectrum, we shall treat coHective cou-
plings between boson particles interacting with each
other with a soft potential. For the bulk case,
Samulski and Isihara' showed recently that a grand-
ensemble method can be employed e6'ectively to
show how phonon or roton quasiparticles can be ob-
tained by starting with real boson particles, giving a
new molecular basis to Landau's phenomenological
approach. Therefore, we shall extend their theory to
two dimensions, neglecting the eN'ects of the sub-
strate.

In Sec. II, we shall present our basic results and
formulas for the pair-distribution function and ener-
gy. In Sec. III, the.excitation energy will be evaluat-
ed explicitly for a soft potential with a Lennard-Jones
attractive tail. Section IV will discuss the phonon and
roton energies, their specific heats and other thermo-
dynamical functions. The ground-state energy is also
given in Sec. IV. Section V gives an explicit asymp-
totic formula for the pair-distribution function. Fi-
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nally, in Sec. VI we compare our results with recent
works and present our theoretical results in terms of
graphs and tables.

In this paper, we shall use units in which we have
4= 1 and 2m = 1, where m is the particle mass, ex-
cept for the cases in which h or m should appear ex-
plicitly.

II. BASIC FORMULA

In this section, we shall present several important
formulas which will be used in Secs. III, IV, and V.
for the derivation of the energy spectrum and other
quantities. For our purpose of treating a helium film,
we shall employ an approach based on the pair distri-
bution function rather than a partition-function ap-
proach. One of the reasons is that the pair distribu-
tion function is directly related to the structure factor
which plays an important role in the theory of liquid
helium.

For the evaluation of the pair distribution function,
we shall adopt the chain-diagram approximation. The
pair distribution function evaluated in this approxi-
mation is known to represent collective couplings
between the particles and to yield the energy in the
ring diagram approximation. ' W'e shall assume that
the interaction between the helium particles is charac-
terized by a repulsive peak which appears at zero
momentum followed by a weak attractive tail. There-
fore, a small momentum approximation can be intro-
duced.

We shall start with real bosons with pairwise in-

pq(r) = n +1(r)— 1

p(27r) '

u (q) Z1'(q)

1+u(q) Xi(q)
(2.1)

where 1(r) is the ideal-gas contribution, we have
p= I/kT, n is the density, u(q) is the Fourier
transform of the interaction potential, and the Aj s
are the eigenvalues of the effective boson propagator
representing the unit process in the chain configura-
tion of the particles. In the first approximation, we
can show that the eigenvalues are given by6

r

Xq(q) =2nq'/ q'+ (2.2)

The same form appears for the 3-D case. Ho~ever,
different from the 3-D case, the number density of a
2-D Bose system does not include a condensate.

Introducing Eq. (2.2) into Eq. (2.1) we find

teractions. Starting with these real particles with
mass, we shall show first that the thermodynamic
properties of the system can be described by quasi-
particles obeying Bose statistics. The numbers of
these quasiparticles are not conserved. This transi-
tion from real particles to quasiparticles will be made
possible based on a finite-temperature approach. In
this respect, our approach is different from that of
Bogolieubov and Zubarev, or Feynman and Cohen
for the 3-D case.5

In the chain-diagram approximation, the pair distri-
bution function of a Bose fluid is given by6

p2(r) = "'+1(") "
X dy y'Jo(ry)

n 1
" t'"

3 1 1
2~ p1 ~"o y +x2 y" +2nu(y)y +x

n 1= n'+1(r) —
J dy yJo(ry) 1—

27T 0 '+2nu (2.3)

where 1(r) is the ideal-gas contribution and x and y represent

x=2nj/p, y =q

The summation over j in Eq. (2.1) has been converted into integration for the lowest temperature. For finite
temperatures, we must use the summation.

In terms of the pair distribution function, the internal energy is given by

OO 1

U(T) =U, (T)+ 'n'S J)dr—@(r) —'nS J —q u(q)+ —S g dg ",(2.4)

where Uo(T) is the ideal-gas energy, S is the total area of the system, and @(r) is the interaction potential.
Using Eq. (2.2) and performing the summation, we arrive at
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U(T) =
2

n2S d r $(r)

+—S [e(q) —q' —nu (q)]
1 dq

(2m)'

dq+S e(q)f(e(q))4 (2n)'
where f(e) is the Bose distribution function for
quasiparticles,

f(e) = I/(e&' —1)
and

e(q) = q [q'+ 2nu (q)]'~'

(2.5)

(2.6)

(2.7)

g'S '
3 tif(e(q) }v ~ dqq4n' " 8e(q)

If this momentum is associated with the "normal
fluid", then its density is given by

(2.8)

is their energy. Equation (2.7) agrees with what Bo-
golieubov and Zubarev gave. 7

The internal energy given by Eq. (2.5) consists of
the ground-state energy (first term) and the quasipar-
ticle excitation energy (second term). Therefore, we
have in effect shown that a Landau type quasiparticle-
description is possible for the 2-D Bose system.

