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The bulk properties of Mo and W are calculated using the recently developed momentum-space approach
for calculating total energy via a nonlocal pseudopotential. This approach avoids any shape approximation to
the variational charge density (e.g., muffin tins), is fully self-consistent, and replaces the multidimensional

and multicenter integrals akin to real-space representations by simple and readily convergent reciprocal-space
lattice sums. We use first-principles atomic pseudopotentials which have been previously demonstrated to
yield band structures and charge densities for both semiconductors and transition metals in good agreement
with experiment and all-electron calculations. Using a mixed-basis representation for the crystalline wave

function, we are able to accurately reproduce both tho localized and itinerant features of the electronic states
in these systems. These first-principles pseudopotentials, together with the self-consistent density-functional

representation for both the exchange and the correlation screening, yields agreement with experiment of
0.2% in the lattice parameters, 2% and 11%%uo for the binding energies of Mo and W, respectively, and 12%
and 7% for the bulk moduli of Mo and W, respectively.

I. INTRODUCTION

Recently, ' we have developed a method for ob-
taining firs t-principles nonlocal atomic pseudo-
potentials in the density-functional formalisms by
direct inversion of the pseudopotential one-body
eigenvalue problem. The method does not involve
any empirical data nor does it restrict the pseudo-
potential to a model analytic form. Applications to
excited configurations of atoms and ions as well
as to the study of the electronic structure of semi-
conductors (Si and Ge') and transition metals (Mo, '
and4 W) has indicated very good agreement with
all-electron first-principles calculations. As these
pseudopotentials are derived from a variational
process that constrains both the energy eigenvalues
and the wave functions to reproduce the features of
the atomic all-electron one-body equation they are
expected to correctly reproduce the band structure
and the charge-density related properties of con-
densed phases.

The classical turning points r& of the screened
core potentials have been shown' to constitute a
sensitive electronegativity scale reflecting chemi-
cal regularities in the Periodic Table. As (ro) '

measures the scattering power of a screened atom-
ic core to valence electrons of angular momentum
l, it was possible to construct "structural indices"
for binary AB compounds [i.e. ,

and

ftAB (yA yyla) (ya

yeas)]

that separate topologically the octet AB structures

(diamond, graphite, zincblende, rocksalt, wurzite,
and cesium chloride) as well as the suboctet struc-
tures (space groups LI„B32, B2, tI64, and
cP64). This constitutes the first successful sep-

aration of these structures based on a nonempirical
approach.

In this paper we apply the first-principle pseudo-
potentials to the calculation of the total energy and
bulk properties of two transition metals, Mo and
W. The purpose of this study is to examine the
usefulness of these pseudopotentials in revealing
not only structural regularities' but also absolute
values for structural parameters such as cohesive
energy, equilibrium lattice constant, and bulk
modulus. In this respect, the choice of the trans-
ition metals constitu'tes a senstive test because
empirical pseudopotentials have been traditionally
unsuccessful in describing their electronic proper-
ties within a self-consistent approach due to (i)
pronounced pseudopotential nonlocality, (ii) the
failure of conventional perturbation approaches to
treat the localized and strong d potentials, and (iii)
the scarcity of empirical data necessary to fit
these potentials. On the other hand, an all-elec-
tron approach to the cohesive properties of the
4d and 5d transition elements faces the difficulty
associated with the smallness of the cohesive en-
ergy relative to the total energy (e.g. , 2&&10 in
tungsten). A pseudopotential approach, on the other
hand, focuses its attention on the "reactive" val-
ence electrons only and hence the cohesive energy
constitutes a much larger fraction of the total
(valence) energy (e.g. , a. ratio of 3.6&&10 for
tungsten). In the future this might permit exten-
sive structure determinations of complex systems
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(transition-metal compounds and surfaces) with
reasonable accuracy.

The calculation of the pseudopotential total ener-
gy can be greatly facilitated by the use of the mo-
mentum- space r epresentation r ecently developed. '
This avoids any muffin-tin approximation to the
charge density and replaces the complicated six-
dimensional integrals characteristic of first-prin-
ciples real-space representations ' by simple and
readily convergent reciprocal-space lattice sums.
The mixed-basis representation of the crystalline
wave functions""' similarly permits an accurate
description of both the localized and the itinerant
features of d-band transition metals. The density-
functional exchange3 and correlation" functionals
are used to self-consistently describe the valence
screening in the system. As the core pseudopo=
tentials are similarly derived from the density-
functional one-body equations, ' this approach is
completely nonempirical and enables a direct as-
sessment of the quality of the presently known

local-density exchange and correlation functionals
for the description of ground-state proper ties of
transition metals.

(2)

The all-electron charge density p{r) is given by the
core + valence wave functions gq(k, r) as

p(r) = Q N;(k)
~ gf (k, r) g~(k, r) ~, (3)

gyA

whereas the pseudo-charge-density n(r) is simi-
larly constructed from the Fermi-Dirac occupation
numbers Nz(k) and the pseudo-wave-functions
Xz(k, r} as

n(R =+ Ng(k) ~XP(k, r)xq(k, r)
~
. (4)

While o{r) contains contributions from N, +N„core
and valence electrons, n(r) is normalized to N„.
The valence potential V"(n(r}j has the same func-
tional form as the total core+ valence potential,
except that it acts on the valence subspace only.

II. PSEUDOPOTENTIAL TOTAL ENERGY
I

The pseudopotential formalism' replaces the
all-electron (core+valence} eigenvalue problem

[-&V + Vt,',"g(r)jjgz(k, r) =e&(k}g&(k, r), (1)

where g&(k, r) and e&(k) are the jth-band wave func-
tion and energy eigenvalue, respectively, and

V;,'",g(r) j is the total potential (containing elec-
tron-nucleus, Coulomb electron-electron, and

exchange and correlation terms due to all the elec-
trons), by a simpler equation pertaining to the sub-
space of the valence electrons only

[-a& + V"{n(r)j+V (r)])(~(k, r)=e~(k)y~(k, r).

More specifically, in the density-functional ap-
proach, 3 it is given as

V"(n(r)j= g =+ I
———,dr'n(r')

Ir-R I ~ tr- r'I
m

+ V„(n(r)j+ V„„„fn(r)j.

Here Z„ is the screened nuclear charge of the atom
at the lattice point R„and V„(n(r)j, V „(n(r)j, and

V„(r) are, respectively, the local exchange and
correlation potentials" and the pseudopotential.
In general, V„(r) is a nonloeal potential construct-
ed as a lattice sum of the individual single-site
pseudopotentials U, (r} of angular momentum I, as

V„(r, r') = P U, (r —R„,r'-.R )P~P',

m l=0

A(
where P&

' is the angular-momentum projection
operator with respect to site m.

