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Elementary excitations in the surface region of a semi-infinite solid
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An exact method is described for calculating the electronic or vibrational excitations in the surface region
of a semi-infinite solid, starting from an orthogonal tight-binding or linear-combination-of-atomic-orbitals
model for electrons or a Born-von Karman model for phonons. A combination of matrix continued fraction
and conventional Green s function techniques is used; this separates the effects of termination or cleavage of
the perfect bulk crystal from effects arising from changes in the interactions in the surface region. Many
ordered overlayers and a restricted class of interfaces can be treated by the same methods,

I

I. INTRODUCTION

A variety of methods have been proposed for
calculating the properties of elementary excita-
tions at solid surfaces. Kalkstein and Soven'
(KS), for example, have presented an exact
Green's function theory based on the tight-binding
or linear -combination-of -atomic -orbitals (LCAO)
formalism. Within the tight-binding framework,
several approximate methods have been employed
for surfaces. Slab calculations, for example,
have proven to be useful for both electronic' and
vibrational' states. The real-space recursion
method of Haydock, Heine, and Kelly' can
be applied to surfaces; in fact, approximate alloy
surface densities of states have been calculated by
this technique. ' Dempsey and Kleinman' have re-
cently compared results of slab and real-space
recursion calculations for iron surfaces.

The method we will describe shares some ele-
ments of the three approaches mentioned above.
The starting point is an orthogonal tight-binding or
LCAO Ha, miltonian for electrons, or a Born-von
Karman model for phonons. The only other as-
sumption made is that the various planes of atoms
parallel to the surface share a common two-diinen-
sional translational syminetry, so that a two-di-
mensional transform with respect to surface or
planar wave vectors can be performed. We em-
phasize that, unlike slab or real-space recursion
calculations, the method is exact within the con-
fines of these starting assumptions. An overlayer
ordered in a commensurate superlattice of the
substrate surface net can also be treated, as can
interfaces when the constituents share a common
two-dimensional Bravais lattice.

After taking the transform with respect to sur-
face wave vectors, the desired elements of the
Green's function are developed in terms of a ma-
trix continued fraction. An exact termination of
the continued fraction can be performed when a

level is reached at which the planar transforms
of the Hamiltonian or dynamical matrix settle down
to their bulk values. For electrons, the Green's
function that terminates the continued fraction is
that appropriate for the surface region of a cleaved
perfect bulk crystal, and it can be determined
either by the methods outlined by KS or by using
standard numerical techniques for solving coupled
second-order equations. For phonons, the same
procedures apply, but the correspondence of the
Green's function terminating the matrix continued
fraction with that for a perfect cleaved crystal is
not precisely the same, as will be discussed later.

The combination of matrix continued fraction
and conventional Green's function approaches
naturally separates effects arising from termina-
tion of the perfect bulk crystal from effects due to
perturbed interactions in the surface region. The
computationally difficult part of the problem is to
calculate the Green's function for the terminated
bulk over the desired mesh of wave vectors in the
two-dimensional Brillouin zone (BZ). Once this
is done, the effects of changes in the interactions
in the surface region on such quantities as spectral
functions and dispersion relations in the surface
region can be found by straightforward matrix
manipulation, and layer -dependent densities of
states can be calculated by integrating the ap-
propriate spectral functions over the surface BZ.

The method is exact, given an appropriate
starting Hamiltonian. Furthermore, it is not
limited to density-of -states calculations, but can
also be used to determine other quantities of phys-
ical interest. In special cases, e.g. , for single
electronic bands' and decoupled phonons' at the
(100) surface of a simple cubic crystal, the ma-
trix equations reduce to the familiar scalar equations
for a linear chain with first-nearest-neighbor i;nter-
actions. In general, however, finite matrix equa-
tions must be solved. We will illustrate the
method for a case for which the matrices involved
are 2 ~2's rather than scalars.
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H. THEORY
g(L;z)= ——Imlim G(L, /;L, /;z),

1
(2)

For simplicity, we consider only surfaces of
monatomic crystals with one atom per unit cell in
the two-dimensional Bravais lattice, although it
is straightforward to extend the method to more
complicated systems. Let I index the layers in
the semi-infinite crystal and l denote the unit cell
(atom) within a layer. The interaction between
sites L, l and L', l' is described by a Hamiltonian
or force constant matrix H(L, /;L', /'), and the in-
verse of the one-particle Green's function has
elements

G '(L, /;L', /'g) =zI5(I, I ')5(/, /') -H(L, /;L', /'),

(1)

where I is the unit matrix of the same dimension
as H, and z=E+ie for electrons, z=M(ar'+is)
for phonons. Note that we do not assume a single-
band Hami. ltonian or any other simple form for
H(L, /; L', /') which will lead eventually to some
kind of decoupling. To give two examples, the
interatomic force constant matrices for lattice
vibrations are Cartesian 3 x3's, while for elec-
trons described by an s -P -d tight-binding model,
the Hamiltonian matrices H(L, /;I ', /') are 9x9's.
Layer spectral density matrices can be defined by

and are independent of the particular site l within
the layer.

