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We describe a method to calculate structural properties of semiconductors from the electron-ion
Hamiltonian using density-functional expressions for the total energy. The method is applied to Si using an
ionic pseudopotential with a plane-wave basis and considering TO (I'), TA(X), and C,, — Cj, lattice
distortions. Harmonic and anharmonic forces and Griineisen coefficients are shown to be in reasonable
agreement with experiment except that additional steps toward self-consistency appear to be essential for the
very sensitive TA(X) mode. Charge densities for the distorted crystals show the nature of the electronic

forces and the relation to phenomenological models.

I. INTRODUCTION

In this paper we describe a practical method to
calculate the charge density and total energy of
crystals as a function of the atomic positions.!
The purpose is to derive structural properties
directly from the electron-ion Hamiltonian. The
basic starting point is the density-functional ap-
proach of Hohenberg, Kohn, and Sham*?® which
gives, in principle, exact expressions for the
charge density and the total energy. Here we ap-
ply the method to representative phonon modes in
Si and predict changes in the charge density and
total energy, determining both harmonic and an-
harmonic coefficients.,

The density functional has now been well estab-
lished as a method to compute total energies, for
example, in the work of Moruzzi et al.,? on ele-
mental metals. However, to our knowledge the
only other calculation for covalent semiconductors
is that of Ohkashi and Shindo.? Also, we note the
closely related work of Goroff and Kleinman® on
diamond. The above-mentioned work has all
been restricted to the calculation of the total en-
ergy as a function of volume with resulting pre-
dictions of the equilibrium lattice constant and
bulk modulus. There is another category of cal-
culations in which harmonic phonon energies are
calculated from perturbation theory, which can
be cast’ in terms of the inverse dielectric-func-
tion matrix € !, Relevant work in this area has
been summarized by Sinha® and by Sham,?® in addi-
tion to several more recent papers,’”!* Louie and
Cohen® have carried out the full calculations for
the zone-center optic mode. Others have used
physically motivated approximations to the ¢! ma-
trix; we note in particular the work of Turner and
Inkson, ! who report excellent agreement with
experiment for harmonic frequencies of the ele-
mental semiconductors. In these calculations it
is implicitly assumed, but not checked, that the
lattice is at equilibrium. Also, there have been a
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number of calculations of particular energies
based upon empirical tight-binding methods!% 1
and the “chemical pseudopotential”té,

The present work is quite different from previ-
ous calculations on covalent crystals. Here, var-
ious structural energies are determined directly
as the difference in total energies of distorted and
undistorted crystals. Therefore, we are not
limited to small displacements and we can calcu-
late anharmonic forces. Second, we determine
various representative restoring forces and the
equilibrium conditions for the same Hamiltonian,
which has not been done in other calculations.

The approach of directly calculating energy -dif-
ferences is similar to that of Refs. 15 and 16; how-
ever, unlike Refs, 15 and 16, we determine ex~
plicitly ion-ion and electron-electron interactions
which must be added to the band-structure contri-
butions to properly determine the total energy.

Two features are inherent in the present method:
(i) The calculations for the distorted crystal in
general must be carried out self-consistently.,
Here we carry the calculations to partial self-
consistency and show that for most cases the re~
sults are essentially convergent., For very sensi-
tive modes, in particular the soft transverse-
acoustic mode, the results are not very converg-
ent. (ii) The periodicity of the distorted crystal
is utilized to reduce the computations through the
use of “special points”!” to carry out the inte-
grals over the Brillouin zone., Hence our method
is practical only for distortions which give rise
to small unit cells, e.g., zone-center or zone-
boundary phonons. One result of this paper is
that by examining charge densities and various
contributions to the energies for such displace-
ment patterns, one can analyze the important
structural properties of crystals such as Si.

Silicon is chosen as the prototype for covalent
semiconductors because its electronic properties
at equilibrium are well understood in terms of
ionic pseudopotentials,!®!® and calculations of
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phonon energies have been reported using various
approximations for the electronic states® !¢ as
well as a host of phenomenological models.>?° In
a recent paper,?! the electron-ion pseudopotential
Hamiltonian and local-density functional used
throughout the present work were shown to satis-
factorily describe the equilibrium electronic bands
and the effects of atomic displacements upon the
energy bands, i.e., deformation potentials., In this
paper we describe calculations of representative
distortion energies, harmonic and anharmonic,
including the pressure dependence of phonon ener-
gies, and show relations of these structural ener-
gies to the electronic properties. We also analyze
the charge density of the distorted crystals, which
is the proper quantum-mechanical distribution
that has previously been approximated by classical
shells or bond charges.?’