In Sec. III, we shall further analyze the quasiparti-
cle energy. Before concluding the present section, we
remark that if the quasiparticles move with an aver-
age drift velocity v with respect to the rest system, we
expect the total momentum to be

(T) 1 '"
3d Bf(e(q))

4n «0e(q} (2.9)

III. EXCITATION ENERGY

The energy given by Eq. (2.7) is the type Bogolieu-
bov and Zubarev gave for three dimensions. For
small momentum, the spectrum is phonon-like with
the sound velocity given by

1/2

C = nu (0) = [2nu(0)]'
fn

(3.1)

The right-hand side depends on u(q). Note that in

general the energy is particle-like whenever u (q)
vanishes.

To have a more explicit form for the energy, let us
assume a soft potential with a Lennard-Jones'tail,

Vp, r «a
$(r) = ' ' '12 ' '6'

a a
(3.3)

r«a

where u (0) is the value of u (q) at zero momentum
and is assumed to be positive.

For higher momentum, the energy can be ex-
panded as follows:

e(q) = q'+ nu (q) ——[[nu (q)]'/q'} + . (3.2)

We find then

u(q) =2ma Vo +2ma h —,+ (qa) — (qa) + —,(qa)
qa lP!! . &P!!

+ — (qa) Ji(qa)4 4x48 (3.4)

10

S (q )'+ (q )"
4!!2 $0!!

( )k( qa)2k
—2Ci(qa) + y + lnqa —X 2k (k!)

For small q, we can further expand the right-hand side as follows:

2nu (q) =A'(0) +A i q'+ A 2'q4 A3q4 Inqa —Aqq'+—A (0} 2m na2(VO ——,0 h),
na4

A2 =m" (-'6 —Vo), A2 =4~na6 ' (1016+48 &&10»)
2 x3! ~pxyp!! y =.5771

For the potential, we find the energy spectrum in the following form:
f

e(q) =A(0)q+Bq'+Cq'+ (3.6)
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where

8 = [1/2~ (O)](1+~,'),
C = [1/2A (0)) [A

' —[1/4A (0)](1+2 ')'] (3 7)

On the other hand, for large q, the first term in u(q)
is dominant so that we could use

o(q) =q[q'+(4srna'/qa) VpJi(qa)]'/' . (3.8)

The Bessel function is oscillatory, therefore, there
can be a minimum in the energy curve plotted
against q. Around this minimum, we can have

Note that the phonon part of the specific heat is an
even function of temperature with the first quadratic
term which is characteristic of two dimensions, The
roton part is characterized by the energy gap 5 and
the roton momentum qo. Because of the exponential
factor, it is small for low temperatures.

Our theoretical expressions for the free energy, en-
tropy, and pressure are

Fp (T) =— (kT) + ' (kT) +
23r A'(0) A '(0)

(4.6)

o(q) = /! + (g'/2m') (q qp)'—,

where the e6'ective mass and the energy gap are
gaven by

0.9)

m 1 qoS" (qo)

S(q) 2S(q,)'
&'qf

S(q) =
2mS(qo)

'
[q3+2nu(q)]'3

(3.10)

S(q) is the structure factor. The position of the
minimum energy is determined from

2[qp3 +2nu(qp)] = nqp[ u'(qp)] (3.11)

IV. THERMODYNAMIC FUNCTIONS

In view of the energy spectrum we follow Landau's
theory to obtain the phonon and roton energies. Us-
ing the small-q expansion of the energy

r 1/2

F„,(T) = qp, — (kr)'/'e o/"r

S h(r) = (kT)'+ ' (kT)'+
2m &3(0) ~s(0)

1/2

S (r) m kr
k

' 3 + 5 3/kr
2 k2 2 kT

/

1 ~(3) ( )3 2X4i81~(5)( )s
~ &'(0) ~ '(o)

