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A Monte Carlo method is used to compute the properties of the fluid and crystal phases of
the Lennard-Jones model of “He at absolute zero. The method yields exact results subject only
to statistical sampling errors. The energy, structure factor, and momentum distribution are cal-
culated at several densities in both phases. In addition, in the crystal phase we have carried out
a detailed study of the single-particle distribution function. The densities at which melting and
freezing occurs are determined. In both phases perturbative estimates of the three-body
Axilrod-Teller potential are computed. Overall the agreement with experiment is good to ex-
cellent. However there are significant discrepancies between the computed and experimental
equations of state. We believe this is due to the inadequacy of the Lennard-Jones potential.

I. INTRODUCTION

The properties of the fluid and crystal states of
“He, at absolute zero, have been extensively studied
by numerical methods for more than ten years. This
has nearly always been done by variational methods
using a trial function consisting of a product of two-
body correlation functions for the fluid phase. The
same kind of product times a product of one-body
functions has been used for the crystal phase. The
evaluation of the many-body integrals that arise in
the variational computations has been carried out ei-
ther by Monte Carlo integration or by hypernetted-
chain (HNC) methods.! “He is the only simple, bo-
son system that can be readily studied in the labora-
tory and it therefore is interesting in its own right.
Furthermore, simplified models of condensed helium
have recently become benchmark problems in the
general study of quantum many-body systems.?
Many theorists now take the view that a method, for
example the HNC integral equation, is subjected to
an important and stringent test when it is applied to
fluid *He and “He at absolute zero.

At the same time, it has become clear that while
the simple product trial function is a valuable guide
to the properties of such systems it is sufficiently in
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error, in calculations of the energy and structure, to
preclude quantitative comparison with experiment
and critical evaluation of the He-He interatomic po-
tential. In addition, understanding the source of the
deficiencies of the product form is of considerable in-
terest and, we believe, is likely to improve in a sub-
stantial way ones ability .to treat other quantum sys-
tems, notably *He.

The error resulting from the use of product trial
functions in the calculation of the energy of the fluid
states of “He was first estimated by Kalos.> He found
an energy 0.7 °K deeper than the value of —6 °K ob-
tained from variational calculations."*> This result
was confirmed by additional numerical studies by
Kalos, Levesque, and VerletS; the latter will be
henceforth referred to as KLV. Recently some light
has been cast upon this discrepancy by two studies®’
in which explicit three-body correlations were intro-
duced into trial functions. Approximate evaluation
of the change in the variational energy. was in fair
agreement with the 0.7 °K per particle, found by
Kalos® and by KLV. These results strongly suggest
that the major inadequacy in the usual trial functions
is the absence of explicit three-body correlations.

For these reasons we decided that it was timely to
do a careful study of the properties of the fluid and
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crystal phases of *He at zero temperature. We use
the Green’s-function Monte Carlo method to in-
tegrate numerically the Schrodinger equation and ob-
tain exact energy values for a finite system with
periodic boundary conditions. The results of Kalos?
were computed for 32 particles only, while those of
KLV were derived from computations on a hard-
sphere system by using a perturbation method. One
motive for this work was to assess the validity of the
KLYV perturbation estimates. Another, as suggested
above, was to provide reliable numerical results to
which other, more approximate, methods could be
compared. Since it has been used in nearly all other
studies, our calculations were carried out with the
Lennard-Jones potential having the de Boer—Michels
parameters,?

V(r) =4el(a/r)*—(a/N,
€=10.22 °K , (1.1)
o=2.556 A .

The earlier work™ % had suggested that this potential
was in better agreement with experimental energy
and structure than had been thought previously. We
wished to study this and other comparisons with ex-
periment more carefully. This will help determine
which, if any, alternative potentials® are better than
the original Lennard-Jones. In addition we were in-
terested in assessing whether the properties predicted
by the Lennard-Jones potential were accurate enough
to justify its use in calculating other properties, for
example the surface energy and structure of liquid
and crystal helium.

Our calculations were carried out using the
Green’s-function Monte Carlo method. Henceforth
we shall refer to this as the GFMC method. This
method makes it possible to compute exactly the en-
ergy and other properties of a Bose system, subject to
statistical sampling errors. Section II of this paper
gives a brief summary of the method. A more
thorough treatment of the GFMC method has been
given by Ceperley and Kalos'® along with a
comprehensive review of Monte Carlo calculations in
the quantum many-body problem, (see also Refs. 3
and 6). Here we give special attention to the techni-
cal questions that are most important for the present
calculations, especially the ever-vexing problems of
assuring reliable results and of estimating their er-
rors.

Section III presents our results for the fluid phase
at absolute zero, including the calculated equation of
state, structure function, and momentum density at
densities ranging from 0.9 to 1.3 times the experi-
mental equilibrium density. The effect on the energy
of the Axilrod-Teller three-body potential'! is es-
timated as well. These data are compared with the
earlier variational, the hard-sphere perturbation

results, and, where possible, with experiment.

A corresponding presentation of the properties of
the face-centered-cubic crystal phase is given in Sec.
IV with densities ranging from the melting density to
approximately 1.25 times that density. Results for
metastable fcc crystals are also given below the freez-
ing density. In addition to data on the equation of
state and radial distribution function, we discuss the
distribution of single-particle displacements from lat-
tice sites and the melting-freezing transition. We
thereby draw some conclusions about the nature of
the crystalline ground state.

Section V is devoted to a summary and our view of
the prospectives for future work on the numerical
study of helium stystem along with some comments
on various two-body potentials that have been pro-
posed for the He-He interaction.

II. COMPUTATIONAL METHODS

The basic aim of our paper is to give numerical
results for the lowest energy eigenvalues of the Ham-
iltonian N

N
X =—(#2m) 3;V}+ 3 V(ry , 2.
i=1 i<j
as a function of the density of the system and for
both fluid and crystal states. Here V(r) is the
Lennard-Jones potential quoted in the Introduction
[Eq. (1.1)]. Various expectations with respect to the
ground-state eigenfunction will be discussed as well.
One such expectation is the perturbative effect of the
Axilrod-Teller three-body potential which is discussed
in Appendix A.

In this section we give a summary of the computa-
tional methods, emphasizing our assessments of the
reliability, and the numerical and statistical accuracy
of our results. In general the errors themselves are
quoted along with results in Secs. III and IV.

A. Variational methods

We stated in the Introduction that most of the nu-
merical studies of the properties of quantum fluids at
absolute zero have been carried out by variational
methods. In such calculations, a trial function for N
particles,

Wr(ryry, =) =¢r(R)
is assumed to be
vr(R) =TI sCp . 2.2)

i<y

where fis a function whose form is arbitrary but with
parameters that may be varied.
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For crystal phases, the commonly used trial func-
tion is i

Yr(R) =1 fG) I 6Crm —sm) . 2.3)

i<j m

where the s,, are the lattice sites appropriate to the -
crystal order being studied. Although Eq. (2.3) is not
symmetric as required for a Bose system, it has been
shown!? that the resulting error in the energy is very
small.

Variational estimates of the energy are obtained
from the equation

* dR
E bf.ﬁ'r_ ) (2.4)

" T lurlar

The true ground-state eigenvalue is £y =< E7. The
functional form and parameters used in fand ¢ are
varied so as to minimize the energy. Expectation
values are calculated with respect to that §» which
yields the lowest energy.

Many computations of this type have been carried
out by using the Metropolis method! 1% 13 to sample
|g7(R)|? and thus form Monte Carlo estimates of Er
and of other expectation values. As discussed below,
trial functions used in variational studies published
by other researchers are used as "importance func-
tions" to accelerate the convergence of the iterative
scheme (GFMC) we use to solve the Schrodinger
equation. Populations of points {R} drawn from the
probability density |¢(R)|? are suitable for starting
such iterations. Lastly, variational expectation values
are essential in the extrapolation procedure discussed
below which is used to calculate ground-state proper-
ties from the GFMC configurations. The trial func-
tions used for extrapolations are the same as those
used to accelerate the convergence. For these rea-
sons we have repeated variational calculations
described in the literature. Further discussion includ-
ing an enumeration of the particular forms of ¢
which were used, is given in Sec. II B.

B. Green’s-function Monte Carlo method (GFMC)

It is possible to devise a number of schemes which
integrate the Schrodinger equation by Monte Carlo
methods. All successful methods are fundamentally
similar and rest upon the analogy between the wave
equation for the ground state and 'diffusion equa-
tions. The particular algorithm which has thus far
proved most successful in treating many-body prob-
lems uses the Green’s function for the operator
IC+ V, (for constant ¥)'* to put the Schrodinger
equation in integral form. The required Green’s
function is the solution of a diffusion problem and
hence is also the expectation of the density generated
by any of a class of random walks. Monte Carlo

methods may therefore be used to sample the
Green’s function. At the same time a related Monte
Carlo process carries out the integrations that are re-
quired in the iteration of the integral equation
equivalent to Schrodinger’s equation. This Green’s-
function Monte Carlo method makes it possible to
compute the exact energy and other properties of a
Bose system, subject to statistical sampling errors.

More specifically we seek the lowest-energy solu-
tion Yo and its eigenvalue Ey of the equation

y=Ey. 2.5)
Let G(R,R") satisfy
(X +Vy) G(R,R)=8(R—R" (2.6)

with the same boundary conditions as are appropriate
for Yo(R). Then Eq. (2.6) is used to put Eq. (2.5) in
integral form

0o(R) = (Eo+ Vo) [ GRRIW(RY dR" . 2.7)

Now the ground-state wave function for a Bose sys-
tem and G (R,R’') are both non-negative; yo(R) and
useful approximations to it may be treated as proba-
bility density functions. The Green’s function

G (R,R") may be regarded as a density function for
choosing a point R conditional on R'. Let a popula-
tion of points {R'} be drawn from yP(R") =¢r(R")
and new points {R} be sampled from

(E,+Vy) G(R,R") for each R', where E, is a trial
eigenvalue. Then the expected density, averaged
over the population {R'}, of new points in a neigh-
borhood of R is

WP (R) = (E+V) f G(R,RYYV(R)dR'. (2.8)

Since a population of new points is produced (we call
this a new generation) it is clearly possible to iterate
the process as many times as may be required, lead-
ing to the recurrence relationship

WTOR) =(E + Vo) [ GRR)

xy™(R") dR" . .9

Since we are concerned with a system of N particles
with periodic boundary conditions, the Hamiltonian
has a discrete spectrum and the iteration described by
Eq. (2.9) converges to the ground-state wave func-
tion Po(R).

A crucial aspect of the method is the ability to
sample G(R,R'). To describe fully the algorithm we
use would take us too far afield. A comprehensive
treatment of this and other aspects of the Green’s-
function Monte Carlo method is given in Ref. 10.

One technical matter with which we must concern
ourselves is an importance sampling transformation
whereby the convergence and efficiency .of the
GFMC may be improved. In this variant of the basic
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Monte Carlo procedure, an approximation to the ex-
act ground-state wave function is introduced into the
iteration. The trial functions, yr(R), used in varia-

J

Yr(R)G(R,R")
yr(R)

It is natural to let the initial distribution from which

- points are drawn to start the iteration be |¢7(R)|?,
the same distribution sampled in carrying out a varia-
tional calculation. In addition the modified kernel
Ur(R)G(R,R")/Y7r(R") must be sampled. How this
is done and the advantages'of importance sampling
are also described in Ref. 10. Here we note only that
the asymptotic distribution is now ¢7(R)yo(R) and
that as ¢7 approaches Yo(R) the energy may be in-
ferred with no statistical error.

We now discuss a number of technical points
which are pertinent; in particular the estimation of
the energy and other observables from a combination
of variational and GFMC results. We summarize
also the errors involved and how these may be es-
timated or bounded.

Ur(R)YV(R) = (E+Vy)

C. Estimation of the ground-state energy

Because the exact ground-state energy is not
known in advance, a trial energy is used in Eq. (2.9).
If the trial eigenvalue E, is larger than E,, then the
functions ¢ will grow in normalization with n,
which implies a growth of the average population of
configurations with generations. If E, is less than E,
the population of configurations decreases. A
"growth" estimator for the ground-state energy may
be calculated from the change in population size,

EAV) [ 4RGP (R) dR
E0+ Vo =
fwT(R)¢‘"+"(R) dR

=(EAVON,/Nywr, @2.11)

where N, is the number of configurations in the nth
generation. The estimator in Eq. (2.11) is biased
even after convergence since the expected value of a
quotient is not the quotient of the expected values.
An asymptotically unbiased estimator for the energy
can be devised by defining a "mixed expectation" for
an operator F,

Fyr(R)dR
<F)M=f'llo(R) br(R) R .
f%(R)wr(R)dR
then the mixed expectation for the energy is
3 d.
Ey= J su®r3e4:k) ar : (2.13)

) fwo(R)w(R) dR

[yr(RNY™ (RN dR' .

tional studies are appropriate as such importance
functions. The transformation is simply to multiply
Eq. (2.9) by ¢7(R) to obtain

(2.10)

.
We call this a variational estimator; except for sam-
pling and convergence errors it gives the exact energy
on the average. As yr(R) approaches yo(R) the es-
timator of Eq. (2.13) gives precisely Ey, independent
of the values of R which occur in the random walk so _
that the Monte Carlo error is zero. The statistical er-
ror in the "growth estimator" is larger than that in the
"variational estimator"; we therefore always report the
latter. The growth estimator is however used to test
convergence and numerical consistency and to-bound
possible bias.

There are several sources of error in the results we
report. Each determination of the ground-state ener-
gy by the GFMC method was iterated for 300—500
generations. Various estimates of the energy were
used to determine when ¢ had converged to . If
one substitutes for ¢ in Eq. (2.10) an expansion in
Yk, the eigenfunctions of I3C+ V), it is easy to infer
that the coefficient of yx decays as
[(Eg+Vo)/(Exk+Vp)]" in niterations. Thus the con-
vergence to Y is asymptotically geometric and is fas-
ter when ¥ is made as small as practical. In our cal-
culations the value of ¥, was set to +30 °K per parti-
cle and we observed that upon starting with confi-
gurations from a variational Monte Carlo calculation,
convergence required about 30 generations. Accord-
ingly, about 100 generations were discarded before
performing any averages. We have deduced ‘that the
bias contributed to the ground-state energy by this
procedure is approximately 0.015 °K per particle
which is less than other errors.