To determine the Green's function, we take the
two-dimensional transform

G(L, /;L', /', z)

e-tl~' tÃ z, t % L', t tl G(L L t. «q z)
N, sP t

~s

G(L, L', q„z)

&t i~~ t Ii &z, t &- Ii &l ', l ' t t
G (L / L t

/
I.z }

s l, l

Here q, is a wave vector in the two-dimensional
reciprocal lattice, N, is the number of atoms in
a layer (N, —~), and R(L, /) is the position of the
atom at J,l.

The important thing to note, now, is that with
the assumption that the interplanar interactions
have finite range, the transform of the Hamiltonian
and hence of the inverse Green's function is always
a block tridiagonal matrix, that is,

z1-A, -B, 0 0

G '(q„z)=
z1 -A2

0

-B2 0

z1 -As -B3
-Bt3z1 -A4

(5)

The matrices A~(q, ) and B~(q,) are (n —1)x(n —1) square blocks of matrices H(L, L ', q, ), where n.
specifies the range of the interplanar interactions: atoms in plane 1 interact with atoms in planes 1 to
n, those in plane 2 with atoms in planes 2 to n+1, etc. In Eq. (5), 1 is the unit matrix of the same
dimension as%~, B,. As an illustration of the form of the A~ and B~ matrices,

A, (q,)=

H(1, 1;q, )

H(2, l.; q, )

H(1, 2;q,)

H(2, 2; q, )

H(l, n —1;q, )

H(2, n -1;q, )

H(n —1, 1;q, ) H(n —1,2; q,) ' '' H(n —l, n —1;q,)

B,(q,)=

H(l, n; q, )

H(2, n; q, )

0

H(2, n+ 1;q, )

0

0

H(n —1,n; q, ) H(n —l, n+ 1;q,) ' ' H(n —1,2n —2; q, )
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To illustrate the size of A~ and B~ more graphically, consider the (110) surface of an fcc crystal with
first- or first- and second-neighbor interactions. The range n of the interplanar interactions is three for
either case, so n -1=2. For lattice vibrations, the matrices A~, B, are thus 2 x2 blocks of Cartesian
3 x3's, so that A., and B~ are 6 x6's in overall size. For electrons described by an s-P -d tight binding
model, A& and B& would be 18 x18 matrices.

While the inverse Green's function is a block tridiagonal matrix, the Green's function itself is not, but,
blocked in the same way as in Eq. (5), has the form

G„(q„z) G„(q„z) G„(q„z)
G(q„z)= G„(q„z) G„(q„z) G~,(q„z}

G„(q„z) G„(q„z) G„(q„z)

Note that the subscripts ij in G,&(q„z) do not re-
fer to individual planes but to sets of (n —1)
planes, from (i —l)(n —1) + 1 to i(n —1) and from
(j —l)(n —1) + 1 to j(n —1), respectively

Suppose that we wish to find the upper left block,
G»(q„z), of the Green's function, from which we
could determine the layer spectral density func-
tions p(L;z) defined in Eq. (2) for planes 1 to n —1.
Let us redefine the upper left block of 6 as g„
that is,

g, = G„(q„z). (9)

Using matrix identities for inverting blocked ma-
trices as shown in Appendix A, we find that g, is
given by the series of equations

g~ = (z 1 -A~ —B, 'g2 ' B~)

g =(zl -A, —B 'g 'B ) ',
(1Oa)

(lob)

This series of equations can be terminated when
the matrices A~ and B, settle down to their bulk
values, which we shall denote by A~(q, ) and B~(q,).
Suppose that this occurs m blocks down, so that
A.