1/2

(kr) 3/2e o/kT—
fot

2 ~2 0

where

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

o(q) =A (0)q +8q'+ Cq'+ ~ (4.1)

we obtain

1 25(3) (kr)3+ 4 x4'80(5) (kr)s
2n A3(0)

+
A s(0)

+ ~ (kr)'+".
~'(o) (4.2)

For the roton part, we make use of Eq. (3.10) to ob-
tain

o„,= (m'/27r Ir ) ' 3q [ '(kr) + g(k T)—3/3] -~/kr

%e consider that the normal fluid consists of the
phonon and roton parts. Using Eq. (2.9), we obtain

3!g(3)g kT
4~~ (o) ~ (o)

/

6!$(6)8k kT + (4 12)
8~m~3(O} g4 (0)

2
1/2

(4.13)

The corresponding specific heats are given by

k 3!g(3) (kr)3+ 4 x 5!)(5)8(kr)4
2~ A'(0) ~s(0)

+ '~ (kT)'+ "
~'(0)

(4.3)

(4.4)

The ground-state energy is obtained from Eq. (2.5)
as follows:

Eg=-,'n'S JI g(r) dr

+ -'S J) [o(q) —q' —nu (q) ] (4.14)
(2n)'

1/2
m'kT

k 3 + dL lL o/kr (4 5)2m' ' kT kT
e

= I1 +I2+I3 (4.15)

For the soft potential which has been adopted we find
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1
Ia = —m na2SV'

2

~here

(4.16) For the third integral l3 we expand the square root
in the integrand and use

V' = (Vp ——8)10
(4.17)

For the second integral, we use u(q) expanded to
order q2. We then obtain

a/2 ' a/2'I

I =1 W nV'
1

3 2 2mV2=— 1 ——na
6 na 2m 4 n

(2mnai Vp) 2 t' Ji(x)I, =—— S ' — dx, np=gpn
8m 0 X

(4.19)

We then make use of the Bessel-function formulas,

I'" Ji'(x) 1 J&'(ap) 1 t'" Jp(x) Ji(x)
~J ~p X3 4 ~ 2 2 4 ~0 X2

J ap

" Jp(x) Ji(x) 1 Jp(ap) Ji(np) 1 &" Jp (x) 1
" Ji'(x)

dx =— +— dx —— — dx
0 2 0 24~p x

J2
,„[J,' (x) +J„'., (x)l,

4@+2 x"

to arrive at

Ii = —8 Ji (1) —2Jp(1)Ji (1) —J(~) (1) +4Ci(1) + 2y —X
(2mna Vp) ( )»

Sm » i 2i"k (k!)2

+2 x —Ji(l) J2„(1) x ~ [J2„+](1)Jp(1) J2&(1)Ji(1)l1

n=a n n
(4.20)

Therefore, assembling these results, we Anally obtain
II

Eg 1 2, 1 1 4 1 n= —dna V'1— — 1 ——
N 2

I
4n na2 3 nut 2+V'

(n Vp)'
(4.21)

5= J)'(1) —2Jp(1)Ji(1) —J(~) (1) —4Ci(1)+2y —$ 2„2+2 x —Ji(1)J„(1)( )»

» i 22"k (k!)2 „ i n

[J2 +i(1)Jp(1) J2 (1)Ji(1)l1

„-a n
(4.22)

Here, the parameter '5 appears from Ii of Eq. (4.20).
The above results for a soft potential can be used

for the case of an approximate pseudopotential for a
hard-sphere repulsion. Although most of the results
can be derived in a straightforward way, the ground-
state energy involves a divergence. A similar diver-
gence appears also in the 3-0 case due to the use of
an approximate pseudopotential. As we shall discuss
later, the main difference between the spectrum of
the soft-potential case and the approximate pseudo-

potential case is in the disappearance of the roton
minimum for the latter.