TABLE 1. Size dependence of the energy (E;). The
first column gives the density in reduced units, E, is in de-
grees Kelvin per particle.

pa’ " Phase N E,

0.328 liquid 32 —6.74 +0.04
64 —6.66 +0.04

‘ 128 —6.64 £0.02

0.365 liquid 32 . —6.84+0.03
64 —6.83 £0.05

0.468 crystal 32 —5.41 £0.07

108 ~5.52£0.05
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An unavoidable fact about any Monte Carlo pro-
cedure is that one samples only a finite number of
points in the random walk. In addition, in the
GFMC method, the random walk tends to be corre-
lated over about 20 generations. If a fluctuation oc-
curs, its effect is likely to persist for a part of the cal-
culation. We have estimated the standard error asso-
ciated with the energy by dividing a run into six or
more blocks with 30—40 generations in each block
and computed the error from the energies of each
block. This process assumed that the blocks are sta-
tistically independent which is not strictly true if the
random walk is correlated. The error calculation was
tested by discarding every other block and recomput-
ing the error; the value increased by roughly 2!/ as if
the blocks were independent. We believe, therefore,
that our estimates of the statistical errors are
representative of the actual errors.

We have also evaluated the dependence of the en-
ergy calculation on the size of the system studied.
Table I summarizes the results of GFMC calculations
on liquid *He at a density of 0.328307> for N =32,
64, and 128 particles and at a density of 0.36480 3
for N =32 and 64 particles. Except for the energy
calculated with N =32 at p=0.328303(=0.9p0)
there is no indication of any size dependence; all oth-
er results agree within one standard error. The effect

u(r)=(b/r)expl—(r/re)?1 — 4 (E(X—r) +E(r—Nexp [— (r—=\)%/ A} + Cexp [ (r—d)?/ DY ,

seen at the lowest density may be associated with a
Van der Waals loop for the metastable fluid phase.
We conclude that the uncertainty owing to the use of
64 particles in fluid calculations is less than about
0.04 °K:. Table I also shows a comparison of energies
from GFMC calculations of crystalline *He at
p=0.46807 for N =32 and 108 particles. The ener-
gies agree within their statistical errors.!* The error
in using 108 body results is less than 0.05 °K.

By changing the importance function Y used in
Eq. (2.10), the accuracy of the computational method
is subjected to a stringent test. In principle, the com-
puted ground-state energy and all other properties
should be unaffected by a change in the importance
function, and this is generally what we observe. The
importance function was varied in several ways; for
example, with a McMillan! type function

¢T=Hf(f’y) ,

i<j

u(r) ==Inf(r) =5 (/r)*, (2.14)

GFMC calculations were done with both the optimal
variational parameter b and a nonoptimum value.
The importance function was changed completely by
using pseudopotentials of a form proposed by de
Michelis and Reatto*;

(2.15)

TABLE II. Dependence of various quantities on the importance function. N gives the number of particles used in the simu-
lation, b and C are parameters in the importance function defined in the text. All energies are in degrees Kelvin per particle,
lengths are in units of o, and ny is the fraction of particles in the zero-momentum state.

Liquid

pa’ N Importance Function b E, ) &(r) at peak ng
0.3648 64 McMillan 1.20 -6.81 £0.07 —20.35+0.10 1.323 £0.020 s
0.3648 64 McMillan 1.161 —6.83+0.05 —20.48 +0.15 1.326 +0.016  0.113 £0.005
0.3648 64 Reatto o —6.65£0.04 —20.28 £0.23 1.337 £0.015  0.116 £0.001
0.3648 64 Reatto 8 -6.85+0.02 —20.44 +0.18 1.339£0.018 0.111 £0.005

Crystal

po’ N Importance Function b C E, V) g(r) at peak (r?)
0.526 108 McMillan 1.096 6.5 —-4.74 £0.03  31.87 £0.10 1.596 £0.018 0.1272 +0.0024
0.526 lQ8 McMillan 1.140 5.0 —4.80 £0.06 32.15+0.28 1.609 £0.033 0.1225 +0.0051
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where E(x) is the step function. The expression in
Eq. (2.15) has a repulsive Gaussian term which was
introduced to simulate the effects of three-particle
terms in the wave function. Calculations were per-
formed employing two sets of the Reatto parameters.
The first, called « in Ref. 4, gave the minimum ener-
g7 of —5.96 +0.2°K in their variational calculations

The second, B, gave the best structure factor S (k)
among the sets studied and an energy of
—5.65 +0.2°K. The parameters were

A=06, c=0.25
A=125, d=20¢t8.
A=1.15 D=06

All crystal calculations used a yr of the form (2.3)
with McMillan’s pseudopotential, Eq. (2.14), and

¢(r) =exp (—3Ar?) . , 2.16)

The parameters b and A were taken from the work of
Hansen and Levesque.!® To study the effect of
changing ¢ for GFMC calculations in the crystal
state we changed both b and 4 from their optimal
values. The results of all such changes of the impor-
tance function are summarized in Table II. It is clear
from this table that the properties of the ground state
are insensitive within their statistical errors to reason-
able variations of the form of ¢7. However, the er-
ror and the rate of convergence are affected by the
choice of importance function. For example, the
GFMC calculation employing the Reatto 8 function
converged faster than that using the McMillan func-
tion and showed a variance for the energy about
seven times smaller for given computing time. The
energy obtained with the Reatto « importance func-
tion appears to be a significant exception to the in-
sensitivity of results to Y7, lying outside the errors of
all other results. Two comments are appropriate.
The series of calculations upon which the result is
based was rather short, being abandoned when it was
clear that the importance function was a poor one.
Thus, although it appeared to converge, more com-
putation would have been required to be sure.
Second, our own variational calculation gave an ener-
gy of —5.25 +0.1 °K (in contradiction to the pub-
lished value of Ref. 4), indicating that this function is
not a "reasonable” choice of Y. It is possible, by a
very poor choice of importance function and short
runs, to obtain misleading results.

Another source of error lies in the calculation of
V(r) and derivatives of u(r) from tables rather than
from the explicit functional forms. The effect of this
was examined by comparing the energy calculated
from a set of configurations using the tables and
separately the continuous functions. Another meas-

ure of this error is the difference between "growth"
estimates of the energy which use no tables and
"variational" estimates which do. From these we esti-
mate the error owing to the use of tables in the ener-
gy to be much less than 0.01 °K.

D. Other ground-state properties

In addition to the ground-state energy, both the
variational and the GFMC methods can yield much"
other information. It is a great advantage of comput-
er simulations that one can gather information about
many microscopic properties from a single calcula-
tion. Of primary interest in liquids is the radial distri-
bution function

g(¥)=(/Np) 2 (1, -1, -T)) 2.17)
i)
and its Fourier transform, the structure factor

S@ 1=/ [areFTe(® -11.  @19)

There has been continuing interest in » (E), the
momentum density of liquid “He to determine

- whether a momentum condensate is present in the

ground state. The Fourier transform of n (k) is
p1(F) = [ ak e ()
= (Yo(Ti+T) /o(T)) (2.19)

and the fraction of particles in the zero-momentum
state is given by!’ ’

no= 11_1:n pl(f) . ‘ (220)

In the solid, the correlation function of most in-
terest is the one-body density for displacements from
a lattice site,

p(T) = (3(F)—5,—1)) .

The degree of isotropy of p(T) can be investigated by
observing the distribution of the displacements in
various directions from the lattice site.

The above quantities are somewhat more difficult
to obtain from the Monte Carlo calculation than the
ground-state energy and thus the errors are more dif-

ficult to bound. Here, also, changing the importance

function acts as a strong check on the errors. Table
II and additional data given below show that the phy-
sical properties we have discussed are indeed in-
dependent of the importance function.

As was described earlier, the importance sampled
GFMC calculation yields points chosen from the .
asymptotic distribution ¢r¢g. Any average computed
from the GFMC configurations is a "mixed" average
[cf. Eq. (2.12)]; however, we are really interested in
ground-state expectation values taken with respect to
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Po. One method of extracting the exact result is to
assume that the trial function ¢ is close to the
ground-state wave function,

Yr=yo+3y .

Then if one computes any expectation from the vari-
ational and the GFMC "mixed" wave functions, a
linear extrapolation may be made, defining

(FYex=2(F)u—(F)r . (2.21)

Here (F) is defined by Eq. (2.12) and (F)r is the
expectation value computed with ¢7. The extrapola-
tion of Eq. (2.21) will give the ground-state property
(F) to order 82. An example of extrapolation is
shown in Figs. 1 and 2 for S(k) and n (k) with
several different trial functions. The structure of the
first peak of S (k) is considerably sharpened by the
extrapolation process. Also, the different trial func-
tions give values for S (k) which are in agreement
after extrapolation, although the "mixed" estimates
are different. The results for n (k) in Fig. 2 were all
obtained by Fourier transforming a smoothed p,(r)
obtained from Eq. (2.19). This procedure is not reli-
able for k < o~! because of the noise in p,(r) at
large . The standard error at k =0.560! is about
25%. For k > o~! the standard errors, estimated
from fluctuations in sequential runs, increase from
about 3% to about 15% at k =S50 ~!. The differences

0.8r
S(k)

0.6}

0.4+

0.2+

FIG. 1. Extrapolation of the structure function S (k).
The solid curve gives S (k) for the McMillan function calcu-
lated variationally. The dashed curve gives the results for
the Reatto 8 function calculation variationally. The curve
composed of long dashes and the dotted curve give the
corresponding results extrapolated from the GFMC results.

between the results obtained from different impor-
tance functions are not statistically significant. The
discrepancy at k =1.1207!is less than two standard er-
rors, and values at small k are sensitive to slowly de-
caying density fluctuations. For K in the reciprocal
lattice of the periodicity box n (k) may be obtained
from a mixed expectation of

eik-rd‘r(-ﬂ, ..
ur(f, - T

Such data, having somewhat larger errors than those
quoted above, were obtained and are discussed in
Sec. III C. They agree within statistics with the n (k)
obtained by Fourier transform.

We performed two GFMC calculations for a crystal
at a density of p =0.526o-"3\ in which the importance
parameters, b and A4, were different. The change in
the variational results was significant, producing a
16% shift in the mean square displacement from lat-
tice sites. Nevertheless the GFMC method should be
able to converge to the same answer; the agreement
shown in Table II confirms the consistency of our
calculations and the validity of the extrapolation
method for these expectations.

An alternative method of computing the exact
value of any property is to use weights derived from
the GFMC calculation as explained in Ref. 10. The
advantage of this method is that no assumption of

LA, TN

107 kn(k)

FIG. 2. Momentum distribution function obtained by -
extrapolation of the GFMC results. The solid curve was ob-
tained using the McMillan function for importance sampling
the dashed curve from the Reatto 8 function. The differ-
ences between the two curves is not satistically significant.
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linear extrapolation is made. These weights can be
obtained from estimates of the asymptotic population
size resulting from different configurations. In prac-
tice one can only determine approximate weights
after some finite number of generations and the sta-
tistical error of the weight grows rapidly with that
number. In Fig. 3 we show a series of graphs for
g(r) obtained at po*=0.3283 and N =128. The suc-
cession includes the variational g (r), the "mixed"
g(r), which effectively uses weights obtained after
‘zero iterations, values obtained with 20 generation
weights, and the "extrapolated" g(r). The last is seen
to be a plausible extrapolation of the others. In other
comparisons, values obtained by "extrapolation" are
consistent within statistical errors with those obtained
from weights. In general the former are easier to
compute and have smaller errors so that we will al-
ways report such results below.

III. PROPERTIES OF THE FLUID PHASE

In this section we present all the properties we
have computed for the fluid phase. These include
the equation of state, pressure, compressibility, struc-
ture factor, and momentum distribution. Wherever
possible these results are compared with experimental
data. Since all previous numerical studies of the

Lennard-Jones system have been based on the varia-
tional principle, we have made extensive comparisons
between this work and our own. In addition, we
have compared our results with the perturbative
results obtained by KLV.¢

A. Equation of state in
the fluid phase

Energy eigenvalues were computed at five densities
in the fluid phase. The eigenvalues we obtained were
then corrected by adding to them a perturbation esti-
mate of the contribution from the Axilrod-Teller
three-body potential'! as given in Eq. (A1) of Appen-
dix A. Our estimates are 6—10% larger than those
obtained by Murphy and Barker!! who used a varia-
tional Jastrow function to compute an estimate of
(V3). The most likely cause of this is that our confi-
gurations contain explicit three-body correlations
which are not present in the configurations generated
by a Jastrow wave function. Our results for (V;) are
always positive and therefore raise our estimates of
the energy. .

Another correction to the energy arises from the
long-range correlations produced by the zero-point
motion of the phonons. Our method is briefly
described in Appendix B. At all densities in the fluid

T

0.6

04r

o2r

2.0 24 28 32 36

FIG. 3. Radial distribution function g(r) computed by different methods. The dashed curve is the variational g (r), the
dotted curve is the "mixed" g(r), the dashed and dotted curve is computed from 20 generation weights and the solid curve is

obtained by the extrapolation procedure explained in the text.
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phase we find that they are completely negligible, be-
ing less than 0.001 °K per particle at po.” This conclu-
sion contradicts that of KLV®; the present result is
correct as discussed in Appendix B.

In Table III we display our results for the energy at
five densities from 0.9 to 1.343 py, where py is the
experimental equilibrium density.

Column two E, gives the GFMC value for the
eigenvalue at the given density, (V3) gives the per-
turbation estimate of the three-body potential, and E
is our value for the total energy. We have estimated
our errors in £, in the way described in Sec. II C and
find them to be less than one percent.

These values for E, are independent of the impor-
tance function used in the GFMC calculation; see
Sec. I C. We also find that our results are indepen-
dent of the size of the system simulated. We there-
fore have considerable confidence in the values we
have found for £, and E.