The basic equations for calculation of the total
energy are given in Sec. II. There we show the
relation to the ¢! formalism’ and demonstrate the
equivalence of our method for small displacements,
i.e., harmonic energies. One consequence of this
equivalence is that local-field effects’ are included
to all orders in the present work. The electronic
Hamiltonian for Si is described in Sec. III and the
results are given in Sec. IV, where we see that
the energies calculated with no adjustable parame-
ters are in rather good agreement with experi-
ment. In Sec. IV we also present charge densities
which aid in understanding the forces and their
relation to phenomenological models.?’

II. FORMULATION

Structural properties of an array of atoms are
derived from the total energy E,, of the system as
a function of the positions of its constituent atoms.
Ey: is the sum of an electronic part E, and an
ionic part Ej,, corresponding to the direct Coulomb
interaction of the ions in a uniform negative back-
ground. E, is due to the valence electrons moving
in the potential of the ions and interacting with
each other. It can be formally expressed in the
“density-functional form” of Hohenberg and Kohn
(HK).2 They proved that E, is a unique functional
of the charge density n(r), i.e.,

Eyln) = [ vtntr)atr + Fln), W

where v(7) is the ionic potential and F[n] is the
energy functional comprising the kinetic and inter-
action energies of the electrons with density dis-
tribution n(r). It is useful to decompose F[xn] ac-
cording to®

——fd*’ fd3 '"WM(VI) +T[n] +E J[n],
(2)

where the Hartree term and the part of the kinetic
energy T J[n] due to independent Fermions of den-
sity n(7) (both intrinsically nonlocal) are treated
separately. The term E ,[n] is the exchange and
correlation energy of the interacting many-elec-
tron system with density »(»). HK have shown

that E, [#] is minimum for the correct charge den-
sity of the many-particle ground state. According
to our definition, a structural energy is then just
the change of the ionic energy AE;, plus the dif-
ference of the electronic energies calculated from
Eq. (1) using the ground-state charge densities
n'(v) and n(7) of distorted and undistorted systems,
respectively:

AEtot =AF ion + (Eel [1’!’] "'Eel [n]) . (3)

It is relevant to note that Eqs. (1)—(3) give exact
expressions2 for lattice energies within the adia-
batic approximation’; this is in contrast to the ap-
proximations® needed to derive single-particle
electronic energies from the density functional,
Equations (1)—(3) are the central relations used
throughout the paper and the relations derived in
Sec. III will be immediate consequences of these
equations,

The method is not restricted to small perturba-
tions; however, it is useful to first consider the
case where the changes in v and » are small. For
a small perturbation of the electronic density, let
n(o)(v) be the density of the unperturbed system,
and 7' (r) =n' V() + n'V(») [with f rn'ir)=0]
that of the perturbed one. According to HK, for
each density n(#) there is a unique external poten-
tial vo(r)); let us define v'(r) =oln'(r))=v""Ar)

+0Y(#). Then to second order in n'')7), the
electromc contribution to the structural energy
becomes®?

’AEel =f ds,r ’U(l )('V)[n<0)(’}’) +n(1 )(’V)]

+fdsr(v(°)(r)+625) (o))n“)(r)

fd3 fd3 ’Gn(r)én('r’)

N O (o PR (4)

where 6 indicates a functional derivative and the
subscript 7'®’ indicates that the quantities are
evaluated at the unperturbed charge density. The
variational principle applied to the unperturbed
system with potential v°(#) requires that theterm in
large parentheses vanishes at eve‘ry point 7,
Furthermore, applying the variational theorem to
the perturbed system, i.e., the condition
(GAEel)/Gn(l)('r)=0, leads to

5°F
ISEIRN =W A
v ) fdv dn(r)on(r') |, 0

)

7. ()
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Inverting this equation we obtain

n“’(r)=fd“‘f’x(v,V’)v“’(r'), (6)
with
, 5LF -1
xr,r )=(' Gn('r)én(r’)) ) (M

Thus [-62F/6n(N6n(r")]"! relates the first-order
change in the external potential to a linear change
in the charge density, i.e., [=6%F/6n(r)6n(»")]™!
the (static) density-response function which plays
the central role in the general linear-response
theory.7 The total potential acting upon an elec-
tron induced by the applied potential ‘! (r) is

o Vr) = v“)(r)+fd31',fdarzl

71l X(7y,72)

X’U(t)(’}’z). (8)

Defining the dielectric function e(7,7’) in the usual
way as

¢>‘”(r)=fd37’

we find

e(r, v W', ©(9)

- 1
1 Ny — ! 3 ’
e (r,r")=06(r 'r)+fdr1 Ir-'}’le(y"y)'
(10)

Equation (10) demonstrates the relation of the
density functional to the exact dielectric function.
In particular, it shows that € !(»,7’) and thus
€(r,7’) are functionals of the charge density n(r),
and that the density-functional form includes
local-field effects, i.e., e !}(r,7’) is a function of
7 and 7', which leads to off-diagonal terms for
€lin reciprocal space. Thus we have established
the equivalence of density-functional equation (1)
to linear response or dielectric theory for small
charge-density perturbations in a general array
of ions and electrons.