&

—A~ and B,=~B for i~ m. Note that this
settling down to bulk values of the Hamiltonian or
force constant matrices H(L, l;L', 1') occurs after
(m —1) x (n —1)planes, so m will usually be small.
Starting at level m, the equations for g, are

g = (z 1 —A~ B~ 'g ., B~)—', (1la)

g „=(zl -A~ B~ 'g „'B~}', — (lib)

Since these equations for g„ i ~ m, all have the
same structure, we can solve exactly for g =g,&.

g = ~=g(lz- ~ABg~ B~~) '. -(12)
Together with Eqs. (10a), (lob), . . . , which we
restate as

g~
—(zl -A~ -B~ 'g)„'B~~) ', 1&i &m —1, (13)

this provides an exact formal solution for
gi —G»(qg~z} ~

While Eqs. (12) and (13) are those appropriate
for numerical calculations, an alternative expres-
sion for g, may provide additional insight. We de-
fine a notation for premultiplication and postmul-
tiplication of a matrix inverse, M,M, //M=M,
'M ''M, . Then from Eqs. (12) and (13), g, can
be expressed as a matrix continued fraction.

g, = 1/(zl -A, -B,B~t//(Zl -A, —B,Bt//. . . .
(14)

This equation has the same form as that for the
Green's function at the end of a semi-infinite
linear chain; if the matrices in Eq (15) w. ere
1 x 1's (scalars), it would correspond to a linear
chain with nearest-neighbor interactions only.

In order to determine g, from Eqs. (12) and (13),
we must be able to calculate the Green's function

g~ that terminates the continued fraction. Before
outlining how this can be done, we digress briefly
to discuss what g~ represents. From inspection of
Eqs. (5), (8), (9), (loa), and (lob), g~ is the upper
left or 1, 1 block of a Green's function whose in-
verse is like that in Eq. (5), but with all elements
A~, B~ replaced by the bulk quantities A~, B~. For
electrons, g~ thus corresponds to the Green's-
function transform in the surface region of a
cleaved bulk crystal. For phonons, however, g~
does not correspond in precisely the same way to
the Green's function at the surface of a cleaved
crystal with no changes in the interatomic force
constants. For such a cleaved crystal, the self
force constants at the surface would differ from
those in the bulk in order to give overall transla-
tional invariance, i.e. , to satisfy

H(L, l; L, I) = —Q H(L, l; L', l'),
r, ', r'

where the prime on the sum excludes the term
I ', l'=I, /. For g~, the self force constants at
the surface do not satisfy this relationship, but
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are the same as in the bulk. Hence for phonons,

g~ is the Green's function in the surface region of
one half of a cleaved perfect crystal which is still
connected by springs to the immobile, other half
crysta, l.

Several methods can be used to calculate g~.
First, Eq. (12) can be rewritten

0=B~ 'g~ 'B~ g~ —(z1-A~) 'g~+1. (15)

This equation is quadratic in the elements of g,
and can be solved directly by iterative numerical
techniques. In the simplest cases, Eq. (15) re-
duces to a scalar equation whose solution is

g~=2 B,(z -A, —[(z -A, )'-4~B„~']'~'), (16)

where the branch of the square root function is
chosen to give the proper (1/z) behavior for
z —+~. The scalar ease, which corresponds to a
linear chain with nearest-neighbor interactions,
has been recognized as describing s electrons and
decoupled phonons at the (100) surface of simple
cubic crystals. "Kalkstein and Soven' (KS) used
scalar examples for all of their illustrative cal-
culations. We have tested one technique for a di-
rect numerical solution of Eq. (15) for s electrons
at the (110)surface of a face-centered cubic crystal,
for whichthe matrices inEq. (15)are 2 x2's, and
found it possible to achieve good accuracy with
reasonable amounts of computer time.

A second method of calculating the terminated
bulk function g is that of KS. Let Go(L -L'; q„z)
denote the interplanar transform of the Green's
function in the infinite, perfect bulk crystal.
G,(L L', q„z) c-an be found by taking the full
three-dimensional transform Go(q„q,e, ;z) of the
bulk Green's function, where q, is the wave vector
in the surface normal direction e„multiplying by
exp[ iq, e, ' [R(-L) -R(L')]), and integrating over
q, from 0 to 2v/a„where a, is the interplanar
spacing. g~ can then be determined from G, and
the "missing interactions (-H~) in the surface re-
gion of the terminated bulk; schematically,

g~
—(1 + Go ' H~)