The tabulated values of the energy may be com-
pared with the experimental values.!* We see from
Table III that from 1.0 to 1.2 po there is a roughly
constant discrepancy. Our energies are approximately
0.45 °K per particle higher than the experimental
values. Since our numerical errors are small and the
three-body potential yielded only a small correction to
E,, we believe that the source of this discrepancy
must be the Lennard-Jones potential. We will dis-
cuss this point in more detail in Sec. V.

We have fitted our five energies E to a cubic poly-
nomial,

2

+C

— 3
P—Po

E

L _4+B
N

L 2} 3.1)

Po

]

The parameters were found to have the values
A=-—6.688 £0.016, B=14.5+25,
C=-12%78, pp=0.3646 £0.0030 .

The errors quoted were determined from the errors
in the energies. Note, however, that statistical fluc-
tuations in the parameters are not independent. Er-
rors in other functions which depend upon 4, B, C,
and po were computed taking account of the correla-
tions.

Within the estimated error, py is identical with the
experimental value py=0.36480 2. The ground-state
energy per particle is thus equal to our value of E at
po. It is gratifying that the GFMC method yields
such a good value for the equilibrium density, All
previous variational work has produced equilibrium
densities which were too low by at least 10%. Figure
4 shows our GFMC results and the experimental
values for the energy. The smooth curve through
our results is obtained from Eq. (3.1).

From this formula we have computed the pressure
p (p) and velocity of sound C(p) as a function of the
density

- 2
p() =3 — {2128 (-5
3 |po
+[3€ (p—aoV], (G2
Po

mCp) =2 — £ }rp 30 i6c
8% po| P02

xlz

A summary of our results for p and Cis given in
Table IV along with experimental data'® and they are
shown graphically in Figs. 5 and 6. At 1.1 pgand 1.2
po the discrepancies in p are 3 and 12%, respectively.
The computed values of the velocity of sound are of
comparable quality: at pg, Cis but 3% off the experi-
ment while at 1.2 p, the disagreement is 13%. The

2
L1 -3

P
Po P

Po

+1

]. 3.3)

TABLE III. Energies in the fluid phase. The first column gives the density in reduced units,
E, is the eigenvalue computed using the Lennard-Jones potential, (V3) is the perturbaﬁon estimate
of V3, E=E,;+ (V3), and E,,, is the experimental value of the energy taken from Ref. 18. All en-
ergies are in degrees Kelvin per particle. The experimental value for the equilibrium density is

given by pa? =0.3648.

po ' E, E Eexp
0.328 —6.662 +0.035 0.121 + 0.002 —6.54 £0.035
0.365 —6.848 +0.018 0.157 £0.004 —6.69 £0.018 =7.14
0.401 —6.743 +£0.033 0.206 +0.002 —6.54 £0.033 —17.00
0.438 —6.386 £0.072 0.258 +0.002 —6.13 £0.072 —6.53
0.490 —5.362 £0.079 0.343 £0.003 —5.02 £0.079
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FIG. 4. Ground-state energy as a function of the density
for the fluid phase. The solid curve represents the experi-
mental data from Ref. 18. The lower dashed curve
represents the GFMC results using only the Lennard-Jones
potential and the upper dashed curve includes the perturba-
tion estimate of the three-body potential V5. The points
with error bars represent the data from the GFMC calcula-
tion.

errors given for p and C were computed as indicated
above; the correlations in the errors of the parame-
ters of Eq. (3.1) reduce the errors of p and C. The
pressure may either be calculated from Eq. (3.2) p, or
directly from the virial theorem, p,. The two values
should be identical at any given density.!* Unfor-
tunately the virial pressure requires the estimation of

the small difference of two integrals } r~"g(r)r?dr.
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We find that "variational" and "mixed" estimates of p,
differ markedly. Thus the extrapolation procedure
defined in Eq. (2.21) cannot be applied with confi-
dence to test the consistency of p and p,.

In Table V we display our values for E;, (V), and
(T). Here (V) is the ground-state expectation value
of the Lennard-Jones potential and (7T') is the expec-
tation value of the kinetic energy. While (V) can be
accurately extrapolated by the method of Sec. II C,
(T) does not extrapolate well. The values of (T') in
Table V are thus defined as E, — (V). We believe
that (7') is much more difficult to compute than E,
or (V) because it contains derivatives of the wave
function.

Table V reveals a difficulty in computing the ener-
gy of liquid *He: (T) and (V) are both much larger
than E,. The energy E; is thus a consequence of a
rather delicate cancellation between the kinetic and
potential energy. There have recently been pub-
lished®® experimental estimates of (T); we will com-
pare our results with these in Sec. III C.

From this discussion we conclude that the GFMC
method can yield accurate energies for the Lennard-
Jones system. The three-body potential terms are
small in the fluid phase. The discrepancy between
our results and experiment is almost certainly due to
inadequacies in the Lennard-Jones potential. While
our results for the pressure and velocity of sound are
reasonably satisfactory, the rather large errors in
them can only be corrected by either more accurate
computations or by computations at additional values
of the density.

Several years ago, Kalos, Levesque, and Verlet®
published the results of a GFMC study of the Bose
hard-sphere system. They showed that it was possi-
ble to take their results for the hard-sphere system
and by a perturbation technique compute the proper-
ties of the Lennard-Jones system. The spirit of this
work was very similar to the use of the hard-sphere
system as a reference system in classical statistical

TABLE IV. Pressure and velocity of sound. The first column gives the density in reduced un-
its, p is in atmospheres, the speed of sound in meters per second, and the experimental data are

taken from Ref. 18.

PO p Pexp ¢ Cexp
0.365 4265 %1072 0 2458 £21.0 2382
0.380 3.934 £0.932 3.802 264.7 £14.9 266.4
0.401 10.388 £1.22 . 10.667 290.54 +8.74 306.2
0.420 17.070 £1.198 18.375 312.5+13.4 341.6
0.438 24.360 +1.160 27.367 333.1+£23.7 375.6
0.473 41.544 +£3.852 50.565 372.5+£49.9 4443
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FIG. 5. Comparison of the pressure from the GFMC
results and the experimental data of Ref. 18. The solid line
represents the experimental results. The points with error
bars are the GFMC results. i

mechanics.?! Their results for the energy of the
Lennard-Jones system were not given at the densities
for which we have computed E£,. To make as accu-
rate a comparison as possible we have used an equa-
tion of the form of Eq. (3.1) to compute values of E;
for po? equal to 0.341 and 0.416; the values for
which the perturbation results were published. The
constants 4’, B', C', and p,' used in the polynomial
were those found by fitting our values of £, — no
three-body corrections were incorporated as they are
irrelevant for this comparison. - We find that at these
densities our energies are —6.75 °K per particle and
—6.60 °K, respectively as compared with the perturba-
tion values of —6.84 °K and —6.13 °K. We can con-
clude that the use of the hard-sphere system as a
reference system may well be a satisfactory approach
for computing the thermodynamic properties of the
fluid states of the Lennard-Jones system.
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FIG. 6. Comparison of the speed of sound from the
GFMC results with the experimental data from Ref. 18.
The solid curve represents the experimental data, the points
with error bars are the GFMC results.

We now give a brief discussion of the variational
work that has been performed on the Lennard-Jones .
system. Our aim is to show what can be learned by
comparing our exact GFMC results with those found
variationally.

Several types of variational work can be dis-
tinguished. Two are of particular interest to us.

First, those which are based on variational functions
of the product or Jastrow form,!

l’lr= Hf(l'u) .

i<j

In this trial function there are no explicit three-body
correlations. Second, two calculations have been pub-
lished® 7 which contain explicit three-body correla-
tions in addition to the usual two-body terms.

TABLE V. Energy (E,), the mean kinetic and potential energies. The first column gives the
density in reduced units, £, =(T) + (V). All energies are in degrees Kelvin per particle.

(T) "

po” E,
0.328 —6.662 +0.035
0.365 —6.848 £0.018
0.401 —6.743 £0.033
0.438 —6.386 +0.072
0.490 —-5.362 £0.079

11.426 £0.097
13.620 £0.117
15.811 £0.185
18.608 +0.149
23.034 £0.196

—18.088 +0.091
—20.466 +0.116
—22.554 £0.182
—24.994 +0.130
—28.396 £0.179
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A survey of the computations based on functions
of the Jastrow form reveals that it is difficult, if not
impossible, to find a form for f(r) which significant-
ly lowers the energy as compared with the energies
obtained originally by McMillan and by Schiff and
Verlet.! This conclusion has recently been reinforced
by three calculations® 223 all of which find the best
form for f(r) using the Euler-Lagrange equation.
Two of these calculations (Refs. 5 and 22) were car-
ried out using the HNC integral equation to compute
‘the energy of the system. Within the latter approxi-
mation it is clear that optimizing f(r) lowers the en-

ergy by less than 3%. This conclusion was confirmed -

by an iterative sequence of Monte Carlo variational
calculations carried out- by Campbell and Pinsky.?
We thus conclude that the original estimates of the
lowest energy of the Lennard-Jones system, namely,
—5.95 °K per particle, are unlikely to be lowered by
more than 0.2 °K per particle by seeking the best pos-
sible Jastrow function. Since the GFMC yields ener-
gies —6.85 °K we conclude that the Jastrow form is
inadequate as regards computation of the ground-
state energy. It is however worth pointing out that
changes in the form of f(r) can bring significant im-
provements in the computed structure function S (k).
This was first demonstrated for the Lennard-Jones
system by de Michelis and Reatto*; similar results
have now been established?* for the hard-sphere sys-
tem. We will return to this point in Sec. III B. In
Fig. 7 we compare our GFMC results, without the
three-body potential corrections, with the variational
results of Schiff and Verlet.!

We now consider the results of the recent calcula-
tions which extend the form of the trial function to
include explicit three-body correlations. Both calcula-
tions yield energies much below the best Jastrow cal-
culations. Campbell and Chang’ find a lowest energy
of —6.58 °K per particle, Pandhuripande’ finds .
—6.72 °K per particle. Again, both calculations use
approximate integral equations and the results are
therefore subject to some uncertainty. Monte Carlo
computations based on these new trial functions
would be very valuable. The results are so striking
that we believe that the inclusion of the correct
three-body correlations are likely to bring the varia-
tional estimates of the ground-state energy very close
to those obtained by our exact method. If this
proves to be correct then we can conclude that there
are significant three-body correlations in the exact
ground state. This conclusion receives support from
the variational calculations on the density dependence
of the roton spectrum.? '

We close this section with a general discussion of
the accuracy with which variational energies can be
computed from Jastrow trial functions. Three exact
GFMC studies have been made which are relevant to
this discussion; the hard-sphere system,® the repul-
sive Yukawa system?® and the work reported in this
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FIG. 7. Comparison of the GFMC and the variational
results for the energy. The solid curve represents the exper-
imental data from Ref. 18. The lower dashed curve shows
the GFMC results; the upper solid curve gives the variation-
al results usipg the McMillan trial function.

paper on the Lennard-Jones (LJ) system. In Table
VI we show some typical results for these three po-
tentials. The entries E, (T), and (V) refer to results
from the GFMC method. Those labeled with a sub-
script v refer to variational results based on Jastrow
functions and recomputed by Monte Carlo methods.
This table shows very clearly that an accurate varia-
tional calculation based on a Jastrow function yields
kinetic and potential energies which are, for all three
potentials, within a few percent of the exact values.
For the hard-sphere system the entire energy is
kinetic, and consequently the energies £ and E,
agree within a few percent. The Yukawa system has
a repulsive potential energy and thus the error in the
total energy E, merely reflects the addition of the
small errors in (T), and (V),. However the energy
of the Lennard-Jones system is the consequence of a
very large cancellation between the kinetic and nega-
tive potential energies. It is for the most part this
large cancellation that leads to such a large percen-
tage error in the variational energy (21%) as com-
pared with the small errors for the other two poten-
tials. It is interesting to compare the accuracy of the
total energy of these systems normalized in a dif-
ferent way. The last column in Table VI contains
values of AE/(T); where AE =|E —E,| is the error
in the total energy and (7T') is the expectation value
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TABLE VI. Comparison of variational and GFMC calculations.

Potential E (T) V) E, (T, vy, AE/(T)
Hard-Sphere? 5.80 5.80 R 6.0 6.0 o 3%
Yukawa® 880 180 700 883 160 723 2%
Lennard-Jones® —6.85 13.62 -20.47 —5.68 13.67 -19.35 9%

aHard-sphere data are at a reduced density pa®=0.20 which is close to the density of the hard-
sphere system which is equivalent to the density of liquid helium at zero pressure and 7 =0. Ener-
gies are in units of #2/ma>. :

bYukawa data are at a density of one inverse Fm?. The quantity AE/(T) and the comparisons of
(T), and (V), with the GFMC estimates are not sensitive to the reduced density. Energies are in
MeV per particle.

°The Lennard-Jones data are at the equilibrium density pcr3 =0.365. Energies are in degrees Kelvin

per particle.

of the kinetic energy. Since the kinetic energies are
always in good agreement, it does not matter whether
we choose to normalize to (T') or (T),. We chose
this method of normalization because for all three
potentials (T') is a good measure of a typical energy
of the system. We see that this measure of the error
in E brings the Lennard-Jones system into somewhat
closer agreement with the other potentials.

In summary we believe that variational Jastrow cal-
culations face a special difficulty for the Lennard-
Jones system. They yield fairly accurate values for
(T) and (V). The cancellation between these quan-
tities makes an accurate calculation of E very diffi-
cult.