To the extent that the construction of U&(r) can be
made sufficiently simple, the effective one-body
equation (2) is significantly easier to handle than
the all-electron equation (1) in that a smaller num-
ber of electrons (N„rather than N, +N„} has to be
treated and the wave functions )(&(k, r) can be made
spatially smooth (due to the absence of the core
orthogonality constraint) and hence are expandable
effectively by convenient basis sets. Whereas
U, (r) has been traditionally treated as an empiri-
cally parametrized quantity adjusted to fit either
the low-energy interband transitions e&(k}—ez,(k), 9

Fermi surface and resistivity of metals or the
ionic term values, ' we have derived U&(r} for all
atoms of rows 1-5 in the Periodic Table by a di-
rect inversion of all-electron Eq. (1) in the atomic
limit. The construction of the single-site pseudo-
potentials U, (r) from the core characteristics of the
free atom, rather than the solid-state core, we are
assuming the pseudopotential frozen-core approxi-
mation. This implies that the static potential U, (r),
which replaces exactly the dynamic effects of the
core electrons in the gth electronic configuration
of the atom (i.e., ground state) be used for states
other than g (e.g., excited states) and for the same
core in a polyatomic system. We have previously
tested this assumed weak energy dependence of the
pseudopotential, studying the electronic structure
of atoms, ' semiconductors, and transition met-
als '5 and found that it holds satisfactorily over a
considerable energy range. Whereas the empirical
fitting of U, (r) introduces some form of correla-
tion into the one-body potential and hence obscures
the effects of the explicit correlation introduced
into the total energy in its density-functional form,
the first-principles pseudopotential consistently
uses the theoretically transparent correlation func-
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nr V r+V„„r r

Z2
+E„,{n(r}]++

(
mAn m

and does not depend explicitly on the pseudopoten-
tial. Expressing the total exchange and correla-
tion energy E„,{n(r))by its approximate density-
functional form'

E (r(r)}—=„fn(r)r„(rr(r)}dr, (8

where e„,{n(r)]=e„{n(r}]-+e,{n(r)j is the exchange
and correlation energy per particle, which is re-
lated to the corresponding one-body potentials by

V„{n(r)}=-',.„{n(r)),

V „{n(r)]=e,{n(r))+n(r) de, {n(r}]

one obtains the expression for E„,expressed by
direct-space quantities as

Et, (. ——Q N)(k)e~(k) ——,dr dr'1 n(r)n(r')

1 (I n(r) V„(r)dr
4

+ n(r)[e {n(r)]

Zv
—V,.„{n(r)]]dr+Q-

mgn m n
(10)

The first term is the sum of the one-body eigen-
values over the occupied portion of the Brillouin
zone (BZ}, while the second term is the correction
due to the overcounting of the interelectronic Coul-

(

tional throughout. This should enable a direct mea-
sure to the quality of the presently known many-
body correlation functional in predicting ground-
state properties of solids. We extend this study
presently to the calculation of the total energy and
bulk properties of solids.

The total energy associated with the variational
equation (2) is given by

omb repulsion. The third and fourth terms are
corrections to the exchange and correlation ener-
gies, respectively, while the last term is the core-
core nuclear repulsion term. The corresponding
equation pertaining to all the all-electron case
[Eq. (1}]is formally identical with Eq (1.0}when
the pseudo charge density n(r) is replaced by the
all-electron density p(r) and the valence charge
Z„ is replaced by the atomic number Z.

In practice it appears to be difficult to obtain
E~, for a solid directly from Eq. (10) for the gen-
eral case where n(r) [or p(r)] is unrestricted to
simple model forms (viz. the muffin-tin approxi-
mation), both due to the occurrence of the six-di-
mensional integral in the second term in Eq. (10)
and due to the divergent nature of the second and
last term in Eq. (10). It has been demonstrated
in the past2t 2t that when n(r) [or p(r)] is approxi-
mated by a radially one-dimensional quantity (e.g. ,
muffin-tin or cellular density), one can reduce
all the spa, tial integrals in Eq. (10) into simple one-
dimensional integrals and combine the individually
divergent terms' to yield a converged expression.
Whereas the former approximation seems to apply
reasonably well to closely packed structure, there
is increasing evidence that similar approxima-
tions for "open" molecular and solid-state systems
involve very large errors both in the single-parti-
cle energies in Eqs. (1) a,nd (2) and in the total en-
ergy in Eq. (10}. Direct non-muffin-tin evaluations
of Eq. (10}for open-structure solids has been
nevertheless achieved both in the restricted Har-
tree-Pock methods't'2t and in the density-functional
approach' ' ' ' yielding very good agreement with
the observed bulk properties. The pseudopotential
approach offers an alternative scheme, within the
frozen-core approximation, which simplifies the
calculation enormously without sacrificing the vari-
ational form of n(r). This is based on a momen-
tum-space representation of Eq. (10) which be-
comes readily convergent due to the spatial
smoothness of X~(k, r) [as opposed to the nodal
character of P&(k, r)], replaces all integrals by
single sums and eliminates all the individual di-
vergencies in Et,t. This formalism, previously
developed by Ihm, Zunger, and Cohen~ yields a
simple expression for the total energy per cell, as

0&

E„,= Q N~(k)e~(k) — 'n(G)[Vc, „&(G) + V„(G) + V„„(G)]+—Q n(G)Vc«&(G}
jt0 G

+4 g n(G)V„(G)+ n(G)e, (G)+ p e)Za)+Es „d
lat 8G

&(f) &(g& &&1)

= Q NJ(k)g~(k) —
2 Vco„,(G)n(G) —— V„(G)n(G) + g [e(;(G) —V~~(G)]n(G) + Q n Z„+EE~(uq

jt& 80 =0 G=0 (11)
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V .(r) = VL(r) + Vmz, (r)

~«t

Rm~ ~g

UL, (r-R„- re)

Here Vc,„& denotes the electron-electron repulsion
term [second term in Eq. (5)], n )Z+) is the 6 =0
component of the repulsive local pseudopotential
of atom P, and Es„,q~ is the Ewald core-core en-

ergy. 3 The primed sums indicate omission of the
G =0 term from Vc,„,(G) and G ",„denote the sum-
mation limit. The local pseudopotential is defined
by arbitrarily partitioning V~(r) into a term acting
equally on all the angular-momentum components
of the wave function [VL(r)] and a term which acts
differently on each component [V»(r)]. Using the
completeness of P& one obtains

contain localized states as well as extended states
(e.g. , transition metals) without having to artifi-
cially smooth the pseudopotential, the crystal wave
function y&(k, r) is expanded in a mixed represen
tation of plane waves and localized linear-combin-
ation-of-atomic-orbitals (LCAO) Bloch functions'