The expressions for harmonic restoring forces
derived in Ref. 7 for crystals can be straightfor-

wardly derived from Egs. (3)—(7), and (10). First,

we rewrite Eq. (10) by operating on each side with
the Laplacial VE:

4y (r, 7' ) = Ve (') = (v —7")] (1)
so that Egs. (3) and (4) can be written

OBy = O, + f a®r o' o ()

fd3 fd3 1o U v

X[f-l("’,"/ ) = 6(r =" ) (") (12)

The further simplifications of this equation are
derived by assuming that the ions are nonoverlap-
ping, in which case the ion-ion interaction poten-
tial is Coulombic and is the same as the ion-elec-
tron potential v(7) for » outside the ion-core radi-
us, so that Viu(») =4mn,,, (). Equation (12) may
then be written

AEmt:-S-l— fd3rfd3fr' 2'V»)
m
xVEeNr, v W), (13)

along with the equilibrium condition

[ ¥ V) V) + 28] =0 (14)
These equations completely determine the harmon-
ic restoring forces and are self-consistent solu-
tions to harmonic order. It would be straightfor-
ward but tedious to extend such equations to high-
er orders.

The perturbation analysis can also be used to
estimate errors in cases where the charge density
n'(7) is not self-consistent with the external poten-
tial v’(»). In this case, we do not restrict our-
selves to small ‘!’ or v!’, but rather consider
small deviations of the approximate charge densi-
ty #‘!” from the actual n''’, and define on‘t’ =#‘!’
-n'Y, Without loss of generality, we can assume
that the equilibrium configuration is self-consis-
tent.?® It follows from Eq. (4) that the error in the
structural energy is

E o= zfds fd (Gn(r)én(r )) {2

x6n' Vr)on' V(") . (15)

The important aspects of Eq. (15) are: (i) there is
no linear term in the error 5n‘!’, so the approxi-
mate AE,, is correct to first order in &n‘!’ , and
(ii) the error OE,,, is positive definite, so that the
approximate AE.. is always greater than the exact
AE,,,. Therefore, any calculation starting from a
self-consistent solution for the equilibrium can set
an upper limit on the exact AE, caused by any
perturbation, including the displacement of atoms
considered in this paper.

After having studied the functional approach for
small density perturbations in an arbitrary system,
let us return to Egs. (1)—(3). Up to now we have
not specified E . [#]. In general, one cannot give
a simple exact expression for the functional;
however, a common approximation for E . [x#] has
the local form

nl= j A% (¥ )e () (16)

where €, (2(r)) is the exchange and correlation
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energy per electron of a uniform electron gas of |
density ». Kohn and Sham® have proved that the
ground-state density n(r) is then given by

n(r)=_19(r)1?, oan

where ;(7) is the self-consistent solution of the
Schrédinger equation,

[-3V*+ )i (r) =€0i(7) , (18)
with

o) =v0) + [ &% 0l Yor=7)" + e, (19)

where u,.(n()) =d[n(v)e (rn)]/dn is the exchange
and correlation contribution to the chemical poten-
tial of a uniform gas of density ». In this form,
the total energy may be expressed in terms of

the sums of the eigenvalues of occupied states and
a correction term for electron-electron interac-
tions:

E, =E‘.0n +EBS ["] _Eee[n] s (20)

where

n] =Z€i
=33 [ @rur)vn) + [ drotrint)

f d*r f adr '”(7)"(") f d%r n(#) i\ n(r)),

(21)
and

E,[n]=% fds fd3 y mrn(r’)

Tr=+"1
+ f A n(r) iy () - €G], (22)

The division of the energy as shown in Eq. (20)
has been discussed by many authors,?*?® and is
convenient because it clearly separates out a
single-particle term. The calculation of the total
energy in the approximation of Eq. (16) therefore
is expressed in terms of the solutions of the self-
consistent (SC) equations (17)—(19).

In this paper we describe calculations of struc-
tural energies of crystals in Eqgs. (17)~(22). We
consider cases in which atoms are displaced in
periodic patterns so that both the distorted and
undistorted systems are crystalline, and we find
AE,,, as the difference between two crystalline
calculations. For valence bands of crystals, the
quantum numbers denoted by i in Eqgs. (17), (18),
and (21) become band and wave-vector indices #,
k. Within the local-density approximation, Egs.
(17)—(22) give exact expressions for the energy

and charge density. In addition, €, , and ¢, , are
often identified as one-electron eigenvalues and
vectors. This is rigorously correct only at the
Fermi level.? The local-density approximation
has been shown to work well for small band-gap
semiconductors, so that the ¢, , are closely re-
lated to the band structure,!%1%2! hence the sub-
script BS in Eq. (21).