' ~ Go .
'There is one feature of the treatment of KS that is

not apparent in the preceding very brief summary,
and that should be mentioned: namely, Eq. (17)
really represents an equation of twice the dimen-
sion as Eqs. (12) and (13) of our matrix continued
fraction approach. We have indicated this in Eq.
(17) by adding a carat over g . The reason for
this increase in dimension is that KS show how to
find the Green's function in the surface region of
one half of a cleaved crystal, and the perturba-
tions arising from cleavage extend through the
surface regions of both halves. For example,

cleavage cuts the interactions between an atom in
plane 1 and its former neighbors in planes -1 to

(n--1) in the other half crystal (as in Appendix
B, we have no plane 0). Thus if Eq. (12) is of
order [nz(n —1)]x [nz(n —1)], where n„ is the rank
of the interatomic Hamiltonian or force constant
matrices H(L, I;L', I'), then Eq. (1V) is of order
[2n„(n -1)]x[2n„(n —1)]. If the approach of KS is
used to calculate not just the recursion Green's
function, but also the true Green's function in the
surface region in the presence of additional sur-
face perturbations, then matrices of twice the di-
mension nz(n —1) must be manipulated at every
stage of the calculations.

We have described a method for calculating
g, (q„z)= G»(q„z), the upper left block of the
Green's function for the semi-infinite solid as de-
fined in Eq. (5) ~ We want to emphasize that the
method is not limited to calculating g, . Similar
equations can be derived for other blocks of the
Green's function which may be of interest. For
example, the 2, 1 block of G is G» ——g, 'B~ @. We
thus have a general procedure for determining the
Green's function in the surface region.

For situations in which the interplanar forces in
the surface region are of longer range than in the
bulk, the ability to determine other blocks of the
Green's function can be used to simplify the cal-
culations. Suppose, for example, that atoms in
plane 1 interact with atoms in planes 1 to 2n —1,
and that the range of the interplanar intera, ctions
decreases on going down into the bulk, until finally
atoms in a bulk plane A interact with atoms in
planes k -n+1 to k+n -1. For this ca,se, the
matrices in Eqs. (12) and (13) are of size [2(n —1)]
x[2(n -1)]. Now, however, the terminated bulk
Green's function g~ can be partitioned into four
(n —1) x(n -1) blocks that can all be expressed in
terms of an (n —1)x(n —1) Green's function y~,

g =, , ~, (»)
y~'~'y~ -~8' 1-~0 '~y'Hb'~y

(»)
y» can be found either by direct solution of Eq. (19)
or by the method of KS. For this example, the
range of the interplanar interactions at the surface
was exactly twice that in the bulk, but similar
procedures can be used for other cases in which
the range of interactions is greater in the surface
region.

To illustrate how ordered overlayers can be
treated if their structure is commensurate with
that of the substrate, consider a 2 X1 overlayer
on an fcc (100) surface. The two-dimensional BZ
for the overlayer is a rectangle equal to half of
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the square BZ for the substrate. The theory
presented carries through unchanged if the larger,
square BZ is used to define the two-dimensional
transforms. Interfaces can be treated by similar
methods if a common two-dimensional symmetry
is maintained parallel to the interface; since more
notation is need to define this problem, the solu-
tion is outlined in Appendix B.

Before ending this section, we want to distin-
guish clearly our exact, matrix continued fraction
appr oach from the approximate recursion proce-
dure of Haydock, Heine, and Kelly. 4 Their method
is designed to calculate particular scalar elements
of the Green's function in real space. By use of the
Lanczos algorithm, a scalar continued fraction is
generated for the desired element of the Green's
function. This is then terminated approximately by
a function of the form given in Eq. (16), with the poef-
ficients A and B chosen to give the proper band-
width. This procedure works reasonably well for
a restricted number of situations. In contrast,
our matrix continued fraction equations (12) and
(13) are exact, and are not limited to cases where
one continuous band occurs, or where hybridiza-
tion between multiple bands is ignored.

Another variation of the recursion method which
could be appbed to surface problems would be to
perform recursion calculations after transforming

. with respect to surface wave vectors q, . This
would yield approximate solutions for particuiar
elements, G„(L,L;q„z), .of the transform of the
Green's function. Like real space recursion, this
method would give approximate rather than exa.'ct

results.

HI. ILLUSTRATIVE RESULTS AND DISCUSSION
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FIG. 1. Surface region, terminated bul. k, and infin-
ite bulg densities of states for s electrons, in an fcc
(110) crystal. Plane 1 and plane 2 results in the sur-
face region [fuQ curves, p (I.; E)] and in the terminated
bulk [dashed curves, p ~ (I.; E)] are at the bottom and
middle; the infinite crystal density of states po(E) is at
the top.