~(2)
max

X,(k, r) = ~ C'." e'"'"'

+ g gD'„.(k)e..(k, r). (14)

Here C)„o and D„~' (k) denote the expansion coeffi-
cients to be determined variationally and 4(, (k, r)
denotes a Bloch function constructed from the real-
space basis orbitals d~ (r) of type p, on sublattice
c( (located at r ), as

+ Q Q [U)(r- 8„rg}-U-g(r-8 —r)))]
Rm &g

4„(k,r) =g e' '"~d~ (r-R —7' ).
Rm

(15a)

xp™»
l ~ (12}

The basis orbitals d„o(r) are chosen here as a lin-
ear combina, tion of Gaussians

This partitioning turns out to be of practical im-
portance in solving the eigenvalue problem Eq. (2)
without sacrificing the generality of the method.
In terms of UL(r) and the cell volume 0, the G=O
first-order component is given simply as

+ (g)

(12)

The total energy in its momentum-space repre-
sentation is exceedingly simple to evaluate as long
as the convergence of the relevant reciprocal-
space single sums is fast. It constitutes an im-
provement over the perturbational approaches, ""
which assume the smallness of the low-momentum-
potential Fourier components and simple forms
for the dielectric screening. The major advantage
of the momentum-space representation for E„t
over the real-space representation lies in the ab-
sence of complicated multidimensional and multi-
center integrals in the former. %e discuss in
Sec. III the convergence properties of both the
eigenvalue problem (2} and the total energy ex-
pression (11),

d„(r) =N, „r'K,„(8,p) g a,'„'~e~&" (15b)

0( )

k„(k, r)=M ~ ~Q e "' "d„(k+0)T (0), (16)

where N, is a normalization, K,„(8,p) are the
Kubic harmonics of angles 8, and p and p. denotes
l and m, collectively. As the matrix representation
of 4„,(r) is obtained in momentum space, it is
possible to use Slater-basis functions as well as
Gaussians (due to the analyticity of their Fourier
representations) without additional complexity. .
The coefficients a&" are determined from the out-
set such that d„(r) have desired properties (e.g. ,
fit the atomic pseudo wave functions at small dis-
tances from the origin) ~

In order to apply the powerful momentum-space
techniques to the evaluation of the matrix repre-
sentation of the Hamiltonian, the localized Bloch
functions are expressed themselves in plane waves

III. CONVERGENCE PROPERTIES

A. One-body equation

As the accuracy of the total energy will be large-
ly determined by the corresponding accuracy of
the charge density n(r} and the eigenvalue spectra
e&(k) obtained from the one-body equations (2} and

(4}, we first discuss the convergence properties of
the latter.

In order to be able to treat systems that might

where M '~' is a normalization constant, d~„(k+ G)
is the Fourier transform of the basis orbital d„(r)
[Eq. (15}], and T, (G) is the structure factor

r.(G)=pe e'" ~

obtained b'y summing all phase factors related to
the f) atoms of type n. The crystalline wave func-
tions are then given in a Fourier representation as
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g(2 )
max

(k««) P G ~ «»(k+Q)»'

0

+ .+~ k ~~ k+6 ~ 6
L II ~ 0

(18)

oA'a.

V„(r,) = P e»o'»V „(G),

g( )

V~»(r» }= e""V...,(G) ~

as well as

(20)

Within the form (18), it is very simple to eval-
uate the matrix elements of the Bamiltonian com-
ponents simply as lattice sums. Some examples
are given in Appendix A. These involve simple
summations in momentum space and require the
knowledge of the Fourier components of the local
potential V», (G} as well as the spherical Bessel
matrix elements of the nonlocal potential VsL(G, G').
These are easily evaluated as one-dimensional nu-

merical radial integrals, The upper limits 6 ~„
and G~„denote the momentum of the highest Four-
ier component of the plane wave and LCAO Blocb
function, respectively. As, however, the size of
the secular equation to be solved is determined by
Gm'„and the number h of LCAO Bloch function, one
can increase G' ~„ in Eqs. (16) and (18) without in-
creasing the matrix size.

The secular equation is solved on a grid of k

points in the Bridal, ouin zone. 'The resulting wave
functions }(»(k»„r») are constructed from Eq. (18)
on a grid r» in real space (using fast-Fourier
transforms ) and used in a symmetrized form to
evaluate the charge density in Eq. (4},

N

n(r») =g Wy(ky) ~X» (k»„r»}y»(kp, r»} ~. (19)
g

Here W»(k», ) denotes band and wave vector de-pen-

dent weights. Whereas in insulators and semicon-
ductors it is possible to use the "special k points "37

(which are band independent), for metals one has to
incorporate explicitly the variations in the weights
of various bands at a given point k~ due to its posi-
tion relative to the Fermi surface. This is done

by the tetrahedron scheme in which we divide the
BZ into tetrahedra, evaluating the band structure
for all corner points and using these to calculate
the density of states and Fermi energy. The weights
Wq(k~} are then determined from the fraction of
each tetrahedron which lies under the Fermi ener-
gy, for each band. At each self-consistency iter-
ation step the Fermi energy, density of states and

weights Wz(k», ) are recalculated.
Using the density n(r;) we evaluate the exchange

and correlation potentials V„{n(r,}].and V „{n(r»}]
on the same grid. These are then fast-Fourier
transformed36 into their momentum representation

g( )

n(r, ) = Q e»e'~»n(G) ~ (21)

The momentum components of the electrostatic
potential are theri given by

v..„,(c)=4~(c}/c'. (22)

The divergent G =0 component of Ve,„,(G) is set
arbitrarily to zero. This is compensated for kn

the total energy expression through the term Q.Z„.'
This updated crystal screening potential, {which
is identical to the valence field V" [Eq. (5)], omit-
ting the nuclear attraction]

V„,(G) =V,„,(G) + V„(G) +V „(G), (23)

together with the known Fourier components of the
local [V»;(6)] and nonlocal [V~&,(G, G')) pseudopo-
tential (where the nuclear attraction term is ab-
sorbed into Vz) are used to determine the band
strzcture repeatedly, ' until the agreement in these
components in successive iterations is better than
a prescribed tolerance of 10 ~ Hy.