B. Pair correlation function
and structure function

Figure 8 shows the pair correlation function g (r)
obtained by us at the three densities pg, 1.1 po, and
1.2 po. These results were all obtained using the
McMillan! form for the importance function. As dis-
cussed in Sec. II D, we also carried out a computation
of g(r) at p, using the Reatto 8 form?* for the im-
portance function. The results of this computation
were indistinguishable from those obtained with the
McMillan form, showing that our method of compu-
tation of the pair correlations was insensitive to the
importance sampling. We estimate that the errors on
any of these curves are less than 1%, except at small
values of r where the errors are somewhat larger,
about 1.5% at the peak. :

Figure 9 compares our results for g (r) at po with
the experimental data obtained by Achter and
Meyer.?” The experimental curve was obtained by
Fourier transforming the S (k) measured at vapor
pressure at 1.1 °’K. The agreement with experiment is

very good and shows that the L-J pair potential is a
resonable approximation to the true pair potential as
far as reproducing the two-body correlations. It
seems likely that three-body potential effects are
small. We will not dwell further on more detailed
comparisons of theoretical and experimental correla-
tion functions. It is-preferable to make a detailed
comparison of the structure functions. The structure
function can be measured by neutron or x-ray
scattering experiments and can be reliably computed
theoretically. Such a comparison therefore avoids the
difficulties of Fourier transforming limited experi-

2.0 T T T v T

r/o

FIG. 8. Radial distribution function g (r) from the GFMC
calculation. The solid curve is g (r) at a density p = py,
where pj is the equilibrium density of liquid helium at 7 =0.
The dashed and dotted curve is g(r) at p=1.1pg, the
dashed curve is g(r) at p=1.2pq.
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FIG. 9. Comparison of the experimental g(r) with that
derived from the GFMC calculation. The solid curve is the
experimental data from Ref. 27. The dashed and dotted
curve is from the GFMC calculation at the equilibrium den-
sity of liquid helium at 7 =0.

mental data on S(k) to get g(r).

Figure 10 shows our data on S (k) at the three
densities po, 1.1 po, and 1.2 py, and Fig. 11 shows our
data at po compared with the experimental data of
Achter and Meyer.?’ These data were taken at 1.1 °K
where the density of liquid helium is slightly lower
than po. The density difference is so small that we
do not expect that it will significantly affect the com-
parison. Our data on S (k) was obtained by extend-
ing g (r) sufficiently far so that a reliable S (k) could
be found by a Fourier transform. The extension
technique is described in Appendix C, A direct com-
putation of S (k) is also possible; the results are noisy
beyond the first peak and not as reliable as those
found by Fourier transforming g(r). As with g(r)
the agreement between experiment and theory is very
good. The errors in S(k) are estimated to be about
0.02 through the first maximum and decreasing
smoothly to 0.01 at the first minimum.

Except at small k£ we have limited our comparison
to the x-ray data of Achter and Meyer for the follow-
ing reasons. First, these x-ray data seem to us to be
more accurate than previous x-ray data. They are in
good agreement with the earlier results of Gordon,
Daunt, and Shaw.?® Second the neutron data that is
available is confusing. Recent data by Cowley and
Woods? is in fair agreement with older work by
Hurst and Henshaw,® and both sets of data agree
well with the Achter and Meyer data. The often
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FIG. 10. Liquid structure factor S (k) from the GFMC
calculation. The solid curve is at a density p, equal to the
equilibrium density of liquid helium at 7=0. The dashed
and dotted curve is at 1.1pg and the dashed curve is at 1.2p,.

quoted data of Henshaw?®! does not agree with the
other neutron data or with the x-ray data. This
discrepancy has received no explanation.?’

Caution should be exercised in making detailed
comparisons of the GFMC structure factor computed
from the Lennard-Jones potential with the experi-
mental S (k). We have seen in Sec. III A that the
Lennard-Jones potential does not adequately
represent the two-body interactions in liquid helium.
It may therefore produce errors in S (k) which will
mislead one in any very precise comparison with ex-
periment. Recent variational work® 3? suggests that
S (k) may change somewhat when a more realistic
two-body potential is used.

In Fig. 12 we compare our small k data with the
experimental data due to Hallock.3® Our data were
generated by the method described in Appendix B. It
should be pointed out that since the GFMC method
is exact our calculations for a finite system must con-
tain some of the effects of the correlations due to the
zero-point motions of the phonons. From Fig. 12 we
see that our data fall systematically below the experi-
mental data in the range, although the two curves are
nowhere more than two standard errors apart. ‘If the
discrepancy is real it must again be a conséq‘uence of
using the Lennard-Jones potential. Unfortunately
there are no low-temperature data at higher densities
that might be compared with our numerical results at
1.1 Po and 1.2 Po-.



5612 WHITLOCK, CEPERLEY, CHESTER, AND KALOS : 19

We now turn to a comparison of our resulis with
other theoretical computations. First we make a -
comparison with the exact GFMC results on hard
spheres obtained by KLV. This comparison is made
to understand how well the pair correlations in the
Lennard-Jones system can be modeled by those of
the hard-sphere system. After this comparison we
turn to several of the variational computations that
have been made in the last decade. Our aim here is
to try to understand how accurately the various trial
functions can reproduce the Jocal structure in the
fluid.

In order to make a comparison with the hard-
sphere system we have to decide on a method of
choosing the reduced density (p'a®) of the hard-
sphere system. Here p' is the number density of the
hard-sphere system and a is the hard-core diameter.
This question was discussed at some length by KLV
who give convincing arguments. One argues that the
repulsive part of the shifted Lennard-Jones potential
plays the role of a hard core. Then we characterize
this term by its S-wave scattering length /. This then
leads to the statement that in order for the hard-
sphere system to represent the Lennard-Jones system
we should choose p' so that p'a®=pl3, where p is the
density of the Lennard-Jones system. ‘This equation
then yields the result that p'a3=0.2318 when p is
equal to the equilibrium density of the L-J system.
As we have seen in Sec. III A this equilibrium densi-
ty is very close to that found experimentally for
liquid helium. Figure 13 shows the comparison ob-
tained by this method. The agreement is generally
good, although there are clearly small discrepancies.

Of course one could turn the scaling argument
around and ask the question can we find any reduced
* density (p'a’®) for which the hard-sphere correlation
function is in good agreement with that of the L-J
system. Figure 13 clearly shows that this can be
done. One then asks how to scale lengths from one
system to another and finds that the required length
is *=p'a’/p which is numerically equal to the S-
wave scattering length for the repulsive part of the
Lennard-Jones potential.

We find this comparison illuminating. It tells us
that the quantum Lennard-Jones two-body correla-
tions can be modeled by hard spheres in a very simi-
lar way to the well-known classical modeling of the
LJ system by classical hard spheres. It also supports
our contention in Sec. III A that the hard-sphere sys-
tem can be used as a reference system to compute
the thermodynamic properties of the Lennard-Jones
system.

We turn now to a comparison with variational cal-
culations. The early variational calculations of S (k)
by McMillan! and Schiff and Verlet! are in good
agreement with each other. Figure 14 shows our data
compared with theirs. Generally our data shows signi-
ficantly more structure, our first peak being higher

FIG. 11. Comparison of the experimental liquid structure
factor (k) with that derived from the GFMC calculation.
The solid curve is the experimental data from Ref. 27. The
circles are the data from the GFMC calculation at the equili-
brium density of liquid helium at 7 =0.
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FIG. 12. Comparison of the experimental liquid struc-
ture factor at small wave numbers with that derived from
the GFMC calculation. The solid curve passing through the
points with error bars is the experimental data from Ref. 33.
The dots are the results from the GEMC calculation; typical
error bars for these results are shown for three points with
triangles. E :
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FIG. 13. Comparison of the liquid structure factor for
the hard-sphere system, solid curve, and the Lennard-Jones
system, open circles. The comparison is made using the
data from the hard-sphere system at the reduced density
equivalent to the equilibrium density of the Lennard-Jones
system.

and our first minimum lower. This result has been
noted in other comparisons of the same kind.®26 In
addition our first peak occurs at a smaller value of k.
It has been a long standing defect of the early varia-
tional work that the first peak always occurred at too
large a value of k. Our results now show that this is
almost certainly a defect of the variational wave func-

14

tion and not the two-body potential.

Recently several attempts have been made to im-
prove the form of the trial function in the variational
calculations. As we remarked in Sec. III A two ap-
proaches can be distinguished, either one tries to im-
prove the two-body correlations in the traditional Jas-
trow form of trial function or one adds explicit
three-body correlations®’ to the trial function. The
first approach has been taken by McGee and Mur-
phy,3* Reatto,*?* Lantto et al.,?? and Chang and
Campbell.’ A detailed discussion of this work would
take us far from our main objective. We believe it
can be well summarized as follows. It is possible to
change the two-body correlations in the trial function
so that S (k) is in better agreement with experiment.
In particular Reatto’s very detailed study of this ques-
tion yields convincing results. However the varia-
tional energy was not improved, and in some cases
was raised, by the new trial functions used by de
Michelis and Reatto. Chang and Campbell’ and
Lantto et al.?2 both attempt to optimize the Jastrow
two-body correlations by different approximate
methods. Both obtain, as we have noted in Sec. III
A, somewhat improved energies. Chang and Camp-
bell also obtain an improved structure function
although there are still discrepancies as compared
with experiment. However it is very difficult to as-
sess this work rigorously as approximations of un-
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FIG. 14. Comparison of the liquid structure factor S (k) from the GFMC calculation (solid line) with that obtained from a
variational calculation using the McMillan form for the trial function. The latter results are represented by the open triangles.
Both curves are at the equilibrium density of liquid helium at 7 =0.



5614 WHITLOCK, CEPERLEY, CHESTER, AND KALOS 19

e

=

i —_— 1 L

1 N 1
6.0 8.0 " 10.0 12.0
ko

FIG. 15. Comparison of the liquid structure factor derived from the GFMC calculation (solid line) with that calculated vari-
ationally (dashed line) by Campbell and Chang (Ref. 5). Both sets of results are for liquid helium at its equilibrium density at

T=0.

known validity were used in computing the structure
function.

Chang and Campbell’ and Pandharipande’ have
both introduced explicit three-body correlations into
the variational function. As we have noted in Sec. I1I
A both find significantly lower energies. Pandhari-
pande has not published a structure function. His
g(r) has too little structure as compared with the ex-
perimental g(r). Chang and Campbell’s S (k) is in
much better agreement with experiments than those
derived from variational functions using only two-
body-correlations. We compare the structure func-
tion computed by Chang and Campbell with our own
in Fig. 15. It is in good agreement with ours. This
work suggests that three-body correlations are impor-
tant and should be included in the trial functions.
However since both calculations depend on approxi-
mate methods no definite conclusions can be made at
this time. One needs a Monte Carlo estimate of the
effects of three-body correlations on S (k) and on the
energy.

In Appendix D we present tables (see Tables
XIV—=XVII) of both g(r) and S (k) at several densi-
ties.

C. Single-particle density matrix
and momentum distribution

In this section we present our results for the
single-particle density matrix p;(r) and its Fourier
transform, the momentum distribution n (k).

Figure 16 shows our results for p;(r) at the three
densities po, 1.1 po, and 1.2 po. Each set of data was

obtained using the McMillan importance. function and
then extrapolated as described in Sec. II. These
graphs clearly show that p;(r) is quite strongly
dependent on the density. The asymptotic value
reached at large r is equal to the fraction of particles
with zero momentum, no.!” We shall discuss this
quantity in more detail in the next paragraph. The
small amount of structure in these curves at large
values of r is within the range of our computational

p (0
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FIG. 16. Single-particle density matrix p;(r) derived
from the GFMC calculations. The solid curve is p{(r) at
the equilibrium density (pg) of liquid helium at 7=0. The
dashed and dotted curve is at 1.1p, while the dashed curve
is at 1.2p,.
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TABLE VII. Fraction of particles (ny) in the zero-

momentum state as a function of density. The first column

gives the density in reduced units.

po no
0.365 0.113 £0.002
0.401 0.085 +0.002
0.438 0.062 +0.002
0.490 0.035+0.001

errors and should not be taken as real. Table VII
shows our results for n, for several densities. It can
be seen that it is an approximately linear function of
the density, becoming small near the freezing density
(p=0.473073).

At the equilibrium density po, we have also comput-
ed ng using the Reatto 8 function for importance
sampling. The results (Table II) are identical within
our errors.

The basic difficulty in extracting no from p;(r) is
that one needs to know p;(r) for as large values of r
as possiblée. Since our computations are limited to
fairly small systems (64 and 128 particles) we cannot
claim to have rigorously established the asymptotic
limit of p,(r). Clearly, computations on much larger
systems would be desirable. However even with our
small systems we detect little change in ng as we dou-
ble the number of particles from 64 to 128. Apart
from the size dependence and fluctuations at the
largest values of r, the curves of p;(r) do not have
large statistical variation. We estimate our error in ng
to be 5% at po and 10% at other densities.

There have been several attampts?® 35~ to extract
no from neutron scattering measurements. That this
might be possible was first suggested by Hohenberg
and Platzman.*! An excellent review of the difficul-
ties inherent in obtaining no from the scattering data
has been given by Cowley.”? We find that the most
convincing analysis is due to Woods and Sears.*
There are still uncertainties in the results due in part
to insufficient data and to the fact that the lowest
temperature at which data were taken is 1.1 °K. We
do not regard this latter point as being a serious
impediment in making a comparison with our
ground-state data. At 1.1°K, liquid helium is still
very cold, with few thermal excitations. It seems
plausible that no will have changed little from its
ground-state value, but this qualitative argument
should be checked by measurements at much lower
temperatures.
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Woods and Sears*® find a value of 0.069 for n, at
1.1°K. The error quoted is +0.008. Taken at its face
values this result contradicts our own value of 0.12.
However, as we have just pointed out, the amount of
data available places serious limitations on how accu-
rately ng is known. We await the analysis of new ex-
periments and would encourage experimentalists to
undertake experiments at more than one density and
at as low a temperature as possible. Other experimen-
tal data and subsequent analysis®® 3740 have yielded
values for ny substantially lower than that due to
Woods and Sears. We do not find the data analysis
on which these results depend to be as convincing as
that due to Woods and Sears.

We turn now to the remainder of the momentum
distribution; n (k) (k #0). Our results for this are
plotted as kn (k) in Fig. 17. Clearly there is a strong
density dependence in n (k). In Sec. II D, we com-
mented that the change in n (k) as calculated from
different importance functions is less than the er-
rors which are of the order of 10%. » (k) is more
difficult to compute than S (k) and longer runs will
be needed to obtain more accurate results. For-
tunately the errors in n (k) are not so large as to
prevent us from making several interesting observa-
tions and comparisons.