I

V. PAIR DISTRIBUTION FUNCTION

It is dif5cult to evaluate analytically the pair distri-
bution function for a soft potential. Therefore, in
what follows we report an approximate result retain-
ing only the first term with Ji(qa) in Eq. (3.4):
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d pz(r) = pz(r) —l(r) (5.1) In terms of the relations between the Bessel func-
tions

For the asymptotic expression for the pair distribu-
tion function, we retain only the constant term of
M(q) and use

kpz(f) = n'— n

2m

J,'(z) =J,—(z) ——"J„(z)
Z

y&1'(ry) =yJp(ry) —Ji(—ry)

(5.3)

f+ oo

"Ji dy yjp(ry) '1 —
[ 2 ( )]|/&

t j
we can rewrite Eq. (5.2)

r t

% oo 1

2 "o [y'+2 (0)]'" "' [y'+2 (0)]'i'
t

(5.4)

Integrating by parts we obtain

n a 8 8 !'" Jp(ry)
Qpz(f) = n dy

2m r 8u Br "o (yz+a) i

%e can apply the integral formula

J„(2ax)
,iz

dx =I„i2(ay) K„p(ay)~p x +y

to arrive at

It pz(r) = n — " —'a2[K (z) I (z) —K|(z) I, (z)]
2% 2

(5.5)

(5.7)

(5.11)

This result is subject to the condition
' 1/2

R )&— . Rp=g|Rp1 2373m
2' M (0)

The factor Qi here is approximtely 0.21 for the
parameters which wiB be chosen in Sec. VI. The 8
proportionality of the pair distribution function is
characteristic of 2-0 phonons. It is this decrease
which causes the phonon spectrum. For three di-
mensions, the 8 4 asymptotic variation of the pair
distribution function characterizes the phonon spec-
trum. The quantity M (0) is dimensionless. This is
another 2-0 peculiarity.

af
z =

2
M (0)
2n

M (0) R
2m Rp

g fp8 =—,Rp=-
a

' a
(5.g)

VI. RESULTS AND DISCUSSIONS

Figure 1 illustrates the Fourier transform M (q) of
the soft potential which we adopted. The potential
parameters have been chosen so as to be able to 6t
the same experimental data at the density of 0.0279
A ', as used by Hipolito and Lobo,

For large arguments, the Bessel functions are given
by

I (z) = (2nz) ' e' X (—)" (v, n)
(2z)"

Vp —10.44 'K, 8 = 10.22 '.K,

a =4.$ A, m =0.75 m

' 1/2

K„(z)= — e 'gm, ™(vn)
2z „~ (2z)"

(v, n) = 1'(v + n + —,
' )/n! 1'(v —n + —,

' )

Therefore, we And the asymptotic result

n', 4 M(0) R'

l + 2373 2& ~0
2" M(0) R' (5.10)

Kith these parameters, the excitation spectrum was
obtained as in Fig. 2. The spectrum is phonon-like
for small momenta and roton-like at around qp. The
roton parameters and the sound velocity are listed in
Table I in comparison with what Hipolito and Lobo
and also Padmore reported recently. 3 4

The small differences in the energy gap and qp
between Hipolito-Lobo's case and ours may not be
seriously considered, but Padmore's calculation indi-
cates that the energy gap decreases for low coverages.
The difference in the effective mass is more
significant. Padmore's calculation indicates that m'
increases towards low coverages. His value for the
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6-

4

L.-J POTENTIAL IN 2-D MOMENTUM SPACE

I

6 qo'

FIG. 2. Excitation spectrum of a helium 61m evaluated

for a soft potential.

FIG. 1. Fourier transform of a soft potential given by

Eq. (3.4).

density of 0.6pp is 0.30 m. Hence, for our low-

coverage case, a larger value such as ours may be ex-
pected.

From the excitation spectrum we can obtain the
condition for superAuidity. %e have found that the
critical velocity is given by

&c=50.69 m/sec .

If the interaction potential is not soft and does not
give a solution to

q2 = n (-2u —
2

qu')

we do not expect a roton dip. Since the left-hand
side is positive, the attractive potential and the de-
crease of the repulsive part are important.

Figure 3 illustrates our theoretical structure factor
corresponding to the excitation spectrum of Fig. 2.
For small moments (q -0.2 A '), the structure fac-
tor is proportional to q/[2nu (0)I'~'. It reaches a
maximum at around q =1.05 A '.

The specific-heat data are complex. Around 1970,
the low-temperature data showed the essential
characteristic of a 2-D Debye model. For instance,
an empirical formula could be used, i,e.,

C„/Nk =28.8(T/O~D)

The Debye characteristic temperature varies with the
substrates. For instance, it is about 23 + 1'K for Nu-
clepor filters and is 56.1 for Grafoil. On the other
hand, Crary and Vilches reported recently' that heli-
um on argon-plated Grafoil gave an exponent of
3.3 +0.2. Hence, the real 61ms are very complicated
and the effects of the substrates are important. Our
theoretical model gives approximately the same
overall temperature variation as that of Hipolito and
Lobo.