The. convergence problems that govern the ac-
curacy of the self-consistent band'structure are the
(i} number of plane waves (with cutoff G 2'„) used
to expand the crystalwave functions, the number h of
LCAO Bloch functions, and number of plane waves
(with cutoff G~@,„) used to expand each such Bloch
function [Eq. (18)]. (ii) number N», of k~ points
used to sample the BZ for computing the charge
density [Eq. (19)], (iii} number of components used
to expand the potential and charge density [Eqs.
(10}and (21)], and (iv) tolerance criteria for ach-
ieving self-consistency.

The size of the basis set (1) depends on the de-
gree to which the LCAO basis functions are opti-
mized. A judicious choice of the Gaussian expon-
ents p» and contraction coefficients aI"~ [Eq. (15)]
would lead to a smaller Gm', „as more of the high
momentum components of the crystalline wave
functions are described by the localized orbitals.
Whereas very large exponents (i.e., tightly bound
Gaussians) would require a high cutoff G 3',„for
their Fourier representation [Eq. (16)], unduly
small exponents (i.e., diffused Gaussians) might
lead to approximate linear dependence between the
LCAO Bloch functions and the long wavelength plane
waves. In the present study of Mo and W we use a
single Gaussian for the localized Bloch function
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FIG. 2. Spatial varia-
tion of the self-consistent
screening potential
( Coulomb, VG,«,.ex-
change, V„; and correla-
tion, V~) and the local
core pseudopotential
V,",=0~ for bcc tungsten.
Full circles indicate atom-
ic positions. The zero is
chosen as the Fermi ener-
gy.

e&(k), A calculation involving only 750 plane waves
for the potential expansion produced a band struc-
ture «q(k)-&rI (where I', is the bottom of the val-
ence band) that deviated by less than 0.1 eV from
that obtained with converged potentials. At the
same time, a sizeable (1.5 eV) rigid shift occurs
for the center of gravity of the bands N 'ZJ" «e&(R).
While such a nearly dispersionless shift is usually
unimportant for the purpose of calculating one-
electron properties such as the Fermi surface and
interband spectra, it is not compensated for by the
G =0 components of the core and Coulomb poten-
tials and hence directly affects the total energy of
the system. Hence, while the band structure is
determined primarily by scattering events that ex-
change momentum of the order of =2k& (where k~
is the Fermi momentum}, the total energy is de-
termined also by the G =0 component [viz. , nZ„
in Eels. (11) and (13)] as well as by high momentum
scattering events in which the electrons sample the
repulsive portions of the potential near its classi-
cal turning points (Fig. 2}.

The last convergence problem associated with
the one-body equation pertains to the self-consis-
tency iterative procedure. The first iteration in
solving EI1. (2) is usually carried out by replacing
the screening field in EIl. (23) by the correspond-
ing quantities calculated from the free-atom pseu-
do wave functions, in a chosen electronic config-
uration. As observed earlier in non-self-consist-
ent augmented-plane-wave (APW40) and cellular4'
studies on transition metals, the choice of the elec-
tronic configuration (e.g. , Mo4ds 5s'o and
W5d5 o6s'o, where 0 ~Q ~1) determines rather
sensitively many of the important features of the
band structure, including the s-d and P-d separa-
tions, etc. In the present fully self-consistent
study, this choice is immaterial. We find that if
one starts from a superposition of ground-state
atoms (i.e. , @=0), the self-consistency consider-
ably modifies the relative positions of the bands,
and in particular (i) the s-d gap I', -HI2 is reduced

by about 0.3 eV, (ii) the p-d splitting at NI-N, . is
reduced by about 0.5 eV, (iii} the d,2-d„2~2 gap at
P4-H, 2 is reduced by 0.8 eV, and (iv) the bonding-
antibonding gap (1',2 with the upper I'2I state) is
increased by about 3 eV. Corrections (i) and (iii)
improve the agreement with the Fermi surface
data4 whereas correction (ii) improves the agree-
ment with the photoemission results4 and correc-
tion (iii} acts to further polarize the charge density
in the directions of the bonds (i.e., the four charge-
density maxima at —a from the origin in Fig. 3 are
substantially enhanced) thereby stabilizing the
crystal electrostatically. Although similar effects
can be simulated in a non-self-consistent study by
empirically adjusting the potential, 43'44 such pro-
cedures seem intractable when applied to the total
energy.

The requirement of establishing a self-consist-
ent solution to the one-particle equation is even
more stringent in the context of a total energy cal-
culation: expressions (10) and (11) for the total
energy make use of the fact that the screening

FIG. 3. Self-consistent valence pseudocharge density
of tungsten in the [110]plane. Full circles indicate the
atomic positions. The charge values are given in e/a. u.~,
normalized to unity.
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field Vc,„,+ V„+V„„in these equations [derived
from the variational charge density through Eqs.
(20) and (22)] is in fact identical to that used in the
one-body Eq. (2). If the potential V„used in Eq.
(2) (V„=Vc',s„, + V„"a) is different from that derived
from the variational density (Vg,"„,+ V„""), the.
second and third terms in (11) read

E,.„,+Z„= gn(G)[-,'Vc',"„,(G}-Vc",„,(G)]
CXO

(24)

Hence, non-self-consistent total energy calcula-
tions using forms such as Eq. (11)42 should be
treated with great caution.

We find that six to eight (damped) iterations are
required to achieve a stability of 10 ' Ry or better
in the components of the screening potential in Eq.
(23). Whereas the energy eigenvalues are already
stabilized to within 0.03 eV at a self-consistency
tolerance of 10 3 Ry, the high momentum compo-
nents which determine the spatial anisotropy of the
screening potential and the total energy stabilize
only after a few more iterations.

The only quantities involved in the solution of the
one-body equations which require integrations are
the Fourier transforms d„(G) of the Gaussian ba-
sis functions [Eq. (16}], the local potential Vr, (G),
and the spherical Bessel matrix elements Ui(G, G')

(Appendix A}. The first quantity is evaluated ana-
lytically whereas Vr, (G} and U, (G, G') require one-
dimensional numerical radial integration. These
can be performed with great accuracy using Gauss
quadrature schemes.

We conclude that the convergence tolerances for
the energy eigenvalues and charge density, re-
quired for adequate total energy calculations are
almost an order of magnitude smaller than these
pertinent to "standard" band-structure calcula-
tions. This accuracy in the solution of the one-
body problem can be conveniently achieved within
the mixed basis representation even for transition
metals.

B. Totalwnergy equation

The calculation of the total energy in its momen-
tum-space representation [Eq. (11)] involves the
stabilization of the coulomb, exchange, and cor-
relation energies as a function of the kinetic ener-
gy cutoff id"„i. Table II demonstrates the con-
vergence properties of these energies. We show
for comparison also the convergence of the local
core potential energy. This quantity does not ap-
pear in the total energy but forms a part of the
kinetic as well as the potential energy.