The structure at large & is within the statistical er-
rors of our calculations but that at intermediate k is
significant. We believe that our data suggests that
there may be a small minimum in kn (k) at inter-
mediate k. A comparison of Fig. 17 with Fig. 2
shows that the density dependence is also much
larger than the changes in n (k) due to the impor-
tance function. Indeed n (k) is strongly dependent
on p, much more so than S(k). The physics behind
this eludes us but is worth further invesigation.

Density dependence of 107 kn (k)

FIG. 17. Momentum distribution n (k) derived from
the GFMC calculation. The equilibrium density of liquid
helium at 7=0 is pg. The fluctuations in the curves at large
k are not statistically significant.
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0.6

FIG. 18. Comparison of the momentum distribution » (k) derived from the GFMC calculation with the experimental results
from Ref. 43. The two GFMC curves are the solid curve based on the McMillan importance function and the dashed curve
based on the Reatto 8 importance function. The experimental data are given by the dotted curve.

We now compare our data for n (k) at po with the
experimental values due to Woods and Sears® in Fig.
18. The experimental curve is obtained by analyzing
neutron scattering data.

The general shape of the curve is semiquantitative-
ly established by these data. Our own results are in
agreement, within the rather large experimental un-
certainties. Again we do not believe that the elevated
temperature of 1.1 °K seriously affects the compari-
son. Another comparison should however be made.
The strong theoretical density dependence should be
looked for experimentally. At this stage it may be
more interesting to compare trends in n (k) with den-
sity rather than emphasizing a comparison at a single
density. Again data at a much lower temperature
would be desirable.

A more limited yet more refined comparison can
be made. The mean kinetic energy (T') of the sys-
tem is proportional to the second moment of n (k).
Woods and Sears?® have shown how an estimate of
(T) can be extracted from the moments of the neu-
tron scattering cross section. Their analysis is con-
vincing and internally self-consistent in that several
different moments give almost the same value for
(T). They find a value of 13.5°K+1.2°K at 1.1 °K
for (T). Our own values (from Table V) give a
value of 13.62+0.12. These are values obtained from
(T)=E — (V), where E is exact and (V) is extrapo-
lated, and yield values independent of the importance
function. The agreement is excellent, although we
wish for smaller experimental errors. Overall we find
the agreement of our momentum distribution with
experiment encouraging. We will certainly attempt to
improve our results and we hope that the experimen-
talists will also be able to improve theirs.

A comparison of n(k) and ng for the Lennard-
Jones system with that for the hard-sphere system is
revealing. KLV obtained a value of no of 0.117, at a
density 5% less than the density equivalent to the
equilibrium density of liquid helium. This value is
lower than ours of 0.12 at the equilibrium density,
but the discrepancy is inside the range of the compu-
tational error of the KLV result.

In Fig. 19 we compare our GFMC results for the

Normalized 10 n(k)

7 8

FIG. 19. Comparison of the momentum distribution of
the Lennard-Jones fluid, the solid curve, with the hard-
sphere fluid, the dashed curve. Both results were obtained
by the GFMC method and both are normalized so that the
three-dimensional integral of n (k) is equal to 1 — ng, where
ng is the fraction of particles with zero momentum.
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n(k)

10 12

FIG. 20. Comparison of the momentum distribution
n (k) derived from the GFMC calculation with the distribu-
tion derived from a variational calculation using the McMil-
lan trial function. Both sets of data are for the equilibrium
density of liquid helium at 7 =0.

Lennard-Jones system with the GFMC results for the
hard-sphere system. The comparison is made at the"
equivalent hard-sphere reduced density and both
curves are normalized so that the three-dimensional
integral of n (k) is 1 — n,.

The final comparison we make is between the
GFMC results and the variational results. This is
shown in Fig. 20 which reveals that the two momen-
tum distributions are identical within our computa-
tional errors.

IV. PROPERTIES OF THE CRYSTAL PHASE

This section closely parallels Sec. III. We present
our results for the equation of state, pressure,

compressibility, structure factor, and momentum dis-

tribution of the crystal phase. In addition we discuss
the melting-freezing transition and the single-particle
density. Wherever possible we compare our results
with experimental data and with previous variational
work.

A. Equation of state of the
crystal phase

We have computed the energy of the fcc crystal in
the density range po =0.420 to po® =0.589. We
chose to limit our computations to the fcc phase be-
cause it was technically convenient and because pre-

vious variational and GFMC calculations had been
performed for that phase. In addition the variational
work of Hansen** had shown that the differences
between the equation of state of fcc and hcp are
small. We repeated his calculations in the course of
the present study, improving the statistics and de-
creasing the possible difference in energy between
these two phases. Of course the determination of the
freezing-melting transition is rather sensitive to the
equations of state. We enlarge on this point in Sec.
IV B. At densities less than po® =0.512 the fluid
phase has a lower energy and our results refer to me-
tastable crystal states. We can thereby determine the
densities at which melting and freezing take place
(Sec. IV B) and to make a number of interesting
comparisons with previous variational work. We
have not extended our results to the higher density
range covered variationally by Hansen and Pollock.*
" A few words of explanation are necessary to ex-
plain how in the GFMC method one distinguishes
between a crystal and a fluid. This distinction is
made in practice by the choice of the importance
function (see Sec. II D). For a fluid phase calcula-
tion we always use a function which is translationally
invariant, for example a Jastrow function with the
parameters determined variationally. If we wish to
compute the properties of a crystal phase then we
choose the importance function so that it localizes
the particles on the lattice sites for a chosen crystal
symmetry. In a stable region of the crystal phase we
find that for a very long GFMC computation that the
particles remain localized in the neighborhood of the
original lattice sites. These importance functions we
have used are not symmetric. We are therefore
simulating Boltzman rather than Bose crystals. For
particles interacting with a stiff core potential, such as
the Lennard-Jones potential, exchange is exceedingly
rare in the solid phase.!?

As was explained in Sec. II D, localization on lat-
tice sites is not necessary in principle. The technique
is merely used as a device to speed the convergence
of the iterative GFMC procedure. In Sec. II D we
showed that at one particular density (po® =0.526)
the physical properties we compute using this biasing
procedure are independent of the parameters in the
importance function. The localization parameter [4

“in Eq. (2.16)] was changed by 20%. The results of

the GFMC calculation were unchanged within our
fairly small errors. '

" Our computations were again carried out with the
standard Lennard-Jones potential and perturbation
éstimates of the three-body potential term V3, Eq.
(A1), added to our GFMC results. When tail correc-
tions were added there was no difference, within our
errors, between the results for a 32 and 108 particle
system. We estimate (see Sec. II C) that the errors
in the eigenvalues are less than 1%. The error in the
perturbation estimate of (V) is less than 2% of the
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additional energy. The correction to the energy due
to the long-range correlations introduced by the
zero-point motion of the compressional phonon
modes again turned out to be completely negligible.

Table VIII contains our results for the crystal
phase. As in the fluid phase, we have fitted our
results to a polynomial of the form

@1

~ The values of the parameters are

A'=546 +0.17, B'=14.08 £27,
C'=9.02+22,
and

p1=1(0.416 £0.072) o> .

The values of 4, B', and C' are given in degrees
Kelvin. It can be seen from Fig. 21 that this form
gives an excellent fit to our data. The errors in the
parameters appear to be very large; however it must
be emphasized that the errors are highly correlated, a
fact taken into account when computing the pressure
and compressibility. Results for the equation of state
are compared with the experimental data of Edwards
and Pandorf“® in Fig. 21.

From Table VIII we see that at the lowest density
where the crystal is stable the difference between our
theoretical results (—5.22 °K) and the experimental
results (—5.96 °K) is about 0.7 °K per particle. This
is very similar, though somewhat larger, than the al-
most constant discrepancy we found in the fluid
phase (0.5 °K per particle). However as the density
increases in the crystal phase the discrepancy de-
creases rather quickly, reaching a value of 0.2 °K per

particle at the highest density. This is to be contrast-
ed with the fluid phase where the density dependence
of our theoretical results was very similar to that of
the experimental data. We conclude that at the
higher densities of the crystal phase the Lennard-
Jones potential is much less adequate than in the
fluid phase.’

From Table VIII it is clear that the balance
between (7T') and (V) becomes more and more deli-
cate as the density increases. At our highest density
the total binding energy (=2 °K) is only 7% of (T) or
(V). Thus it is not very helpful to express the
difference between our computed energies and the
experimental energies as a percentage. At a slightly
higher density the binding energy will go through
zero and any discrepancy will then be infinite. It
would be illuminating to have experimental informa-
tion values for (T) and/or (V). Unfortunately this
type of information is exceedingly difficult to extract
from experimental data. There is however hope that
(T) can be extracted.”® It would be interesting to
have measurements of this quantity in the crystal
phase.

We should also comment on our use of perturba-
tion theory to estimate (V). As we have just men-
tioned the ground-state energy computed from the
unperturbed Hamiltonian becomes small at the
highest density and will become even smaller at
higher densities. On the other hand, our perturba-
tion estimates of (¥3) suggest that this quantity will
steadily increase. There will then be a range of den-
sities for which (¥3) is comparable with the ground-
state energy. It might be thought that in this range
of densities, perturbation theory has broken down.
We think that this conclusion is not correct. A better
comparison is between (V3) and (V) or (T); either
of these quantities is a typical energy of the system.
Such a comparison shows that (¥3) is about 1.5% or
(T) or (V) at the highest density.

‘Because our energies have the wrong density

TABLE VIII. Energy of the crystal phase calculated with the GFMC method. The first column
gives the density in reduced units, £, is the energy computed using the Lennard-Jones potential,
(V3) is the perturbation estimate of V3, E=E;+ (V3), and E,, is the experimental value of the
energy taken from Ref, 46. All energies are in degrees Kelvin per particle.

po EZ <V3) E . Eexp
0.420 —-5.671 £0.059 0.227 £0.004 —5.444 £0.059
0.440 —5.679 +£0.050 0.253 £0.003 —5.426 £0.050 e
0.468 —5.503 £0.053 0.301 £0.002 —5.202 £0.053 —6.06 +0.05
0.526 —4.718 £0.032 0.413 +£0.002 —4.305 £0.032 —5.03 £0.05
0.589 —-2.929 +0.092 0.562 £0.003 —2.367 £0.092 —2.70 £0.05
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FIG. 21. The energy of the crystal phase. The experi-
mental energies from Ref. 46 are shown as solid squares ’
(®). The lowest solid curve represents the GFMC results
without the addition of the perturbative estimate of V3. The
lower dashed curve includes the estimate of V3. The upper
solid and upper dashed curves represent the variational
results without and with the estimate of Vj, respectively.

dependence our pressures in the crystal phase are in
somewhat poorer agreement with experiment than
those of the fluid phase. This is clearly shown in
Table IX. The computed and experimental values for
the compressibility are in fair agreement. Figures 22
and 23 show these results graphically.

In summary, we believe that our GFMC results
show that the Lennard-Jones potential is becoming
seriously inadequate in the crystal phase. This sug-
gests strongly that future work to test two-body po-
tentials should cover a density range that encom-
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passes both fluid and crystal phases. The detailed
comparison of energies depends upon (¥3) which has
become a significant part of the crystal energy. It
would be well to have independent evidence of the
validity of the Axilrod-Teller three-body potential.

We again attempted to test the consistency of our
numerical techniques by computing both the virial
and thermodynamic pressures in the crystal phase.
Exactly the same difficulties arose as we found in the
fluid phase (see Sec. Il A), and no useful compari-
son was possible between the two pressures.

In KLV perturbation estimates were made of the
energy of the crystal phase. These estimates were
subject to rather large errors. Within these errors the
perturbation estimates agree with our own values.
Note that we are comparing our energy values
without any corrections due to V3. As in the fluid
phase this suggests that one can make a successful
perturbation theory of “He using hard spheres as a
reference system. A more detailed exploration of
this idea would be well worthwhile.

We turn now to a comparison of our GFMC results
with the variational results obtained by Hansen* 48
Table X shows this comparison. The GFMC results
are lower in energy by about 1 °K. Again we must
remark on the delicate cancellation that is taking
place between (T) and (V). It is extremely easy to
be 1°K off in the total energy when both these quan-
tities are about 35 °K in magnitude; 1 °K is only 3%
of either. Indeed a comparison of the variational po-
tential and kinetic energies with those obtained by
the GFMC method shows discrepancies ranging from
2—6%. The comparison we made in the fluid phase
where we computed AE/(T) is also interesting for
the crystal phase. Here AE is the difference between
the variational energy and the GFMC energy, and
(T) is the expectation of the kinetic energy calculat-
ed by either method. The last column in Table X

TABLE IX. Comparison of the pressure and compressibility with experimental data. The first
column gives the density in reduced units, p is in atmospheres, and « is inverse atmospheres. The

experimental data are from Ref. 46.

po p Pexp 10« 102k,
0.491 28.182 +1.9 31.8 0.373 £0.038 0.334
0.503 35.115+2.2 41.1 0.326 £0.024 0.288
0.516 43.534+24 51.8 0.283 £0.020 0.246
0.530 53.729 £2.5 63.3 0.244 +0.024 0.209
0.544 65.180 +2.7 77.4 0.212 £0.029 0.178
0.559 78.941 £3.9 95.2 0.184 +0.032 0.148
0.575 95.445 £6.5 116.2 0.159 £0.034 0.129
0.592 115.201 £10.8 140.7 0.137°£0.035 0.116
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shows that this ratio is consistently in the range of
4—5%. This is very similar to the value found in the
fluid phase and in other systems.2® It is worth noting
that Fig. 21 shows that the density dependence of the
variational results is very similar to that of the
GFMC results. The two curves are merely shifted by
approximately 1°K. Clearly both methods of calcula-
tion are in need of a better two-body potential.

We suspect that the major source of this discrepan-
cy between the variational results and our own is that
the trial functions contained no explicit three-body
correlations. It would be interesting to extend the re-
cent variational work on trial functions with three-
body correlations from the fluid to the crystal phase.