One crucial point in carrying out the calculations
is the integral over & in evaluating the band-struc-
ture energy Egg and the charge density which enters
Eygand E,,. For an insulator, these integrations
can be carried out with a minimum of computation
by choosing special points” in the Brillouin zone
(BZ) so that Egs. (17) and (21) become sums over
a lattice of a few points in the BZ. The irreducible
set of special points depends upon the symmetry;
in particular, upon the distortion considered. We
follow the approach of Chadi and Cohen and of
Monkhorst and Pack.!” In each case the calcula-
tion of energies reduces to carrying out band-
structure calculations at a few points in the BZ.
Moreover, in the Appendix we show that the con-
vergence in the spacing of the special-point lattice
indicates the range of interactions in real space.

Finally, we calculate the change density only to
partial self-consistency. In Sec. IIl we use a
screening anasatz as a starting point for ¢(7),
from which n(7) is calculated. The density-func-
tional expressions [Eqs. (21) and (22)] are then
used to calculate Egc and E,,. The analysis of
errors in our cases are given in Sec. III. The
important point here is that we have shown that
the corrections to our calculated AE,,, are second
ovder in the error in charge density 6xn(r), and
are given by Eq. (15),

III. APPLICATION TO Si

The general class of wide-band covalent semi-
conductors was chosen for this work because the
bands are well understood, using a pseudopotential
electron-ion interaction and a local exchange-
correlation function,!®1%2627 Thig simplifies the
calculations, which can readily be carried to
convergence by using a plane-wave basis. Never-
theless, it is well known that their structural
properties are intimately related to the covalent
bonding. Our task is to derive such structural
properties directly from the electron Hamiltonian,
a job which has not previously been completed
successfully.

We chose Si because it is the simplest of the
semiconductors from a computational point of view:
it has the high-symmetry diamond structure and,
unlike C, Ge, or Sn, it can be rather well repre-
sented using a local pseudopotential,!®1%26 This
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restriction to a local potential of the Appelbaum-
Hamann (AH) form is convenient; however, it is
probably the largest source of discrepancy with
experiment (see the discussion of the equilibrium
lattice constant in Sec. IV). From a structural
point of view, the properties of Si are very simi-
lar to all the tetrahedral semiconductors, and we
expect our conclusions to apply to all these ma-
terials,

For the electron-ion potential we use the model
pseudopotenl;ial18 of Appelbaum and Hamann. They
found a potential which is smooth in both direct
and reciprocal space and which yields the correct
band structure with a self-consistent calculation.
For'exchange and correlation they used

exc(n)=0°76('§')(3n/7r)l/3 ) (23)

Note that we have adopted 0.76 rather than the 3
used by Kohn and Sham. Furthermore, they found
that the self-consistent total potential ¢ in the band
equations (18) is very close to their starting ap-
proximation

$(G)=v(G)/eAG) , (24)

- where G is a reciprocal-lattice vector and ¢, is the
“free-electron” dielectric constant derived'®*!
from Egs. (7) and (10) using a uniform potential
v(r) = const in Eq. (1). This is very useful, since
the self-consistent solution is close to the simple
starting point. The model ion potential has the
form of the Coulomb potential of a Gaussian charge
distribution p(r) =4(a /7)%/ exp(— 7?) plus a pa-
rametrized core-repulsion part,

v(r)= f a*' plr' Yy =#')"*

+ (vy + vy1?)exp(- ar?) . (25)

In our calculations we use the values a=0.57, v
=3.04, and v, =-1.32, in atomic units, which are
slightly different from those of AH. The difference
is caused by the fact that we include more plane
waves than AH, and had to change the potential
slightly to have agreement with experiment for

the band structure.?

We solve the band equations with a plane-wave
basis including all waves with (%2 +G)*<9 (in units
of 2r/a) exactly and all waves with 9< (k +G)*< 35
in Lowdin perturbation theory. For all zone-center
calculations, this means we diagonalize ~27 X217
matrices, Although it is important to include the
other plane waves (~200), the perturbation theory
was found to be adequate, For the zone-boundary
calculation, the unit cell is doubled, i.e., recip-
rocal-lattice vectors are halved and the matrix
to be diagonalized then contains 54 X 54 elements.
Since the matrix treated exactly is still small in

comparison.to many calculations, larger unit

cells could be considered. The total energy is
calculated as in Eqs. (20)-(22) by Fourier trans-
forming the integrals in Eqgs. (21) and (22) and
explicitly carrying out the sums over the recipro-
cal-lattice vectors, including all Fourier compo-
nents with (2 +G)* <35, For the exchange and cor-
relation terms we approximate #*/® by a Chebyshev
polynomial,

[n()]* /3 =74/3(0.9975 + 1.29635 + 0.24285%) ,
(26)

where 6=[n(r) -%]/n. Equation (26) is a very good
approximation to #*/?; e.g., <2% deviation for «
varying from ~0.15z to ~2.5n. This greatly sim-
plifies the resulting calculations.