We find that about 1300 waves are necessary to
stabilize all three components of the screening
field to within 10 ' Ry whereas 200 more waves
are necessary to reach a similar convergences in
the core pseudopotential energy.

TABLE II. Convergence of the electrostatic, exchange, correlation, and core energies for
tungsten (in Ry) as a function of the number of Fourier components [or kinetic energy cut-off
iG(ti

i in Eq. (11)] used. Values pertain to the calculated equilibrium lattice parameter.

No. of
waves

Kinetic
energy + n(C) V„„,(G)

Gasp
~n(G)&„(G)

G
+n(G) e,(G)

G
n(G) V(„',=')(G)

G&P

1
13
19
43
55
79
87

135
141
177
201
225
249

0.0000
2.2142
4.4285
6.6427
8.8569

11.0712
13.2855
15.4997
17.7139
19.9782
22.1425
24.3567
26.5709

0.000 0
0.609 9
0.610 0
0.6110
0.612 9
0.628 6
0.628 9
0.633 0
0.635 2
0.638 9
0.640 2
0.640 2
0.640 3

-4.446 5
-4.653 7
-4.654 4
-4.656 6
-4.659 8
-4.685 2
-4.685 8
-4.695 3
-4.700 3
-4.7104
-4.714 5
-4.714 8
-4.715 2

-0.624 8
-0.635 2
-0.635 2
-0.635 4
-0.635 6
-0.636 9
-0.636 9
-0.637 5
-0.637 7
-0.638 3
-0.638 5
-0.638 5
-0.638 6

0.000 0
3.647 9
3.589 4
3.316 7
3.074 2
2.165 8
2.105 1
1.581 1
1.460 9
1.133 7
0.988 5
0.967 8
0.938 1

1289
1409
1433
1481
1505

79.7129
81.9272
84.1415
86.3557
88.5699

0.641 42
0.641 41
0.641 41
0.641 41
0.641 41

-4.71934
-4.71931
-4.71931
-4.719 31
-4.71931

-0.638 75
-0.638 75
-0.638 75
-0.638 75
-0.638 75

0.857 29
0.857 82
0.858 04
0.858 33
0.858 33
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The repulsive local potential energy nZ„[Eq.
(13)] i:s computed numerically as a, one-dimension-
al integral, with almost arbitrary accuracy. The
Ewald energy EE„„dis obtained as a simple func-
tion of the valence charge and 'unit-cell volume3

and is readily available to six significant figures.
We conclude that the calculation of the total ener-
gy [Eq. (11)]poses no practical difficulty if a suit-
ably converged band structure is given.

IV. RESULTS

A. Screening field and charge density

The self-consistent valence pseudo-charge-den-
sity of W is shown in the [110]plane in Fig. 3. The
charge is seen to be strongly unisotropic with four
equivalent maxima around each atom (at a distance
of -'a) and a more uniform metalliclike density at
the cell boundaries. The results for molybdenum
are qualitatively similar except that the relative
heights of the charge maxima are increases to
4.3 e/a. u. 3 due to the stronger d potential (Fig. 1).
The four maxima shown reflect predominantly the

d„„„, character of the occupied bands, whereas
the polarization of the charge density inwards to
these lobes reflects the admixture of d,2 character.
The nearly constant density at the cell boundaries
is due to the s-P components of the charge density.
We find very advanced s-d as wel1 as P-d hybrid-
ization in the system, as reflected by the charge
densities of individual band as well as by the small
s-d and P-d energy separations.

The spatial variations in the self-consistent
screening fields along the [111], [110], and [100]
directions is shown in Fig. 2. It is interesting to
note that while both the exchange and the correla;
tion screening potentials have an absolute mini-
mum at a distance of -'a from the atomic sites,
the Coulomb screening has an absolute maximum
Bt these points w'hereas the core potential has its
minimum at about —,'a. The extrema of the Coul-
omb, exchange and correlation potentials are
closely related to the occurrence of a high density
of d electrons at a distance of -'a from the atomic
sites (c.f. Fig. 3) whereas the minimum of the core
pseudopotential at -a is determined solely by the

3
core properties [through the variational calcula-
tion' of U, (r)J and the crystal packing [through the
lattice summation in Eq. (6)]. This results in an
effective screening of the interelectronic Coulomb
interactions by the exchange and correlation fields
over large portions of the unit cell, whereas the
electron-core interactions are screened effective-
ly only within the core radius (r & —,'a) where the
tightly bound and directional d-electrons charge
density is dominant. Note that the repulsive na-
ture of the local (f =0) pseudopotential (Fig. 2)

leads to only very small amplitudes of the valence
s-type pseudo-wave-functions at the core region,
while l& 0 character can effectively penetrate this
region because of the weaker nonlocal pseudopo-
tentials. As the double-well structure of the elec-
tron-core potential occurs away from the extrema
of the screening potentials, it gives rise to uncon-
nected "islands" in the bond charge (cf. Fig. 3).
This is in contrast with the situation encountered
in covalently bonded materials4 where the less lo-
calized core potential is effectively screened in the
bond center leading to the formation of a single
(distorted) charge-density ellipsoid along the inter-
atomic axis, constituting the covalent bond.

In a previous study ' we have demonstrated that
the classical turning points x, of the atomical/y
screened first-principles pseudopotentials consti-
tute accurate structural indices, capable of pro-
viding with an essentially exact separation of the
various stable phases of solids in both octet and
suboctet structures. These turning points (cf. Fig.
1) are strongly / dependent but spatially isotropic
and vary in a systematic way across the Periodic
Table. ' It has been unclear, however, if these
radii remain as good "quantum indices" when the
self-consistent screening in the solid, as well as
the directional anisotropy of the core potential in
the condensed phase, are taken into account. The
ea1culation of the classical turning points of the
screened potential in the solid is, however, com-
plicated by the fact that both V„"(r) and Vc,„,(r)
cannot be easily referred to a common vacuum
level due to the omission of their divergent 6 =0
component. Although these components are indiv-
idually divergent, their sum is a constant which
constitutes the correction to the work function cal-
culated from Eq. (2). This correction is of the
order of -5 eV in Mo. ~ Figure 2 shows, however,
that the classical turning points are largely insen-
sitive to such small variations in the zero of the
potential. Using the difference between the ob-
served work function and our calculated Fermi
energy as a rough measure to thjs zero energy
shift we find that the l =0 turning points for tung-
sten are 1.279+0.002 a.u. along the [111]direc-
tion, 1.214+ 0.002 a.u. along the [001]direction,
and 1.256+ 0.002 a.u. along the [110]direction,
where the error. bars refer to charges of the zero
of V~(r) + Vc,„,(r) by +5 eV. The values obtained
for bulk Mo are, respectively, 1.229 +0.001
1.217 +0.002, and 1.221 +0.002 a.u. We see that
the maximum spatial anisotropy of the turning
point as a fraction of the average values is 2.9%
for W and 0.7% in Mo. The average values of
1.25 a.u. in W and 1.22 a.u. in Mo are indeed close
to the values obtained from the atomica/ly screened
potentials'(1. 225 and 1.215 a.u. in Wand Mo, respec-
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atomic sites (whereas the muffin-tin sphere radius
is of the order of 0.4a)40. Whereas the Coulomb
screening assumes the form of a rounded rectangle .