%e remark that the energy spectrum given by
Hipolito and Lobo in their Eq. (3.1) differs from our
Eq. (3.8). Their sound velocity is inversely propor-
tional to the hard-sphere diameter [see Eq. (3.3)] in

s(q)

TABLE I. Roton parameters and sound velocity. 0.5

(10 A ) 5/kg( ('K) pp'(A ) N /n2

Isihara-Um 2.79
Hipolito-Lobo 2.79
Padmore

4.12
4 37a

6.8

1.02 0.75 164.4
0.86' 0.20 157
1.25 0.30

0.6 -l.4

'Read from the graph.
Corresponds to 0.6 pp. FIG. 3. Structure factor evaluated for a soft potential.
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contrast to the Bogolieubov spectrum. However,
note that their parameter 8 is of complex nature. We
have not traced their calculation in every detail, but
their Eq. (2.5) seems to be not quite correct.

Apart from these points, Hipolito and Lobo's re-
placement of a two-body distribution function by a
product of singlet distribution functions, and the
correlation function expressed by Eq. (2.2), ought to
be critically examined. The Kirkwood superposition
approximation' has been made by Miller and Woo.
Since their final results are given numerically for a
set of potential and other parameters, it is not easy to
find the validity of these approximations in an analyt-
ical way. Nevertheless, Hipolito and Lobo's specific-
heat result is not very far from experiment except for
very low temperatures and near the specific-heat
peak. After a correction of a factor of 4, the result of
Miller and Woo agrees well with the experimental
specific heat. Therefore, their approximations may
not be very bad.

Concerning the speci6c heat, we have chosen the
parameters in more or less relation with Hipolito and
Lobo. Then, the roton parameters came out close as
in Table I. Note that both theories deviate from the
specific-heat data at low temperatures. If the qua-
dratic dependence is the case, we could of course fit
such a dependence at low temperatures.

The excitation energy spectrum has been evaluated
by several authors. In close examination, the curve
in Fig. 4 of Miller and Woo seems to show a should-
er at around 0.2 A '. A similar shoulder is clearly
seen in their curve for the structure factor. No such
shoulder is found in Hipolito and Lobo's and our
results. Our overall curve is similar to what Hipolito
and Lobo gave. On the other hand, Padmore report-
ed that the roton dip disappears at a low density. The
radial part of the Laplacian which he used appears to
be three-dimensional rather than two-dimensional,
but in any case for a high coverage, his result for the
excitation spectrum is not very far from ours as in
Table I.

The structure factor reported by Miller and Woo
sho~s a peak at around 1.5 A ' with a maximum
value of 1.18. The structure factor given by Hipolito
and Lobo depends largely on the parameter 8 which
in turn varies with the density. For 8 =225 for
which they evaluated the energy spectrum, the struc-
ture factor reaches a maximum value of around 1.5

0
at around 1 A '. These results are close to what we
have reported in Fig. 3.

In Fig. 4 we have illustrated our theoretical normal
fluid density given by p~~h+ pN„, of Eqs. (4.12) and
(4.13). It is normalized by the mass density p and T'
so that the constancy of the normal-fluid density is
exhibited at the lowest temperature. A similar curve
has been obtained by Washburn, Rutledge and
Mochel9 who measured the third-sound velocity. Pri-
or to these authors, Scholtz, McLean and Rudnick'

O.l4-

O.I2-

O.I—

0.06-

0.04-

0.02-

10 I I I I

0.2 0.4 0.6 0.8 1.0

FIG. 4. Normal-Quid density pN(T) as a function of
temperature.

used a Aight time measurement for the third sound.
After the initial constancy, the normal-Quid density
in Fig. 4 shows a dip at around 0.25 'K, in agreement
with Washburn, Rutledge and Mochel (WRM). ,

The roton gap 5 is determined by qo which in turn
is given by Eq. (3.11) as a function of n and the po-
tential. While it is dificult to solve this implicit equa-
tion, the gap value can change when different densi-
ties are used.