The ion-ion interaction is calculated directly
as the energy of Gaussian ions in a uniform nega-
tive background excluding the ion self-energy. The
direct ion-ion interactions are equivalent to those
of point charges with the addition of a weak attrac-
tive nearest-neighbor interaction because of the
small overlap of neighboring ions. It is important
to use this form of ion-ion interactions in order to
be consistent with the €lectronic calculations where
we must use nonpoint ions in order to have conver-
gence. (We note that the attractive terms do not
effect the final results for the very sensitive
shear-constant and zone-boundary mode discussed
below.) For displacement of the ions in which the
volume is constant, as in the case for the phonons
and shear constants, the changes in ion-ion energy
are independent of the background and involve only
the direct ion-ion terms.

The uniform background is essential for charge
neutrality, and-must be included in the energy as
a function of the volume, Since the background is
the average electron density, the term which we
label “ion-ion” in fact includes the dominant part
of the ion-electron and electron-electron Hartree
energies. We use the method of Fuchs?® with re-
sults in good agreement with the expressions of
Goroff and Kleinman® for the Madelung constant
with nonpoint ions. Finally, the zero Fourier
component of the non-Coulombic part of »;,, in Eq.
(25) contributes to the volume-dependent energy,
and we separate this part of the total energy per
cell explicitly as .

E ioﬁ(o) =(Ne/ﬂatom)(77/a )3‘/ 2(”1 + %(X U‘Z) ’ . (27)

where @, 1S the volume per atom and N, is the
number of electrons per cell.

The expressions so far have been in terms of the
results of self-consistent calculations. In prac-
tice it is very difficult to carry out such calcula-
tions to the accuracy needed for finding small
energy differences. Here we describe our calcu-
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lations in terms of the usual self-consistent pro-
cedures. We start from the bare ionic potential

v or v’ of Eq. (1) and define the zeroth-order
charge distributions 7‘?’ or #‘?” by considering the
entire atomic potentials v or v’ only to lowest or-
der, i.e., linear screening. This yields the crystal
potential ¢‘*’ for the electrons given by Eq. (24).
¢>(°’ is entered into the band equations (18). Di-
agonalization leads to eigenvalues e!’ and the

wave functions generate n'’(»). A self-consistent
procedure would now use n'! )(1’) to establish a new
crystal potential qb“ ’, diagonalize the correspond-
ing band equations, etc., until convergence in

n(r) is achieved. This procedure yields successive
approximations to AE,,. In particular, we define
AEY™ . m >0, to be the energy calculated from
Eqgs. (1)=(3) and (21)=(23) using ‘'™ or ‘™" in

the functional E,(n). Note that AE'Y) is simply the
second-order perturbation expression for a free-
electron gas perturbed by v or v’'. This is com-
monly called the free-electron approximation.?

It is also advantageous to define other approxima-
tions AE‘2" Y| m = 1, which depend upon the
eigenvalues e‘i"” in the mth step but the charge den-
sity of the (m —1)th step. If we expand our ex-
pressions to lowest order in the difference n'™

=™V we find

BE T V= AB oy +D 6™ =B [ V] (28)
1

This form is particularly useful for the m =1 step
in which case AESY! is found simply from n'®? and
the eigenvalues e(i‘ ). It is not essential to calculate
the wave functions z/)(i“ and the resulting nr)
which involves many steps in non symorphic crys-
tals.

In our work, we calculated AE{}! for »=0, 1, 2,
and the results are presented in the Sec. IV. We
conclude from the convergence in these cases what
the effects of self-consistency are and what the
probable results for completely self-consistent
calculations would be. The most accurate results
correspond to AE'Y, which we found from #‘!’,
which in turn is calculated from the band equations
[Eq. (18)]. We find that the total energies calcu-
lated are remarkably insensitive to the step in the
consistency loop, with the exception of the low-
frequency TA(X) mode discussed in Sec. IV.
Therefore, we conclude that the non-self-consis-
tent calculations are adequate for many cases of
interest, but additional calculations are needed
for special cases, particularly ones involving low-
frequency modes.

An important aspect of the present work is that
electronic and structural properties are considered
together. We have shown in a previous pa.‘per21
that the band structure at equilibrium and for tl%e

strained crystal are in good agreement with ex-
periment when we used the screening approxima-
tion, Eq. (24), for ¢‘°(»). In this paper we use
exactly the same Hamiltonian to calculate the
structural properties.