B. Melting-freezing transition
The equations of state we have established in the

_fluid and crystal phases allow us to determine the
densities at which freezing and melting occur in our

FIG. 23. Comparison of the experimental data for the
compressibility of the crystal phase (Ref. 46) with the results
from the GFMC calculation. The calculated results are
shown as points with error bars and the experimental data
are shown as crosses.

model system. This is done in the usual manner us-
ing the Maxwell double tangent construction. We
determine the slope of the tangent by differentiating
the forms, Egs. (3.1) and (4.1), that have been fit-
ted to our data. The resulting algebraic equation was
solved numerically to determine the transition densi-
ties. Figure 24 shows this construction and Table XI
shows our results for the freezing and melting densi-
ties together with the experimental values. The vari-
ational results are those quoted in Hansen and Pol-
lock.* Before discussing these results we must rem-
ind the'reader that we have computed the energy of
fcc solid helium, whereas the phase transformatiosn”
which takes place at absolute zero is to an hcp phase.

TABLE X. Comparison of exact and variational energies for the crystal phase. The first column gives the density in reduced
units. E, (V), and (T) are the total, potential, and kinetic energies computed by the GFMC method using the Lennard-Jones
potential. (E,),, (¥),, and (T), are the same quantities calculated using the variational method. The last column gives
AE =|Ey—(E,) | as a percentage of (T),. All energies are in degrees Kelvin per particle.

po E, ) (T) (£, M (T), AE/T
0.420 —5.671 —24.404 +£0.095 18.733 £0.112 —4.780 +£0.072 —24.385 +0.064 19.605 £0.096 4.5%
0.440 —5.679 —25.756 +0.096 20.077 £0.108 —4.697 £0.062 —25.375 £0.046 20.678 +0.077 4.7%
0.468 —5.503 —27.765 £0.073 22.262 +0.090 —4.505 +£0.041 —26.082 +£0.037 21.575 £0.055 4.6%
0.526 —4.718 —31.873 £0.099 27.155 +0.104 —3.499 £0.091 . —29.561 £0.072  26.062 +0.116 4.7%
0.589 -2.929 —35.902 +0.147 32973 £0.173 —1.294 £0.064 —31.605 +0.053 30.311 £0.083 5.4%
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In other words, our results are valid for the hypothet-
ical liquid - fcc crystal transition rather than for the
actual liquid - hcp transition. As we remarked in Sec.
IV A possible small differences in the energies

(0.1 °K per particle about equal to the errors in the
variational calculations), of the two crystal phases
may be important in determining the parameters of
the transition. A more accurate determination of the
transition must await more accurate variational and
GFMC computations on the hcp phase. We expect
to complete such work in the near future.

Our melting and freezing densities are about 10%
higher than the experimental values. Because of this,
the theoretical melting pressure is very much higher
than the experimental value. On the other hand, the
volume change between the phases is 1.6 cm*/mole
which is rather close to the experimental value of 1.9
cm?/mole. The location of this transition is a severe
test of any theory. - The discrepancies we find are ei-
ther due to the inadequacies of the Lennard-Jones
potential or to the fcc phase being used rather than
the hep. It is ' worth commenting that the addition of
the perturbation estimates of (¥3) makes a negligible
change in the freezing and melting densities. - :

An important comparison is between the freezing
and melting of the Lennard-Jones system and the
hard-sphere system. It is now fairly well established
that the classical Lennard-Jones transition is very
closely related to the freezing of the classical hard-
sphere system. This establishes that the classical
transition is a packing phenomenon. KLV and Han-
sen and Pollock have both suggested that the same
may be true for the quantum-mechanical Lennard-
Jones system. We make the comparison as follows.
In Sec. III B we discussed how one could scale the
quantum hard-sphere system so that it can be com-
parted with the Lennard-Jones system. This lead to
the statement that the equilibrium density pg of liquid
helium corresponds to a reduced hard-sphere density,
such that pa®=0.2138, where a is the hard-sphere di-
ameter. Our freezing and melting densities
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FIG. 24. Double tangent construction which locates the
freezing and melting volumes. The upper curve is for the
crystal phase, the lower for the fluid phase. The two points
of common slope are shown as solid circles (@).

correspond to 1.29 py and 1.40 po, respectively. This
implies that if the pure-hard-sphere transition exactly
represents the Lennard-Jones transition then its
freezing and melting densities should be given by
pa®=0.276 and pa®=0.30. The actual transition
densities, (pa®=0.23 and 0.25, respectively) found
are in fair agreement with these.

In KLV perturbation, corrections were made to in-
clude the effect of the attractive part of the potential.
The resulting energies contain rather large uncertain-
ties. Within these uncertainties the transition densi-
ties agree with our own. Therefore it appears that
while the major cause of the transition is a quantum
hard-sphere packing phenomenon, the attractive part
of the potential reduces the density at which it takes
place.

Examination of Table XI shows that the best. varia-
tional estimates for the transition densities are lower

TABLE XI. Melting-freezing transition. The first column gives the potential and method used.
The next two columns give the freezing and melting densities in reduced units. Column four gives
the transition pressure in atmospheres. The last column gives the volume difference between the
solid and liquid in cubic centimeters per mole. We find no difference in the melting and freezing
densities, transition pressure’and volume difference if we omit the corrections due to (V3).

Potential pio? 3 p (atm) AV (cm?/mole)
Vy+ Vs 0.475 £0.011 0.515 £0.009 42.85 +8.64 1.63
V, variational 0.380 0.457 15.0 4.5
Experiment 0.430 0.468 25.0 1.9




5622 WHITLOCK, CEPERLEY, CHESTER, AND KALOS 19

than the experimental values and thus considerably
lower than our own. The freezing density is 20%
lower, and the melting density is 10% lower than our
values. On the basis of variational calculations, the
volume difference between the two phases has always
turned out to be much too large. Hansen and Pol-
lock quote a value of 4.5 cm?/mole, this is to be
compared with 1.9 cm*/mole found experimentally
and our own result of 1.6 cm?/mole.

It is quite striking that all variational estimates
have yielded transition densities below the experi-
mental values. There may be a simple explanation of
this, i.e., that the variational calculations always pro-
duce better, that is lower, bounds for the energy of
the crystal phase as compared with the fluid phase.
The configuration space of the crystal is simpler than
of the fluid and one can therefore more readily con-
struct a good trial function for the crystal. In other
words there is a basic asymmetry in the variational
results for the two phases; energetically they always
. tend to favor the crystal phase. It follows that the
variational results will tend to produce transition den-
sities below the experimental values. We have
stressed this point in previous papers.26 On the other
hand there is no reason to suppose that the GFMC
method does not do equally well for both phases and
produces essentially exact results for both.

We close this section with a brief discussion of .
Lindeman’s ratio for this quantum system. This ratio
is defined as (r?)'/?/d, where d is the nearest-
neighbor distance. For other quantum systems
has been established that the Lindeman ratio lies
between 0.27 and 0.30 at the melting density. Our
own exact GFMC work on the Yukawa system also
produced a value in this range. The data we have for
(r*), see Table XII, can be used to compute this ratio
at our melting density (po=0.512). We find a
value of 0.267 +0.0026, lying within the established
. range. We tentatively conclude that there is a quan-
tum version of Lindeman’s classical "melting rule":
the ratio (r?)'//d always lies in the range 0.27—0.30
for all potentials for which freezing take place.

6,20 it

C. Single-particle density

In a crystal the single-particle density p(r) is of
considerable interest. The variational studies of
quantum crystals have nearly always computed this
quantity and insights have been gained from such
results.

Since our computations reveal that there is a well
defined lattice structure we expect the p(T) will have
the periodicity of the crystal. We see no exchange of
particles in our GFMC runs; each particle appears to
be confined to a region around a lattice site. In these

circumstances we can confine our attention to p(T) .
in the neighborhood of a single lattice site.

Figure 25 shows p(|T|) at three different densities.
Here p(|T|) is the spherical average of p(T). Table
XI1I lists the second moment of p(T) and a linear
combination B of the fourth moment and the square
of the second. The second moment decreases as the
density increases; the particles become more local-
ized. If the distribution p(T) were strictly Gaussian
then the quantity 8 in column six should be zero.
We computed 8 to obtain a measure of how much
the single-particle distribution deviates from Gaus-
siari. Unfortunately the variational and mixed values
of B (see Sec. I D) are rather far apart at all densi-
ties. Thus the extrapolated values are not reliable es-
timates of the exact values of 8. From our present
computations we conclude that in the density range
po’=0.468—0.589, B lies in the range from
0—1.8x107%. An examination of the variational and -
mixed values of B suggests that at low densities there
are small positive deviations from Gaussian behavior.
Figure 26 shows p(r) on a semilog plot. The small
deviations from Gaussian behavior are just discern-
able at the tail of the distribution.

We have not in this work attempted to enlarge our
computations to study whether particles are inter-
changing positions or other more complex motions
are taking place. There are two difficulties in such a
study. First, for stiff core potentials these motions
are likely to be very infrequent so that very long runs
may be necessary to observe them. For a soft-core
potential, such as the Yukawa, interchanges take
place more frequently and can be observed in a
GFMC run.?® Second,we need to modify the impor-
tance function to make it completely symmetric,2®
which requires still more computations. We have
computed p(T) in nine different directions. These
distributions are identical within our errors. Detailed
contour plots around a lattice site were also made and
these revealed no significant asymmetry. We con-
clude that over the range of densities we have stu-
died that p(T) is spherically symmetric. Table XIII
shows various averages computed with p(T) and
leads again to the conclusion that the distribution is
extremely symmetric. Whether p(T) will remain
spherical at higher densities is an open question.

Unfortunately, KLV did not compute the single-
particle distribution in the crystal phase, so no com-
parison with the hard-sphere system is possible.
Turning now to the variational work on the
Lennard-Jones system, the papers by Hansen and
Levesque*® and by Hansen** both contain informa-
tion on p(7). Hansen and Levesque present data on
the second moment of p(T). When a numerical er-
ror is corrected in their data,’® their values for the
second moment agrees with Hansen’s. Unfortunately
neither paper contains any estimates of the errors in
the second moment. A comparison of our results
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TABLE XII. Moments of the single-particle distribution function. The first column gives the

density in reduced units. The next three columns give the second, fourth, and sixth moments of

the single-particle distribution. 8= (r*) — % (r

departure of the single-particle distribution from Gaussian form is B/ (r

All lengths are in units of . A measure of the

2)2.

po’ ™ % 10¢r6) B/25

0.468 0.157 +£0.002 0.042 +0.002 0.153 +0.014 (0.169 +0.154) x 10™*
0.526 0.127 £0.002 0.029 +0.001 0.096 +0.006 © (0.684 +0.179) x 1074
0.589 0.099 +0.003 0.016 +0.001 0.037 +0.003 - ~107¢

with these variational data reveals that at the two
lowest densities, po’ =0.468 and 0.526, our values
are about 10% larger. At the highest density
pa’=0.589 the values are, within our errors, the
same.

We next turn to a comparison of our results for
p(T) with those found in a detailed study of the clas-
sical hard-sphere crystal.’! We have little doubt that
a classical Lennard-Jones crystal would behave in a
very similar way to the hard-sphere crystal. Hence
we feel confident in making this comparison which
reveals interesting differences between the classical
and quantum systems.

It is of course well known that the particles in a
classical system tend to be much more localized than

FIG. 25. Single-particle density at three densities in the
crystal phase. The solid curve is for the density
p=0.589073, the dashed and dotted curve for p=0.5260"3,
and the dashed curve for p=0.468¢ 3.

those in a quantum system. This is confirmed by the
direct simulation of Young and Alder.’! Near the
melting density the ratio of root-mean-square dis-
placement to the nearest-neighbor distance of the
classical system is close to one half that of the quan-
tum Lennard-Jones system near melting. Two other
qualitative points are interesting. The classical sys-
tem shows distinct non-Gaussian behavior for p(T).
At low densities p(T) drops off more slowly than a
Gaussian, while at high densities it falls off somewhat
faster. As we have just pointed out, the moments of
our distribution cannot be reliably extrapolated to
give an estimate (8) of non-Gaussian behavior. The
values of B from both variational and mixed compu-
tations suggest small positive deviations of about 5%
from Gaussian behavior. This is comparable with
those found by Alder and Young in the classical

log p(r)

-8 1 1 ! 1 1 1 1

o] o.l 0.2 0.3 04 05 06 0.7

(r/cr)2

FIG. 26. Semilog plot of the single-particle density p(r)
in the crystal phase at a density p=0.5260"3. The straight
line represents a perfect Gaussian distribution with the same
second moment as p(r).
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TABLE XIII. Moments of the single-particle distribution function in thg crystal phase. The first column gives the density in
reduced units. The quantities in pointed brackets have been averaged over the single-particle distribution function p(7). A com-
pletely isotropic distribution would lead to identical values for all entries at a given density. The small differences between the

entries at a given density are within our computational errors.

po’ (IxD v (lz1) (Ix+y0) (Ix=yh  Alx+z) (x=zly  Ay+zh v~z
0468 0537 0536 0531 0.534 0.538 0.540 0.528 0.536 0.530
0.526 0436 0426  0.419 0.452 0.411 0.411 0.444 - 0.417 0.428
0589 0352 0323 0332 0.342 0.333 0.333 0322 0.333

0.351

hard-sphere system near melting. Our data at the
highest density suggest a much smaller value than
5%. Our results only cover the density range from
melting up to 25% above melting, whereas the hard-
sphere results go up to 40% above melting. Clearly a
comparison over a wider density range would be
desirable. Second, the classical hard-sphere results
show considerable anisotropy for p(¥). This aniso-
tropy is present, but weak, at low densities and be-
comes very pronounced at higher densities. This is
markedly different behavior from our results which,
as we have noted, show highly spherical distributions.
Again a comparison over a wider density range would
be interesting. It is likely that the comparatively large
amplitude oscillations in the quantum system effec-
tively average out any tendency to an anisotropic dis-
tribution.
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We close this. section with a discussion of the type
of localization that appears in our GFMC simulations.
It has already been pointed out that the particles
remain localized in the neighborhood of the lattice
sites. A detailed examination of the probability dis-
tribution around individual sites reveals two novel
features. First, there is a definite tendency for the
average position of the particle to move away from the
original lattice site. These deviations from the origi-
nal sites are nearly always small and random in direc-
tion. Second, in a few instances the deviation is large
and quite striking. Figure 27 shows the distribution
of the centers of mass of all the particles of the cry-
stal accumulated over five of our usual GFMC runs.
Clearly there is a significant spread representing parti-
cles whose centers of mass have deviated sharply
from the original sites. On the same graph we have

o=, A0

o 1 1 1 J o i - 1 A 1 1
o] ol 02 03 04 05 06 [0} oI 02 03 04 05 06 07 08 09
2 .
(r/o7) (rrc)?