around the atomic site [Fig. 4(a)], both the ex-
change and the correlation screening [Fig. 4(b) and

4(c), respectively] follow the general pattern of the
charge density. The correlation screening is about
an order of magnitude smaller than the exchange
screening and varies very smoothly over most of
the unit-cell space. Indeed, inclusion of V, ,(r}
into the one-body potential introduces an almost
dispersionless downwards shift of the band struc-
ture eq(k) and only those band states which have
appreciable magnitude near the core sites [where
V „(r) is nonuniform] are modified in a nonrigid
manner.

The total screening field (Fig. 4d) is seen to be
large near the nuclear site (where the Coulomb
screening is large) and drops to smaller values in
the interstitial regions .(where the exchange-cor-
relation screening is dominant). The absolute lo-
cation of the zero line cannot be inferred from this
calculation due to the omission of the zero momen-
tum component of Vc,„&. Note that the total screen-
ing potential points to the direction of the next-
nearest neighbors, rather than the nearest neigh-
bors. This introduces a higher gradient of the po-
tential along the nearest-neighbor directions, pro-
ducing larger forces along the bonds. The corp
pseudopotential is nearly spherical and hence the
total effective potential carries basically the shape
of the screening field.

B. Total energy

FIG. 4. Contour plot of the (a) Coulomb, (b) ex-
change; (c) correlation, and (d) total screening of
tungsten in the [110] plane. Full circles denote atomic
positions. Energy values are given in Ry.

tively), confirming thereby the expected insensi-
tivity of the core radii to changes in the site sym-
metry and screenirig.

Figure 4 shows the contour plots of the compo-
nents of the screening potential, as well as the
total screening in the [110]plane in tungsten. Close
to the atomic sites these potentials are spherical
(as implied by the muffin-tin approximation), how-

ever nonspherical components are already notice-
able at distances of the order of —&a from the

The band structure and tot;al energy for Mo and

W have been calculated at five values of the lattice
constant a/ao ——0.97, 0.99, 1.00, 1.01, and 1.03,
where ao is the observed value (for Moao =3.15 A

and for Wao =3.16 A). Some typical values for the
components of the total energy as well as the Four-
ier coefficients of the charge density in tungsten
are given in Table III. Qualitatively similar trends
are obtained for Mo. It is seen that the core-core
energy (Es„«) and the G =0 component of the local
core potential constitute the largest contribution to
the total energy (-65%) while the rest of the terms
are much smaller. The minimum in the total en-
ergy is obtained as a balance between the o.'Z„
term (increasing with decreasing lattice constant}
and the rest of the terms (decreasing with lowering
the lattice constant}. All the terms in E„,behave
monotomically with the lattice parameter and only

Et,& shows an extremum. In particular, one notes
that the sum of the energy eigenvalues does not
form a measure to the total energy either in mag-
nitude or in its lattice-parameter dependence.
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TABLE III. Variation in the components of the. total energy of tungsten (sum of first seven
terms in the table) with lattice parameter. Energies are given in Ry and the density Fourier
components in e/cell, where s([000]) is normalized to 6.0. V,«denotes the screening field
Vc,„~+V„+V„„.The primed sums indicate omission of the 0=0 term in V~,„& and V„,.

Quantity

QN„.(k)e,.(k)

j,k

—g s(G)V„,(G)

G

n(Q) co„)(G)
G

&(G)v, (G)4
G

AZ

E Ewald

gn(G )e,(G)

G

G

E tot

n([100j&

n(h11])

n([201])

n([200])

a/ap = 0.97

-1.665 65

-0.2.61 10

0.247 54

—3.61770

12.282 88

-22.617 94

-0.644 61

0.127 92

-16.276 58

0.593 2

-0.072 5

-0.051 5

-0.077 3

a/ap = 1.00

-1.376 59

-0.325 14

0.307 54

-3.538 99

11.21124

-21.9394

-0.638 73

0.740 97

-16.300 07

0.671 9

-0.0994

-0.0172

-0.059 9

a/ap = 1.03

-1.11305

-0.416 586

0.380 69

-3.461 15

10.260 221

-21.300 39

-0.632 89

0.973 97

-16.283 157

0.766 6

0.010 81

-0.015 9

-0.068 3

This stems directly from the fact that the vacuum
level to which the band eigenvalues should be re-
ferred, is by itself lattice-constant dependent due
to the omission of the (volume dependent) individ-
ually divergent 6 =0 terms from the Coulomb and
pseudopotential terms in Eq. (2). We also note
here that the volume variation of the pseudopoten-
tial band energies cannot be used to mimic pres-
sure effects unless the volume dependence of the
vacuum energy is explicitly calculated.

A large part of the lattice-constant variations of
the screening energy was found to originate from
the low momentum Fourier components of the
charge density. These decrease rapidly with de-
creasing the lattice constant signaling an enhanced
delocalization of the charge density as the d elec-
trons interact more strongly.

The correlation energy is seen to be sizeable
relative to the exchange energy. In the pres-
ent calculation we have incorporated its effects in
a self-consistent manner both in the one-body po-
tential and in the total-energy expression. The
correlation potential is hence allowed to modify
the variational charge density, which in turn af-
fects the noncorrelation contributions to the total
energy. It is interes ting to note that an ad- hoc
non-self-consistent treatment of this term by sim-

pie addition of a Nozieres- Pines correlation
term to the uncorrelated total energy produces rel-
atively small errors, the difference between the
latter and the self-consistently calculated correla-
tion energy being -0.323 eV in Mo and -0.373 eV
in tungsten. This is in line with the fact that in
metallic systems the correlation potential is near-
ly constant over large portions of the unit cell
(viz. , Fig. 2) and introduces only very small addi-
tional dispersion in the energy bands. We note,
however, that although the differences given above
are relatively small on the scale of the cohesive
energies of these materials (3%-5%), they are
significantly large on the scale of the relevant
structural-energy differences (e.g., fcc versus
bcc).