IV. RESULTS

In this section we discuss calculations of struc-
tural energies of Si from the electron-ion Hamil-
tonian described in Sec. III. We first consider the
energy as a function of volume to establish the
equilibrium conditions., This is very important,
since calculations for theoretical lattices which
are not at equilibrium give spurious contributions
to harmonic force constants, as discussed below.
This has been emphasized in the formal papers
on the dielectric-function formalism.’ However,
to our knowledge none of the calculations using this
approach have checked the equilibrium condi~
tions.* 13 To eliminate the spurious contributions,
we introduce an ad koc term to satisfy the equili-
brium condition exactly. In the remainder of this
section, we consider lower-symmetry distortions
of primary interest in this paper.

For the energy as a function of volume, one
must include the G =0 Fourier components of the
ion pseudopotential [non-Coulombic part given in
Eq. (27)], the background contributions included
in Ej,,, and the average exchange and correlation
energy included in Ezg and E ,,. These terms do
not enter any of the phonon modes where volume
is conserved. Table I gives the various contribu-
tions to the total energy, the first derivative, and
the bulk modulus B-at the observed lattice con-
stant ¢ =5.431 A, The primary result from Table
I is that the totals are similar for each approxima-
tion 0, 1, or 2, from which we conclude that the
total energy in calculation 2 is essentially at con-
vergence. Indeed, Appelbaum and Hamann have
found very similar results in a fully consistent
calculation.’® The presence of the linear term
shows that our theoretical lattice is not in equili-
brium at the observed lattice constant. Approxi-
mate calculations show that the theoretical equili-
brium is for @ ~4.7 A. The bulk modulus calcu-
lated with no parameters is ~28% lower than the
observed value.

We believe the primary source of the discrep-~
ancy with experiment is caused by the model po-
tential. In order to fit the bands with the local
potential chosen by AH,!® it is necessary for the
potential to be too attractive at distances of order
one-half the bond length. This leads to the nega-
tive value of Ein(0), which should be repulsive by
the usual pseudopotential core-orthogonalization
arguments.?® Evidence of this appears in the
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TABLE I. Total energy E,y, linear term a(dE;y/da), and bulk modulus B at a=5.431 A de-
composed into the contributions of Eqs. (20)—(22), and (27). E; (0) is the contribution of Eq.
(27), and is important only for distortions which change the volume.

Eyo (€V) a(dE/da) (eV) B(10! dyne/cm?)

0 1 2 0 1 2 0 1 2.
I -192.93 -192,93 192,93 126.0 126.0 126.0 -4.0 4,0 -4.0
BS —-32.69 -37.98 -32.96 -42,9 56,1 -66.3 11.6 15,5 10.8
EE 7.55 7.55 5.85 —-63.5 ~-63.6 ~48.3 1.6 0.3 5.0
E;,(0) -9.04 -9.04 -9.04 27.2 27.2 27.2 -4 7 =47 4.7
Total -227.11 232,41 -229.08 46.8 33.6 38.6 4.5 7.0 7.0
Exp e v s 0 0 0 9.8 9.8 9.8

charge density. Our result is given in Fig. 1(a)
and is very similar to that calculated from a local
empirical potential by Walter and Cohen.?” The
charge-density contours in the bond region are
elliptic with the long axis perpendicular to the bond
axis, which is opposite to experiment®® and to the
nonlocal calculations of Chelikowsky and Cohen.!?
The shape of the “bond charge” in our calculation
allows the atoms to approach more closely than in
a more correct nonlocal calculation,

We do not attempt to correct this discrepancy

FIG. 1. Charge density in bond regions for Si: (a)
undistorted and (b) with atoms displaced along the [111]
direction in a zone-center transverse-optical-mode
pattern as shown in the inset labeled (). The bonding
charge density decreases in the bond 1-2, which is ex-
tended, whereas it increases in the three bonds 2-3,
2-4, and 2-5, which are compressed. The magnitude
of the displacement is | ul=0.03 a, where is the lattice
constant. For the undistorted crystal, the results are
close to those of Ref. 27, and for the distorted, to those
reported in Refs. 1 and 37.

in the energy as a function of volume since we are
primarily interested in the form of the results for
distortions in which the volume is constant, Never-
theless, it is essential to satisfy the equilibrium
condition in order to avoid spurious contributions
in the calculations, and we introduce an ad koc
linear repulsive force between nearest neighbors
to stabilize the lattice at @ =5.431 A. Since we
assume this additional stabilizing force acts only
between nearest neighbors and is linear in the
bond length 7;, the contribution to the total energy
can always be written

dE AT,
= i(oe ) ()

where AT;=7; =T is the change in length of bond i
for the given displacement pattern u. It is straight-
forward to show that, for volume-conserving
phonons, the energy AE, in Eq. (29) is always
second order in the displacement u. For the ener-
gy as a function of volume, the added term satis-
fies the equilibrium condition while making no
contribution to the bulk modulus. The correction
to AE, from Eq. (29) is calculated for each mode
using a(dE /da) from Table I, and is denoted by CE
in Table II and Figs. 2 and 3.