FIG. 27. Distribution of the center of gravities of the particles in the crystal phase. The left curve is the distribution from a
variational calculation. The right curve is the distribution from our GFMC calculation. Both are for a density p=0.5260'_3‘
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FIG. 28. Radial distribution function g(r) in the crystal
phase. The dashed curve is for a density p=0.5260"3, the
solid curve for a density p=0.58903.

plotted the distribution obtained by a variational cal-
culation of the usual kind. The difference is striking;
the variational wave function allows very little motion
of the center of masses from the lattice sites. On the
other hand the GFMC method allows much more

2.251
2.00
1.75
1.50
1.25
S(k)
1.00
0.75
0.50

0.25

S(K)

0O 2 4 6 8 10 12

freedom for the particles and this gives rise to the
long tail we observe. We are not aware of any other
studies of these phenomena in other classical or
quantum systems. The results we presented earlier
on the single-particle distribution functions were ob-
tained by averaging over all the particles in the sys-
tem. Since the deviations from the lattice sites are
random in direction they average out in the final dis-
tribution.

D. Pair correlation and structure function

As far as we are aware there are no published data
on S(k) or g(r) for the crystal phase. Both of these
correlation functions will of course show directional
dependence. We thought it worthwhile to present
data for the spherical average of both these functions
at our two highest densities pa®=0.526 and 0.589.

Figure 28 shows g(r) at two densities. As the den-
sity increases there is a rapid rise in the height of the
first peak of this function. This is due to the sharper
localization of the particles which we noted in Sec.
IVC. However the degree of correlation revealed by
these curves is still relatively weak. For example, in
the fluid phase the classical Lennard-Jones system
has a pair correlation function with a first peak height
which is often greater than 3.0, as compared with our
value of 1.7. As far as we are aware there have been
no published variational results giving g (r) for quan-
tum crystals.

2.25
(

2.00}

1.25F
1.00F
0.751
0.50+

0.25f

FIG. 29. Structure factor S(k) in the crystal phase. The left curve is for a density p=0.526"3, the right curve is for a den-

sity p=0.589073.
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FIG. 30. Momentum distribution in the crystal phase
compared with that in the fluid phase. The solid curve is for
the fluid phase at 1.2p4(p =0.438573) the dashed curve for
the crystal phase at p=0.5265"3.

Figure 29 shows our sphericalized structure func-
tions at the same densities. The rising of the first
peak with increasing density again reflects, although
more indirectly, the increasing order in the system.
However, as with g(r), S(k) reveals comparatively
weak order. It is well known that S(k) has a first
peak height of 2.85 near freezing for many classical
systems. The highest value, at a density 25% above
freezing, of the first peak is 1.97. We would wel-
come experimental data on S (k) in the crystal phase.
It is likely that it will provide a sensitive test of the
two-body potential used in our GFMC calculations.

E. Momentum distribution

We have computed both the single-particle density
matrix and its Fourier transform »n (k) in the crystal
phase. No data, corresponding to those available in
the fluid phase, have been published for the crystal.
Nevertheless, we present data at one typical density.

When we extrapolate p;(r) to large r we find, for
all densities in the crystal phase, that it extrapolates
accurately to zero. We thus conclude that within our
errors there is no condensate fraction in the crystal.
Of course we cannot rule out the presence of a small
condensate less than our error estimate which is
about 1%. We can, however, say that there is a rapid
drop in the condensate fraction as we move from the
high-density fluid phase to the low-density crystal
phase. We remark that for the soft Yukawa potential
our GFMC studies?® have shown condensate frac-

tions of the order of a few percent in the crystal
phase. Whether the absence of a condensate in the
helium crystal is a consequence of the type of impor-
tance function we have used in our GFMC calcula-
tions is a matter which must await more extensive
calculations.

Figure 30 shows the sphericalized momentum dis-
tribution for po® =0.526. On the same graph we
show the momentum distribution for the highest
fluid density. In the denser crystal phase the distri-
bution is much wider. This is to be expected as the
kinetic energy of the system has risen from 19 to
27 °K per particle, a consequence of the increased lo-
calization of the particles. We would welcome meas-
urements of n(k), as a function of density, in the
solid phase.

V. SUMMARY AND CONCLUSIONS

We have given a survey of the properties of liquid
and crystal phases of *He modeled as a boson system
with a Lennard-Jones potential. Although we have re-
peated certain variational calculations with product
("Jastrow") wave functions, the principal tool was the
Green’s-function Monte Carlo method. It has been
shown that this method is reliable, giving results
which are independent of importance functions that
differ significantly. The errors, statistical and other,
of our numerical results were carefully assessed. En-
ergy values can be obtained with errors less than 1%;
these are exact except for statistical errors, minor nu-
merical errors, and a somewhat uncertain but small
size dependence. Properties derived from the energy
such as pressure, velocity of sound, and compressibil-
ity of the solid have larger errors but are good
enough for quantitative comparison with experiment.
Quantum-mechanical expectations have generally
been computed using the "extrapolation" method.
The latter is not exact—it gives in fact stationary esti-
mates, but the results for structure function, g(r),
momentum density, and crystal one-body distribution
have been demonstrated to be independent of trial
functions from which the expectations are made.

The new calculations confirm definitively that the
equation of state of liquid and fcc crystal phases are
substantially lower in energy than given by product
trial functions. The agreement with experiment is
considerably improved but we conclude that the
Lennard-Jones potential with de Boer—Michels
parameters does not give a quantitative description of
condensed helium. The structure function for the
fluid, on the other hand, is in good agreement with
experiment when evaluated at the calculated equili-
brium density which coincides with the experimental
value. The calculated momentum distribution agrees
reasonably well with recent analyses of neutron
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scattering data although neither set of data is ex-
tremely precise. Our estimate of the average Kinetic
energy conforms closely to a recent experimental esti-
mate. Finally we estimate a condensate fraction of
0.11 at equilibrium. Woods and Sears* derived a
value of 0.069 +0.008 from neutron scattering exper-
iments at 1.1 °K. We suggest that additional experi-
mental information on this and on the momentum
distribution at other fluid densities would be well
worthwhile.

One can draw useful theoretical conclusions as
well. The first is that within their errors, we confirm
the predictions of Kalos, Levesque, and Verlet® for

the energy of the LJ fluid based upon their perturba-

tion theory connecting hard-sphere and hard-core
systems. This, in turn, permits us to make prelim-
inary predictions of the fluid equation of state which
would be given by alternative two-body potentials’
that have been proposed in the literature. Specifical-
* ly, using the KLV perturbation theory we find the LJ
II* potential has the wrong shape for the equation of
state. The Beck and the Bruch-McGee I potential®
gives energy values which seem too shallow. The
exponential-Spliné-Morse-Morse-Spline-Van der
Waals (ESMMSV) potential®? may also give shallower
energies than LJ potential. The Bruch-McGee II po-
tential may be excluded on the basis of simple pertur-
bation theory which gives an upper bound of —8.4 °K
per particle at p = py. ‘

It seems likely that the deficiency of the Jastrow
trial function in predicting accurately ground-state
properties of condensed helium is its omission of cer-
tain significant three-body correlations. Their inclu-
sion in approximate treatments of the variational cal-
culation®” has lowered the predicted energy nearly to
the value predicted by the GFMC method.

Our conclusions about solid *He are generally simi-
lar to those for the fluid except that fewer experi-
mental data exist. Again the equation of state calcu-
lated by GFMC is in better agreement with experi-
ment than is that calculated variationally with trial
functions consisting of a Jastrow product times locali-
zation factors at each lattice site. Nevertheless, the
Lennard-Jones potential is clearly in error. The '
disagreement cannot be explained by the differences
between fcc and hep phases. In repeating variational
calculations for the fcc lattice, we have improved the
statistics to the point where, in the density range con-
sidered the differences between the energies of the
two types of crystal orders are less than 0.1 °K, the
Monte Carlo error. We plan GFMC calculations for
the hcp phase and for whatever force law appears
best as calculated by hard-sphere perturbation theory.

To confirm these accurate calculations of properties
of solid *He it would be very useful if experimental
measurements of structure functions, momentum
distributions and average kinetic energy could be car-
ried out.
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APPENDIX A: ESTIMATION OF
THREE-BODY POTENTIAL

We have estimated the perturbation of the energy
arising from the Axilrod-Teller!! triple-dipole poten-
tial

0.324

3
1+3]1 cos0,]

i=1

Vi(ri,riz,ry) = (A1)

r 132’ 133f233
The coefficient is such that V; gives an energy in °K
when 7 is expressed in units of o. Our estimates
were obtained as follows. The most important contri-
bution, in which all r; are less than half the side of
the periodic box L may be computed directly from
configurations (i.e., sets of numerical values of coor-
dinates of all particles) recorded on magnetic tape for
both variational and GFMC runs. Since this requires
three-body sums it is moderately time consuming.
After a little experimentation it was found that accu-
racy of the order of 0.002 °K or better, could be ob-
tained from 100 sparsely chosen configurations for
each case. To compute the errors in (V3) GFMC
averages were obtained from configurations recorded
from two nonconsecutive runs. Extrapolated values
of (V3) were obtained from the GFMC (i.e.,
"mixed") estimates and from the variational estimates
by means of the usual extrapolation

<V3>ex=2<V3)ltll_<V3>T_~ (A2)

A significant tail correction, where some ry > %—L,
remained to be estimated. This was done by a Monte
Carlo quadrature in which the superposition approxi-
mation was made

p3(T1, T, T3,) = p’g (T1) g (T13) g (Ty3) (A3)

and in which g was taken to be the extrapolated func-
tion for r < %L and unity for r = %L. It proved
convenient to split the tail correction into that part in
which ry; < %L and ry3 > %L, and that part in which
both ry, and r; exceed the cutoff. For the first in-
tegral, a trapezoidal integration over ry, was com-
bined with Monte Carlo integration on r;; and on the
cosine of the angle 8, between ry; and ry;.

The variable r;;3 was sampled from a probability
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distribution function®® g4(ry3) proportional to ri3',
with r;3 > %L. The variable cosé was sampled uni-

formly. Both r;; and cos6, were stratified®* as well,
using of the order of ten intervals.

For the integral in which r;, was also larger than
%L the procedure was the same except that ry; was
also sampled in a stratified way from q4(r;y). A few
seconds of computing gave statistical errors for the
combined tail correction of less than 0.001 °K.

A useful check on the tail correction was provided
by carrying out the procedure for the 64 and 128
body results at p=0.9p,. For 64 particles the extra-
polated (V3) is 0.1128 °K with an estimated tail
correction of 0.0077 for a total (V3) of
0.1205 +£0.0016. The corresponding results obtained
with 128 particles were 0.1161, 0.0034, and
0.1195.£0.0017. The two results agree satisfactorily
within statistical errors. The discrepancy of 0.061 °K
is about 13% of the 64 body tail correction but is
completely negligible as far as total energy is con-
cerned. For 64 particles the tail correction is about
8% of the total (V3) for every fluid density and
4—5% of (V;) for crystal states.

APPENDIXVB: PHONON CORRECTION

The Green’s-function Monte Carlo method is exact
for a finite system. In this section we attempt to
correct for the finite size of our simulation cell by in-
cluding the correlations introduced by the zero-point
motion of the long-wavelength phonons which would
be present in an infinite system. One knows for ex-
ample that the structure function for small k will
behave like

lim § (k) = 2% , (B1)
k—0 2me
where c is the speed of sound and m is the mass of a
helium atom. The Monte Carlo results will not satis-
fy this condition since the k’s are limited by the
periodic boundary conditions to be in the reciprocal
lattice of the simulation cell.

It has been proposed by Reatto and Chester®® that
one can correct for the finite system size by assuming
that the infinite-system wave function ., is related
to the finite-system wave function ¢y by

‘I’oo = lI‘Dhonon';l’N s (B2)
where,
1 mc o
Yphonon = EXP [— 5 izq;z.;)_ﬁ(,yz ) 1]
(B3)

=exp[-— % ) uLR(rU)] .

i<j

This phonon wave function gives the correct behavior
of S(k) at small k [Eq. (B1)]. The parameter k, can
be varied to minimize the energy but it should
correspond only to long-wavelength phonons, i.e.,

k.L <1 and k.o <<1 . (B4)

To calculate the change in g(r), and hence in S (k)
and the energy, the reference-hypernetted-chain equa-
tion (RHNC) is used. Let AS(k)=S,.(k) —Sy(k)
where Sy is calculated using an N-body system.

Then the change in the direct correlation function is

AS’

ACl) = S2(k) + AS (k) Sy (k) (BS)
and the RHNC equation is v
AC(r) =Ag(r) —u(r) —In|t + 28 | (gg)
' gN(’)

For a given u (r) and gy(r) these equations can be
iterated to yield AS (k) and Ag(r). It should be not-
ed that both g..(r) and S.. (k) will be positive and
the small k condition in Eq. (B1) will be exactly satis-
fied.