To test some of the computational aspects of our
approach, we have performed calculations for
several simple model electronic systems, namely,
s electrons at various surfaces of cubic crystals,
with first- and second-neighbor interactions al-
lowed. Although s -band tight-binding calculations
are not of intrinsic interest, these systems pro-
vide the simplest cases for which Eqs'. (12) and
(13) do not reduce to scalar equations, but instead
are 2 x2 or 3 x3 matrix equations. Applications to
more realistic problems such as lattice vibrations
or electrons in d-band metals would involve larger
matrices, but the structure of the calculations
would remain the same.

In our calculations, the terminated bulk Green's
functions g~(q„z) were found by the method out-
lined by KS, but in its general matrix form. A
small but finite imagina. ry part of z was included
throughout the calculations; this makes it possible
to use very simple and direct procedures to eval-

uate the necessary integrals.
Figure 1 gives illustrative results for s elec-

trons in an fcc (110) crystal with first-nearest-
neighbor (inn) interactions. The range n of the
interplanar interactions is three for this case, so
the matrices A&, B&, g&, and g~ are 2 X2's; adding
second-nearest-neighbor (2nn) interactions would
not change the range n for this surface. The two-
dimensiona. l real and reciprocal lattices for an
fcc (110) crystal are rectangular. For the results
shown, all site-diagonal elements of the Hamil-
tonian'were set equal to zero, while the interac-
tions h,„„(L,L') between first neighbors in planes
I and I ' were assigned the following va.lues:
h „„„(L,L) = h, „„(bulk) = 1.0; k,„„(1,2)= 0.6;
h, „„(1,3)=0.8. The imaginary part of z used was
O. 02.

The curves in Fig. 1 exhibit some expected fea-
tures. The density of states in the surface layer
differs significantly from the terminated bulk re-
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suits (bottom) because of the 40/p and 20% reduc-
tions in the 1nn interactions between planes
1,2, and 1,3, respectively. En the second
layer (middle), the surface region and terminated .

bulk results are more similar to one another, and
both are closer to the infinite bulk density of
states (top). No surface bound states appear for
this example.

As already noted, we have used relatively simple
numerical integration techniques. The integrals
over q~ needed to evaluate the interplanar trans-
forms G,(L -I ', q„z}of the infinite bulk Green's
function were performed by expanding the numera-
tor and denominator of the integrands to first or-
der in each of a relatively small number of q, inte-
grals (for Fig. 1,80), integrating, and summing.
The surface BZ integrals were calculated by sum-
mation over a regular mesh of points (for Fig.
1,2500points in the full surface BZ). With the
integration procedures used, the infinite bulk den-
sity of states curve in Fig. 1 exhibits some noise,
although the singularities at E= -4 and 0 show up
rather well. A computationally interesting point
is that the noise in Go does not produce uncertain-
ties of the same magnitude in the surface region
or terminated bulk results. In fact, somewhat
coarser integration meshes, e.g. , summing over
900 or 1600 rather than 2500 q, values in the sur-
face BZ, gave almost identical results for the
Green's functions in the surface region, while the
oscillations in the infinite crystal Green s func-
tions increased substantially.

Although we have shown only density of states
results, we can of course also calculate other
quantities such as spectral functions A(L, L; q„E)
~ImG(L, L; q„E) for elementary excitations in
the surface region. To generate the curves in
Fig. 1, in fact, constant-q, results for G(L, L', q„
E) for (I,L')=(1, 1), (1,2), and (2, 2) were calcu-
lated as functions of E for 2500 q, values in the
surface BZ.

Our calculations for these simple electronic
models have demonstrated the advantage of sep-
arating the effects of cleavage or termination from
those produced by additional perturbations in the
surface region. Almost all of the computer time
required for the calculations is spent in evaluating
the infinite and terminated bulk Green's functions,
which can be calculated once and stored; a rela-
tively small amount of time is needed to perform
the matrix multiplications and inversions in Eq.
(13) that yield the Green's function in the surface
region. We believe that our calculations for these
simple models also demonstrate the feasibility of
performing similar calculations for more realistic
models for electrons or phonons in the surface re-
gion of semi-infinite crystals.
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APPENDIX A: DERIVATION OF EQUATIONS (10a), (10b),...