The different contributions to E,,; are also given
in Table I. The notation II denotes the ionic energy
including the negative background; BS, the band-
structure terms exclusive of the zero Fourier
component E;,(0); and EE, the electron-electron
correction in Eq. (20), i.e., it is the negative of
the energy E,, given in Eq. (22). The magnitude
of E,, is dominated by II, which becomes less im~
portant as the order of the derivative increases.
For the second derivative there are large cancel-
lations between the various terms. We see that
our most realistic charge density of calculation 2
leads to a total energy smaller than the one
labeled 0, which is the free-electron approxima-
tion. In the spirit of the variational principle in-
herent in HK, this demonstrates that the covalent-
charge density #'1)(#) is a better “trial” distribu-
tion than the homogeneous metallic charge density

(29)
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TABLE II. Comparison of calculated and experunenta,l harmonic-force constants for the
TO(T), TA(X), and Cy — Cy, modes in Si (in eV/A?). The cubic-anharmonic force %,,, (in
eV/A3) for TO() is also given. It is compared with a value derived from Ref. 36. The
steps toward self-consistency denoted 1 and 2 are defined in the text. II, BS, and EE cor-
respond to the separation of terms in Eq. (20), where EE denotes —E,,. CE is the correc-

tion discussed in the text.

mwkor) 2a(Cyy - Cyy) mWkox) Fexye
2 1 2 2 1

r 21.56 —-29.25 —-24.35 —69.92

BS —-2.42 -5.76 29.29 27.62 24.09 20.70 7.21 18.62
EE -2.03 2.71 17.46 16.26 14.08 15.45 15.20 -1.16
CE -4.04 -4.,66 -6.06 —-6.98 -6.06 —6.98 0

Total 13.07 13.85 10.82 7.76 4.82 ~47.,51 ~52.46
Exp 14.00 7.32 2.33 (—40.51)

of calculation 0. The difference shows the impor-
tance of an inhomogeneous charge distribution in
Si. Comparison of the perturbational calculation
1 with calculation 0 shows that linear accounting
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FIG. 2. Contributions of the various forces to harmon-
ic and anharmonic energies defined in Eq. (30) for the
TO(T') phonon and givenin Table II. The point II repre-
sents only ion-ion contributions; at BS the band struc-
ture term of Eq. (21) is added; at EE the electron-
electron correction of Eq. (22) is added; the CE includes
the linear correction determined by using Eq. (29).

The labels 1 and 2 denote the approximations A E‘1) and
A E?) described in the text. As shown in Table II,

the calculated anharmonic value is close to that derived
from Keating’s phenomenological model (Ref. 36). This
figure is a corrected version of one given in Ref. 1 in
the conference proceedings where the BS point for &,,,
was plotted erroneously. The final result is the same,
It is evident that ion-ion forces dominate this model,
and the electronic forces make smaller contributions.

for the inhomogeneity of n(») decreases the total
energy. However, comparison with calculation 2
demonstrates that higher-order corrections to the
total energy increase its value. At this point we
want to stress that this finding does not contradict
the statement that calculation 2 is our best calcu-
lation and should thus lead to the lowest value for
the total energy. Indeed, calculations 0 and 2
evaluate Eqgs. (20)—(22) rigorously for the given
charge densities, whereas calculation 1 uses only
an approximate form of these equations. It is in-
teresting to note that although the totals in Table I
are well converged, the band structure and elec-
tron-electron terms separately are not. This
shows the importance of considering the total en-
ergy to which the variational condition applies
rather than the separate parts.

For distortions lowering the crystal symmetry,
we choose distortion patterns corresponding to a
TO phonon at T', a Cy; ~Cy, elastic deformation,
and a TA phonon at X, These phonons are recog-
nized to be representative of the tetrahedral co-
valent crystals. In phenomenological models, the
TO phonon is determined primarily by central
nearest-neighbor forces, whereas Cyy ~Cy, and the
TA phonon require directional covalent forces.
Furthermore, the flattening of the TA modes con-
sidered as anomalous when related to the shear
elastic constants of the same symmetry shows that
the directional forces have complex long-range
character. 51 32

In the TO mode the two sublattices may be dis-
placed relative to each other by « along [111] (cf.
inset in Fig. 1). The symmetry of this model al-
lows a cubic term, and thus in the lowest order of
anharmonicity the structural energy can be written

AE o = 5(3ms; J0hott’ +Epy(u/V3)P + oo (30)

The harmonic and cubic force constants are cal-
culated following the discussion above in the ap-
proximations denoted 1 and 2, and the results are
listed in Table II and depicted®® in Fig. 2. We have
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201 . 201

FIG. 3. Contributions to
the energies for 2a(Cy;
— Cyy) and mwy, as given
in Table II. See caption to
Fig. 1 for explanation of
symbols. For these shear

2a(C,,C,,) [eV/A?]
o
m w? [eV/A?]

modes, the ion-ion inter-
/ actions destabilize the

- modes, and only the elec-
tronic-bonding restoring
forces stabilize the struc~
b ture.