Now the ground-state energy is approximately
given by its variational estimate

E=-§fd3rg(r)

0 +—”2-v2uSR(r)] ., B
2m

where
uSR=%(b/r)5 . ' . (B8)

Then the change in energy will be

= —FEy=£ 3
AE=E_—Ey 2fdrAg(r)

|
V(r) +§-’;V Usp

ﬁl
+ £ [ dr g () I e ()

(B9)

The change in energy resulting from this procedure
is very small. For example at the density of

p=0.3648/0>, AE=-2.7%x10"*°K

(with C =237 m/sec and k. =0.144/0). The energy
shift can be lowered somewhat more by varying the
speed of sound as well; the minimum occurs when
¢ =950 m/sec, k. =0.105/0, and

AE =-3.5x107*°K. At higher densities the shift is
larger; for example at

p=049/0>, AE=-23x207°K

(with ¢ =475 m/sec and k. =0.25/0). These ener-
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gies are much smaller than the errors in the calcula-
tion and can be completely ignored. Similarly the
change in S (k) is significant only at very small k.
Thus far we have merely estimated the change in the
variational energy due to Yphonon. In essence what we
have done is to estimate the magnitude of a very
small size-dependent term in the variational energy.
The size dependence comes about because as we in-
crease the size of the system more and more long-
wavelength phonon modes are included in the varia-
tional calculation. By resorting to an approximate in-
tegral equation (RHNC) we have been able to esti-
mate the size of the correction for an arbitrary large
system.

Unfortunately this procedure cannot be carried out
within the framework of the GFMC method. The
procedure depends on an explicit knowledge of the
wave function, which we do not have. However we
see no reason to believe that the magnitude of the ef-
fect would be significantly different for a variational
calculation as compared with a GFMC calculation.
This statement is confirmed by the tests for size
dependence in our GFMC studies. It will be recalled
from our discussion in Sec. II C that there was no ap-
preciable size dependence in the energy of the sys-
tem. We thus conclude that as we include more pho-
non modes into the GFMC calculation the energy is
not appreciably changed.

It should be mentioned that in an earlier calcula-
tion® with the GFMC method on hard spheres, the
"phonon correction" is in error (the tail correction to
V2u g was neglected). When the error is rectified®
the energy shift is roughly 1073(#2/ma?); compare
Table I and Fig. 1 of Ref. 6.

J

APPENDIX C: EXTENSION OF THE RADIAL
DISTRIBUTION FUNCTION

The radial distribution function g(r) obtained in a
simulation is naturally limited to values of r less than
half of the simulation box size, i.e., r < %L. To

compute the structure function S (k) one needs to
make an extension to larger values. The simplest as-
sumption, namely, g(r) =1 for r > -;—L, often leads
to a physically unacceptable S (k) for small k, for ex-
ample, an S (k) which is negative.

To extend the g(r) to large r we have assumed
that for r > %L, g is well approximated by & which
describes damped oscillations,

g(r)=1+(1/r)Re(4e?) . (a2}

Here A4 and z are complex parameters determined by
a nonlinear fit which minimizes X2 where,

L/2
= lguc) ~2 () ©

gmc(r) is the radial distribution function generated
by our Monte Carlo runs. The lower limit to the fit
ro was located near the first minimum of gyc(r).

This method of extending g (r) was previously
used and tested on the classical one component plas-
ma®’ at very high density where g(r) displays much
more correlation than for “He, and was found to give
very reliable results. We believe the assumed form
of g(r) is reasonable for *He since the values for x>
compared well with the small statistical errors in
&mc(r). In addition S(k), obtained from Fourier
transforming the extended g, is well behaved for
small k.

APPENDIX D: TABULATED RADIAL DISTRIBUTION AND STRUCTURE FUNCTIONS

In this Appendix we present Tables XIV—XVII for g(r) and S (k) at several densities.

TABLE XIV. Radial distribution function g (r) for three densities [ is in units of o and denotes the upper end of the inter-

val for which g(r) is given).

r Po 1.1p, 1.2p, r Po L1pg 1.2py
0.6800 0.0000 0.0000 0.0000 1.1200 0.8542 0.9539 0.9971
0.7200 0.0001 0.0002 0.0002 1.1600 1.0158 1.1013 1.1541
0.7600 0.0007 0.0002 0.0016 1.2000 1.1229 1.2322 1.2676
0.8000 0.0038 0.0059 0.0056 1.2400 1.2353 1.2830 1.3652
0.8400 0.0171 0.0211 0.0262 1.2800 1.2976 1.3555 1.3920
0.8800 0.0562 0.0559 0.0637 1.3200 1.3082 1.3682 1.4139
0.9200 0.1250 0.1431 0.1487 1.3600 1.3488 1.3857 1.4193
0.9600 0.2253 0.2586 0.2793 1.4000 13226 1.3482 1.4140
1.0000 0.3550 0.4131 0.4366 1.4400 1.3103 1.3234 1.3444
1.0400 0.5078 0.6010 0.6463 1.4800 1.2837 1.2694 1:3007
1.0800 0.6854 0.7915 0.8818 1.5200 1.2331 12132 1.2413




5630 WHITLOCK, CEPERLEY, CHESTER, AND KALOS 19
TABLE XIV. (Continued)

r Po 1.1pg 1.2pg r Po L.1pg 1.2p9
1.5600 1.2287 1.1609 1.1696 2.1600 0.9096 0.9306 0.9216
1.6000 1.1678 1.1243 1.1362 2.2000 0.9195 0.9464 0.9240
1.6400 1.1256 1.0835 1.0654 2.2400 0.9287 0.9581 0.9495
1.6800 1.1009 1.0539 1.0302 2.2800 0.9529 0.9742 0.9744
1.7200 1.0393 1.0060 0.9771 2.3200 0.9682 0.9998 1.0053
1.7600 1.0065 ©0.9548 0.9445 2.3600 0.9757 1.0047 1.0182
1.8000 0.9854 0.9414 0.9082 2.4000 1.0020 1.0206 1.0401
1.8400 0.9513 0.9187 0.8853 2.4400 1.0074 1.0280 1.0516
1.8800 0.9520 0.9036 0.8788 2.4800 1.0105 1.0407 1.0589
1.9200 0.9231 0.8983 0.8550 2.5200 1.0281 1.0418 1.0531
1.9600 0.9036 0.8888 0.8517 2.5600 1.0317 1.0323 1.0690
2.0000 0.8955 0.8754 0.8676 2.6000 1.0364 1.0330 1.0560
2.0400 0.9118 0.8970 0.8546 2.6400 1.0298 1.0398 1.0522
2.0800 0.8987 0.9023 0.8791 2.6800 1.0393 1.0386 1.0597
2.1200 0.9105 0.9096 0.9064

TABLE XV. Structure function S(k) at three densities (k is in units of o).
k Po I.1pg 1.2pg k Po I.1pg 1.2pg
0.2 0.089 0.045 0.037 6.2 1.129 1.185 1.211
0.4 0.091 0.048 0.036 64 1.084 1.128 1.142
0.6 0.096 0.054 0.041 6.6 1.046 1.079 1.084
0.8 0.103 0.063 0.050 6.8 1.016 1.037 1.038
1.0 0.113 0.075 0.061 7.0 0.991 1.004 1.002
1.2 0.124 0.088 0.072 7.2 0.972 0.978 0.973
1.4 0.137 0.104 0.086 1.4 0.959 0.959 0.952
1.6 0.152 0.122 0.102 7.6 0.950 0.946 0.937
1.8 0.170 0.141 ° 0.120 78 0.944 0.937 0.928
2.0 0.190 0.163 0.138 8.0 0.942 - 0.933 0.923
2.2 0.212 0.186 0.158 8.2 0.942 0.932 0.922
24 0.237 0.211 0.181 8.4 0.945 0.934 0.925
2.6 0.264 0.238 0.205 8.6 0.950 0.938 0.930
2.8 0.296 0.269 0.230 8.8 0.955 0.944 0.936
3.0 0.332 0.302 0.257 9.0 0.962 0.952 0.945
32 0.375 0.341 0.289 9.2 0.970 0.960 0.954
34 0.426 0.386 0.325 9.4 0.977 0.968 0.964
3.6 0.487 0.441 0.367 9.6 0.985 0.977 0.974
38 0.564 0.508 0.420 9.8 0.992 0.985 0.984
4.0 0.659 0.591 0.491 10.0 0.998 0.993 0.993
42 0.774 0.693 0.584 10.2 1.004 1.000 1.001
44 0.908 0.817 0.707 10.4 1.008 1.006 1.008
4.6 1.051 0.958 0.869 10.6 1.012 1.011 1.013
4.8 1.181 1.102 1.063 10.8 1.015 1.015 1.017
5.0 1.274 1.229 1.255 11.0 1.016 1.018 1.020
5.2 1.318 1.317 1.397 11.2 1.017 1.019 1.022
54 1.316 1.354 1.456 11.4 1.017 1.020 1.022
5.6 1.282 1.344 1.436 11.6 1.016 1.019 1.021
5.8 1.232 1.302 1.370 11.8 1.015 1.018 1.020
6.0 1.179 1.245 1.289 12.0 1.013 1.016

1.017
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TABLE XVI. Single-particle density in the crystal phase.
p=0.5260"3
r p(r) r p(r) - r p(r) r p(r)
0.05640 13.24400 0.40277 1.83520 0.56681 0.30074 0.69305 0.05767
0.09769 12.43200 0.41059 1.68100 0.57239 0.28050 0.69762 0.05939
0.12611 11.62000 0.41827 1.57560 0.57792 0.25956 0.70216 0.05804
0.14922 11.01073 0.42580 1.51540 0.58340 0.24706 0.70668 0.05733
0.16920 10.20620 0.43321 1.39780 0.58883 0.23138 0.71117 0.05504
0.18706 9.66560 0.44049 1.29300 0.59420 0.20388 0.71563 0.05078
0.20335 8.95100 0.44766 1.22460 0.59953 0.17590 0.72006 . 0.04439
0.21843 8.39620 0.45471 1.13644 0.60481 0.17294 0.72446 . 0.03959
0.23254 7.78340 0.46165 1.06726 0.61005 0.15418 0.72884 0.03743
0.24584 7.13200 0.46849 0.99440 0.61524 0.14826 0.73319 0.03435
0.25845 6.57720 0.47523 0.93572 0.62039 0.14110 0.73752 0.03866
0.27048 6.05700 0.48188 0.85242 0.62550 0.13792 0.74182 0.03954
0.28200 5.61400 0.48843 0.78420 0.63056 0.13488 0.74609 0.03466
0.29306 4.99520 0.49490 0.70966 0.63559 0.11921 0.75034 0.03078
0.30372 4.58460 0.50129 0.67908 0.64057 0.10321 0.75457 0.03122
0.31402 4.18040 ©0.50759 0.61196 0.64552 0.09940 0.75877 0.02515
0.32399 * 3.86360 0.51382 0.55526 0.65043 0.09688 0.76295 0.02203
0.33366 3.48120 0.51996 0.52522 ©0.65530 0.08281 0.76711 0.02247
0.34306 3.28560 0.52606 0.49416 0.66014 0.08352 0.77125 0.01970
0.35221 3.05740 0.53207 0.44948 0.66494 0.08319 0.77536 0.01604
0.36113 2.81420 0.53801 0.41198 0.66970 0.07470 0.77945 0.01298
0.36983 2.63760 0.54389 0.38964 0.67444 0.06601 0.78352 0.01073
0.37834 2.45240 0.54971 0.35338 0.67914 0.06776 0.78757 0.00896
0.38665 2.18620 0.55547 0.32750 0.68380 0.06262 0.79160 0.01042
0.39479 1.97140 0.56117 0.30678 0.68844 0.05749 0.79561 0.00995
TABLE XVIIL. Single-particle density in the crystal phase.
p=0.589573
r p(r) r p(r) r p(r) r p(r)

0.04974 15.29400 0.35522 2.63320 0.49988 0.37800 0.61122 0.06118
0.08615 14.68900 0.36212 2.40840 0.50481 0.34548 0.61525 0.05678
0.11122 14.08400 0.36888 2.20340 0.50969 0.32992 0.61926 0.04854
0.13160 13.40800 0.37553 2.02260 0.51452 0.30364 0.62324 0.04611
0.14922 12.65800 0.38206 1.85300 0.51930 0.29176 0.62720 0.04321
0.16497 11.59600 0.38848 1.74760 0.52405 0.28220 0.63113 0.04024
0.17934 11.11000 0.39480 1.60320 0.52875 0.26986 0.63504 0.03592
0.19264 10.44400 0.40102 1.48020 0.53341 0.23456 0.63893 0.03001
0.20508 9.80180 10.40714 1.39900 0.53802 0.22100 0.64279 0.02902
0.21681 9.15060 0.41317 1.26094 0.54260 0.20402 0.64662 0.02586
0.22794 8.48660 0.41912 1.16554 0.54714 0.17706 0.65044 0.02278
0.23855 7.65740 0.42498 1.08124 0.55165 0.17862 0.65423

0.01847




5632 WHITLOCK, CEPERLEY, CHESTER, AND KALOS 19.
TABLE XVIL. (Continued.)
0=0.589073
r p(r) r p(r) r p(r) r p(r)
0.24870 6.97400 0.43076 1.01968 0.55611 0.16392 0.65800 0.01612\
0.25846 6.46340 0.43647 0.93770 0.56055 0.15644 0.66175 0.01645
0.26786 5.82780 0.44210 0.88318 0.56494 0.14298 0.66548 0.01675
0.27694 5.37060 0.44766 0.83444 0.56930 0.13196 0.66919 © 0.01420
0.28574 5.01300 0.45316 0.76798 0.57363 10.11080 0.67287 ~0.01540
0.29427 4.72240 0.45858 0.69204 0.57793 0.11124 0.67654 0.01606
©0.30256 4.34280 0.46395 0.64356 0.58220 0.10988 0.68019 0.01198
0.31063 4.13240 0.46925 0.64204 0.58643 0.11074 0.68382 0.00854
0.31849 3.77960 0.47449 0.58452 0.59063 0.10400 0.68742 0.00563
0.32617 3.52320 0.47968 0.53776 0.59481 0.09917 0.69101 0.00266
0.33367 3.25220 0.48481 0.51586 0.59895 0.09321 -0.69459 0.00000
0.34100 3.05840 0.48989‘ 0.46966 0.60307 0.07791 0.69814 0.00000
0.34818 2.85160 0.49491 0.40998 0.60716 0.06396 0.70167 0.00000

3
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