We have previ, ously indicated that the momentum
and spatial variation of the correlation potential
is rather different from that characteristic of the
exchange potential and hence the former cannot be
successfully reproduced by scaling the latter. At
the same time we find that the correlation ence gy
is approximately linearly correlated with the ex-
change energy over the entire range of lattice con-
stants -studied here. As the exchange and correla-
tion energies E„and E „appear in the total-ener-
gy expression as ~nE„+E „where e is the ex-
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TABLE IV. Components of the total energy of tungsten
and molybdenum at the calculated equilibrium lattice con-
stant. 20 k points are used to sample the BZ. E',"t de-
notes the spin-polarized atomic total pseudopotential
energy. All quantities are given in Ry.

Quantity

QiV)(k) a')(k)

n(G) V„,{G)
G

2 Q &(G)Vcocl(G)

—Qn{G)Vx(G)

AZy

@Ewald

g n(G) a,(G)
6
~ solid
L' tot

@atom
tot

Binding -energy

Molybdenum

-0.728 19

-0.692 55

0.61117

-3.646 66

9.284 12

-21.998 11

-0.644 33

-17.814 55

-17.323 51

0.491

Tungsten

-1.325 28

-0.354 216

0.320 706

-3.53948

11.210 52

-21.93940

-0.638 75

-16.265 907

-15.684 50

0.581

change scaling coefficient (for which we have pres-
ently adopted the value of o = 3 which yields the
correct overall coefficient of an = a), one can at-
tempt to mimic their combined effect by a aPE„
term. This yields p=O. VBVO+0.0031 for 0.97~a/
ao &1.03 in good agreement with the suggestion of
Hedin and Lundquist~o (for the electron density of
W), ne~, =0.7V.

The calculated total energies of Mo and W were
fitted to a polynomial in the lattice-constant ratio
a/ao. The equilibrium lattice parameter was found
to be 3 ~ 152 A for Mo (experimental value: 3.147 A)"
and 3.173 A for W (experimental value: 3.165 A)5'.
At this calculated lattice constant, a total-energy
calculation was repeated, using 20 k points in the
irreducible zone (rather than 14) for sampling the

wave functions. Table IV depicts the various com-
ponents of the total energy for Mo and W. The in-
dividual contributions are seen to differ quite sub-
stantially in these materials, in particular the
screening energies, the first. ;order repulsive
term nZ„and the eigenvalue sum.

As mentioned earlier, the most difficult converg-
ence problem in the total-energy calculation arises
here from the sampling of the charge density at
various points in the Brillouin, zone. From our re-
sults on the 20 k-point sampling as well as from
the other convergence tests, we infer an overall
computational error of 0.02 A in the lattice para-
meters and 0.002 Ry in the energies. Our calcu-
lation hence provides only a marginal distrinction
between the Mo and W lattice parameters.

The calculation of the cohesive energy poses an
additional difficulty associated with the computa-
tion of the atomic total energy: The latter is not
adequately described by the metallic exchange and
correlation functionals used for the solid phases. 2' 3

A straightforward calculation of the ground-state
spin-polarized (using the electron liquid exchange
and correlation functional of Ref. 54)pseudopoten-
tial atomic total energies (Ea,; in Table IV), how-
ever, produces a reasonable cohesive energy. The
spin-polarization energies obtained here for the
pseudoatoms (-4.5," and -3.50 eV for Mo and W,
respectively) are large on the scale of the binding
energies and cannot be neglected.

Table V summarizes the calculated and mea-
sured '5 '5' bulk properties of Mo and W. As the
zero-point energy is rather small in these sys-
tems (0.003 Ry) we did not apply this correction to
the calculated quantities. Our calculated values
for the equilibrium lattice constant, cohesive en-
ergy and bulk modulus are within 0.25%, 11/0,
and 12% of the experimental values, respectively.
Hence the cohesive energy calculation involves the
uncertainties associated with the atomic energy,
the disagreement between the computed and experi-
mental cohesive energies should not be taken

TABLE V. Calculated and observed bulk properties of Mo and W, A,,q, BE, and J3 denote,
respectively, lattice parameter, binding energy, and bulk modulus.

Quantity

cak @)
expt g)

BEcalc (eV)

BE "Pt (eV)

~cele {dyn/cm2)

8'"p' (dyn/cm')

Molybdenum

3.152

3.147 (Ref. 51)

6.6.8

6.82

3.05 x10&2

2.725 x10~2 (Ref. 52)

Tungsten

3.173

3.165 (Ref. 51)

7.90

8.90 (Ref. 56)

3.45 x10

3.232 x10i2 (Ref 52)
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strictly as characteristic of the accuracy of the
other bulk properties. The bu&k properties of W
were not calculated before, however Moruzzi, Jan-
ak, and Williams have performed a self-consist-
ent muffin-tin calculation of the bulk properties of-
Mo. Their results for the lattice constant, cohe-
sive energy, and bulk modulus are 3.12 A, 6.V3 eV,
and 2.5x10'2 dyn/cm, respectively, in good agree-
ment (deviations of 1%, 0.7/p, and 18%, respec-
tively) with the results of the present study.
Whereas the calculated equilibrium lattice para-
meters of Mo and W are of comparable accuracy,
our calculated cohesive energy for W is in substan-
tiaBy poorer agreement with experiment that the
corresponding results for Mo. Since the present
calculation neglects completely relativistic effects,
it is impossible to identify the microscopic origin
of this trend. Our calculated values for the bulk
moduli over estimate the observed values for Mo
and W by 12% and 7%, respectively. Other calcu-
lated values for transition and nontransition met-
als '24'5 indicate similar over estimation.

V. SUMMARY AND CONCLUSIONS

We have used an efficient method for computing
the total pseudopotential crystal energy in a mo-
mentum- space representation. The method avoids
any shape approximation to the variational charge
density (e.g. , muffin-tin), is fully self-consistent
and replaces all the multidimensional and multi-
center integrationswharacteristic of the real-space
representations by simple single summations in
momentum space. The convergence characteris-
tics of this method have been carefully examined
for two transition metals. This poses a stringent
test on the accuracy of the method as these sys-
tems are characterized by highly localized states
with pronounced pseudopotential nonlocality. A

mixed basis representation for the crystalline wave
function was shown to be sufficiently flexible to
overcome all the momentum-space convergence
difficulties to within a few mRy accuracy. The
pseudopotentials used in this work do not involve
any fitting to band structure or atomic term value
data. In turn, they are obtained by a direct inver-
sion of the density-functional all-electron atomic
eigenvalue problem. The excellent agreement ob-
tained here with the observed bulk properties of
Mo and W together with the previously established
quality of the band structure and charge density of
transition metals '~ and semiconductors, ' provide
strong support for the quality of these first-prin-
ciples pseudopotentials.