Equations (10a), (10b), . . . are derived by using
an identity for inverting blocked matrices. I et a
matrix S be defined in terms of blocks n„n„P„
P, by

(Al)

n, and n, are assumed to be square matrices
whose inverses exist. The inverse of S, blocked
in the same way, is

where

n2 'fa'&i
(A2)

I 1 n2 82&

(Asb)

e, )
G 1

. (A4')

Pg=(-&~ o 0 "') (A5)

G~' — -B~~

-B2

z1 -A. B
-B~ z1 -A4

. (A8)

Then from Eqs. (A1), (A2), and (ASa), the upper
left block of G is given by

g, = (s 1 -A, —L),
'

~G
' P~) '

=(1-A, -a, g, a',)-', (AV)

where g, is in turn the upper left block of ~G.
Equation (AV) is the same as Eq. (10a); Eqs. (10b}
and the others in the series follow on repeated ap-
plication of the matrix identify (A2).

To apply this identify to calculating g, =G»(q„z),
the upper left block of the Green's function in Eq.
(8), we block the inverse Green's function in Eq.
(5) as follows:
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APPENDIX 8: INTERFACES

As stated in the main text, interfaces can be
treated by the matrix continued fraction approach
if a common two-dimensional symmetry'is main-
tained parallel to the interface, allowing a two-
dimensional transform to be performed. Consider
an interface between two materials for which this
condition i.s satisfied, e.g. , a Au-Ag interface.
Let the planes in material M, on one side of the
interface be labeled 1,2, 3, . . . , and let n, give
the range of the interactions in M, ; atoms in plane

1 interact with atoms in planes 1 to n„etc, In
material M on the other side of the interface, the
planes are labeled -1, -2, -3, . . . , and the
range of the interplanar interaction is n . Assume
finally the atoms in planes 1 to n, —1 in M, can in-
teract with atoms in planes —1 to -(n —1) in M .
This last assumption affects only the blocking we
use, not the basic approach.

After transforming with respect to q„ the in-
verse Green's function can be written as an infi-
nite, block tridiagonal matrix, which we partition
initially as follows:

( G-'(I ) -~8

G'(M)=
zl -A~

-B2

0

-B2t

zl -A.,
-B,

0

gi -A,

G-'(m, ) =
g1, -Aj,

Bj.

0

g1, -A„
0

-B2,

g1, -A~,

000
000
IB 00

(S4a)

0 0 Bt

000
000

(a4b)

/

Here 1., A~, and 9,.are (s. -1)x(n -1) bloc.ks
whose components are matrices (e.g. , 3 x3's for
phonons in monatoniic Bravais lattices); 1„A~„
and B~, are (n, -1)X(n, -1)'s; B~ and B~~, describ-
ing interactions across the interface, are (n -1)
x(n, - 1) and (e, -1)x(n. - 1) blocks, respectively.
Note that we have defided the matrices above the
diagonal as B&, in M, and B~t. in M. ; this notational
choice yields equations which are most similar in
form to those in the main text.

Suppose that we want to find the Green's function

in the interfacial region in material M„specifi-
cally in the (n„-1)x(n, -1) block of G which oc-
cupies the same location as z1. -A~.does in the
inverse. To do this, we first block G like its in-
verse in Eg. (Bl),

/ G(-, -) G(-, +) l6=
Q+, — G +, +

then use the matrix identity in Appendix A to de-
termine the semi-infinite matrix G(+, +),
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(s6)

~P G(M ) '~P=

B~'g, 'B~ 0 0

0 0

0 0

(87)

G(+, +)=[G-'(M,) ~P' G(M ) ~8]-'.

Substituting for ~p and ~p from Eqs. (84a) and
(84b) and carrying out the matrix multiplication,
~e obtain

g, =G, ,(M ). (86)

g, is the lower right block of G(M ); if only ma-
terial I were present, so that we had a surface
rather than an interface, g, would be the surface
region block of the Green's function for M . As
such, it can be found by the methods described in
the main text and Appendix A.

From Eqs. (86)-(88), we are left with the prob-
lem of evaluating the upper left or 1, 1 block of
G(+, +), whose inverse is given by

G-'(+, +)=
+ 1+ ~ g j.-

-B„
0

0

-B2
g1 -A~,

Except for the added term -B~ g, 'B~ inG, ', (+,+), this isidentical to Eq. (5). If we call the desired
block of the Green's function G», the following equations provide a complete formal solutioa, :

Gll ( ~+ +1+ ~ gl ~ 1+ g2+ 1+)

g;== &4 ~~. -+~. 'gg. i, + '+~+) ~

The two series of equations (811) can be terminated when A«and B„settl deown to their bulk
values.
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