The roton gap has been given by WRM as a func-
tion pf the film coverage parameter d. Our theoreti-
cal value for d can be found by converting the sa-
turated number density 2.18 x 10 A 3 of bulk heli-
um into two dimensions and then by dividing our

-2 -2surface density 2.79 X 10 A by thus obtained
value, i.e., 7.07 x 10 2 A . Our theoretical LL as a
function of d is given by Fig. 5 by the black circle. In
comparison, the data of WRM are illustrated by ~hite
circles. If we connect the three white circles with the
black circle, we obtain a dashed curve. Although the
meaning of this curve has yet to be investigated, indi-
cations are that the roton gap might decrease with the
film coverage. This may be so because the roton ex-
citation is a result of boson correlations which may
vary with density. We remark also that our result
agrees well with the roton gap obtained by Rutledge,
McMillan and Mochel" On the other hand, for the
same density the roton gap can be the same as in the
bulk liquid as in the experiment of Carneiro et aI. '
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/
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and Chester obtained numerically. '4

The ground-state energy expression (4.21) is based
on a Taylor expansion. If we simplify the potential
such that

Qp mVpa; q ~q,2.

0

then the ground=state energy can be obtained analyti-
cally as follows:

I

P2 + q (q ++2)3/2 +2q (q ++2)l/2
'Fn

—-q4- -A'q'1 1

4 c 4
/

(6.1)

FIG. 5. Roton energy gap as a function of film coverage
d in atomic layers. The white circles represerit the data by
%'ashburn, Rutledge and Mochel and the black circle is our
theoretical point. The dashed curve connects three experi-

mental points with the theoretical point.

Instead of the normal-Quid density, one can evalu-
ate the superfluid density p, as a function of tem-
peratur'e. From Eq. (4.12) we obtain

p /p 1 ~ P3 '(p/ Tl/2) e k/T

pp=
2

'rrna Vp(1+
p

a Vpln(nVpa )]1 1 (6.2)

Because of the above conditions, the logarithmic
term is negative. Since its factor is being considered

where A2=2mna2Vp.
In order to simplify this expression, let us consider

that

q, =l/a, na2 « 1, Vpa2 ((1
Then, the leading terms of the energy are given by

where n and P are constants. Recently, Bishop, Par-
pia, and Reppy'3 fit their data to a theoretical relation
similar to the above, except that their second term is
quadratic. This seems to be incorrect, Their theoret-
ical curves deviate at higher temperatures. If their
quadratic term is replaced by a cubic term as in the
above expression, their curves would decrease faster
as in the experimental data.

The A. temperature may be determined from the
condition that p~„,/p =1, as in the 3-D case. We
then find T& =1.5 'K. If we adjust this value in pro-
portion to the ratio of the theoretical and experimen-
tal values for the 3-D case, we obtain T& =1.2 'K for
the soft potential which has been used.

We have evaluated the ground-state energy analyti-
cally as in Eq. (4.21). The parameter g appearing in
the last term is found approximately to be —0.0112.
For the parameters which we have used for the den-
sity 0.0279 A ', Eq. (4.21) gives pp=3.09 'K. This
value corresponds to na2 0.47. Some other values
for the produce na2 will give dift'erent energies. On
the other hand, if the density alone is changed, read-
justment of other parameters such as a has to be
made. Therefore, it is not a simple matter to find the
energy as a function of density. When na is used as
a single variable, nevertheless, our theoretical curve
for the energy becomes similar to what Liu, Kalos
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FIG. 6. Sound-wave dispersion.
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to be small, the ground-state energy is positive. This
positiveness agrees with the well-known 3-0 hard-
sphere case."

The ground-state energy was treated by Schick by a
diFerent method. '6 The result given by his Eq. (14)
differs from ours in that th'e energy does not have a
term corresponding to our first term, does not
depend on Vo and has a logarithmic factor in the
denominator. Although detailed analysis of his ap-
proach is beyond the scope of the present paper,
there is no condensate in our case. The appearance
of our first dominant term is clear. Our logarithmic
term is obtained by summing all the graphs including

b, d, etc. in Schick's Fig. 1. Since our result depends
on VD, the energy vanishes when Vo is brough to
zero. This must be so because we have omitted Uo

in Eq. (2.4).
The derivative of the excitation energy with respect

. to q yields the sound velocity v, as a function of
momentum. Figure, 6 illustrates our theoretical curve
for the velocity as a function of qa. The sound velo-
city at zero momentum depends on the molecular
parameters, especially the hard-sphere diameter and
density. %e have used the previous molecular
parameters which have been determined so as to
have a specific-heat curve similar to Hipolito and
Lobo's. On the other hand, if only the region near
absolute zero of the specific heat is concerned, we
would obtain a lower sound velocity,
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