The present work has completely neglected rela-
tivistic effects on the total energy and bulk proper-
ties. The larger errors involved in the W binding
energy might be indicative of this approximation.

The underlying approximation of the present pseu-
dopotential approach is the assumption of a frozen
core. In developing the core pseudopotential, "we
assume that the dynamic effect of the core elec-
trons on the valence field can be replaced by a
static potential derived from the atomic ground-
state core wave functions. As a result, we are
able to transform the all-electron problem with its
associated large total energy (e.g. , -30, 551 Ry
for W of which the observed cohesive energy forms
only 0.002%) to a much simpler pseudopotential
problem having a small valence total energy (e.g. ,
-16.3 Ry in W, of which the cohesive energy forms
4%}. Although this increase of the ratio between
the cohesive energy and the total energy by three
orders of magnitude constitutes an attractive fea-
ture of this approach (particularly for application
to complex many-electron systems such as sur-
faces and transition-metaL compounds), the fro-
zen-core approximation should be treated with
care. A recent KKR (Korringa-Kohn-Rostoker} .

study5' on Mo has indicated that whereas all core
eigenvalues increase by an approximately constant
amount of 0.25 eV/electron when the crystal phase
changes from fcc to bcc, the 4P core kinetic ener-
gy shifts by 0.36 eV/electron while all other core
kinetic energies are approximately unchanged.
This change of phase is similarly accompanied by
small energy lowering in the valence 5s and 5P
states wh&le the 4d state stabilizes by as much as
1.18 eV. In the pseudopotential formalism all the
structurally induced energetic changes are restric-
ted to the valence states. The present study on
Mo and W indicates that the changes in the core and
valence states in going from the atom to the solid
are successfully reproduced by the dynamic re-
sponse of tPe valence states alone in the presence
of a ground-state static core potential. As the
core orthogonality constraint is lifted in the pseu-
dopotential representation, the valence states are
redistributed in the solid in a dd'ferent manner than
in the all-electron representation, leading in the
present case to substantial modifications in the 4d
as well as in the 5s and 5P orbital and kinetic en-
ergies. Clearly, however, as the "united atom
limit does not exist in the pseudopotential model,
one expects that the replacement of the effects of
the core electrons by a ground state derived static
potential will fail at sufficiently small interatomic
distances. At present, it is difficult to assess the
extent of the structurally induced core perturba-
tions which will invalidate the pseudopotential rep-

resentationn.
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x d„„(k+6)d„r(k+6), (A1)

&C„„(k,r) lk+6) =T (G)d„(k+6}, (A2)

(k+G lk+G') =6, , (A3)

where T (6) and d~ (k+6) are given by Eq. (17)
and. the (analytical) Fourier transform of Eq. (15).

(ii) kinetic:

&c „(k,r) I
--,'v'

I
4 ~(k, r})

T (Q)T~(Q) d (k+ 6)d„q (k+ 6 ) (k+ 6),

(A4}

&c„~(k, r) I
--, 'v

I
k+6) =T~(6)d„~ (k+G)(k+Q)2,

(A5)

&k+C I%+6') =(k+6) 6;;, . (A6)

(iii) potential: If W„» denotes the total screen-
ed potential

8'L, N, —VL, NL+ va, + v„+v

where VL, » denotes either the local (L) or the
nonlocal (NL) pseudopotential, the matrix elements
are given as

&e„.(k, r) IWI e~(k, r))

Q T (G)TB (6')d~ (k+G)d„8(k+6')
6 Gr

«k+ 6
I
IV Ik+6'&,

where

&k+6 I
IVlk+6'& = &k+6

I
Vz+ Ve-i+ V + V--

(A8)

x lk+c'&6;;, + &k+c IV„„lk+6'&.

(A9)

APPENDIX A

The plane wave representation Eqs. (14}—(18) of
the mixed basis wave function makes the evaluation
of the Hamiltonian matrix element simple. " If
C~ (k, r) denotes an LCAO type Bloeh function [Eq.
(16}]and lk+6) denotes a plane-wave Bloch func-
tion, the elements are as follows:

(i) overlap:

&C„(k,r) IC„r(k, r)) = Q T (G)Tq(G)

Hence for the local component the double sum in
Eq. (A8) reduces to a single sum. This requires
the knowledge of the screened local potential in
momentum space

V.„,.(Q) =V.(Q}+V...,(Q)+V.(Q)+V „(Q).
I (A10)

The first term is calculated by a one-dimensional
radial integration of the single-site potential Uz, (r)
[Eq. (12)] combined with a structure factor: Vz, (Q)
=Uz(Q}S(Q) whereas the rest of the terms in Eq.
(A10) are calculated as indicated in the text [Eqs.
(20)-(22)]. The off-diagonal element &k+G

I VN„ lk
+6') is calculated by decomposing the plane waves
into spherical Bessel functions and Legendre poly-
nomials P, (eos8oo,} and operating on the latter with
the angular-momentum projection operator P, [Eq.
(12)],

—U lj(IQ' I)&.

Here j,(Qr} denotes the spherical Bessel function
and U, (r) and Uz, (r) are the atomic nonlocal and
local (I =0) pseudopotentials [Eqs. (6) and (12)].
The elements Fq(Q~ Q') are calculated by one-di-
mensional numerical integration.

The matrix element of % within the localized-
plane-wave states are

(A12)

&C".(k r) IWlk+6&=Q T.(C' )d..
Gr

x(k+6 )&k+6 1m Ik+6'»

(A13)

whereas the plane-wave-plane-wave elements are
simply

&k+6 lw lk+6 &.

If we denote by G 3',„ the largest momentum ap-
pearing in the crystal wave function [cf. Eq. (18)],
a fully converged representation of the Hamiltonian
matrix requires a maximal cut-off of IG '„-6' ',„I

2IG'~a„l. In practice, however, somwhat smaller
cutoff momenta (=1.5 IG 3'„I) are usually sufficient
to obtain well converged (-0.03 eV} energy eigen-
values.

&k+C
I
V„„lk+6')=—„gS.(6- C') g (2I+I)

fM l=$

&&P,(cos8oo,)F,(k+6, k+G'),

(A11)
where

F (Q Q') =&j (IQ I
}IU ( }
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