Si TA(X)

decomposed the force constants into the contribu-
tions according to Eq. (20). That means the point
labeled II corresponds to the force constant we
would get by taking into account only the direct
ion-ion interaction. At BS we add the contribution
arising from the band-structure calculation. The
value at EE is the result after adding all the con-
tributions from Eq. (20). We obtain our final
result CE by including the nearest-neighbor cor-
rection term from Eq. (29). This term contributes
to mw%o due to the change of the nearest-neighbor
bond length to second order in the atomic displace-
ments, From Fig. 2 we deduce that the harmonic
restoring force for the TO phonon is dominated by
the direct interaction of the ions. Ion-electron
and electron-electron interaction play only a sec-
ondary role.’ The calculations of types 1 and 2
" lead to final results that are close to each other.
However, there are small qualitative differences
in the composition of the contributions BS and
EE. As was pointed out in Sec. II, the total energy
converges rapidly because it is near a minimum
as a functional of », whereas there is no such
argument for BS and EE separately, The close-
ness of the final results for the two calculations
suggests that the precise form of the valence
charge is not important for this distortion. Indeed,
the present zeroth-order calculations, as well as
previous calculations, »2%% lead to a very similar
result. Altogether, our calculated w, is in good
agreement with experiment (Table II).

For the cubic anharmonicity, the electronic
contributions in both calculation types 1 and 2 be-
come slightly more important than for the harmon-
ic force constant. For the harmonic force, BS and
EE contributions are about 14% of I, and for the
anharmonic force they are about 25% of the ion-
ion interaction. Both calculations 1 and 2 lead to
results very close to each other. It is remarkable
that in the most exact calculation 2 the electron-
electron interaction nearly vanishes. In Table II,

for comparison, we give a value of k,,, calculated
from Keating’s parameters, 3 which he derived by
fitting experimental third-order elastic constants,

The k-integration in this case was convergent
for ¢ =2 in the notation of Monkhorst and Pack!’
given in the Appendix [requiring only (4) 6 special
points for the (un)distorted lattice]. As shown in
the Appendix, this accounts for interactions up to
a distance of v2¢, which demonstrates that the
dominant forces involved in the TO distortion are
short range.

The redistribution of valence electrons in this
mode! 37 is shown in Fig. 1, where we see that the
charge density in the stretched bond decreases
when compared to the equilibrium, and the charge
density in the compressed bond increases. This
means the magnitude of the bond charge varies
inversely with the bond length, which corresponds

‘to the behavior one expects from an overlap of

bond orbitals in a localized picture, Similar re-
sults have been found by Baldereschi and
Maschke.%?

We have also calculated the hydrostatic Griineis~
en coefficient —~d(lnw?)/d(InV) by carrying out the
calculations for different lattice constants. The
results are given in Table III, where we see that
all contributions tend to increase the frequency
with pressure, with the largest effect from BS.
There is reasonable agreement with experiment,
considering that there are no adjustable parame-
ters in our calculations. The large magnitude of
the calculated value is probably due to the form
of the potential which led to the small predicted
lattice constant. The difference between calcula-
tions 1 and 2 indicates that the results for the
Gruneisen constant are not well convergent, and
additional steps in self-consistency will change
the final result.

Restoring forces for shear modes represented
in our paper by w;, at X and C,; =C,, are directly
related to the directional covalent bonding,5 20 31,3235
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TABLE III. Griineisen coefficients (~dInw?)/d1nV and
(=d1nc)/d1nV for photon distortions TO(I'), TA(X), and
Cyy =Gy

TO(T) Cy—Cyy | TAX)
1 2 1 2 1 2
I 1.12 1.06 -3.46 —=4.90 -2.82 —4.55
BS 2.56 2,08 3.52  2.49 144 -0.52
EE 1.48 0.53 0.15 2.87 -1.58 0.32
Tot 5.16 3.65 0.21 0.46 -2.96 —4.75

Exp 1.96+0.122 0.0014P -2.8+0.62

2Reference 39. PReference 38.

These modes are sensitive to the form of the elec-
tronic interactions, as evidenced by the fact that
they are unstable in the free-electron approxima-
tion.% Also, it is interesting to compare 2a(Cy,
-C,,) and mw?, because the large difference be-
tween these two quantities found experimentally
implies forces beyond second neighbors 233 1t
is these long-range forces which have led to the
adiabatic shell and bond-charge models.*

We calculate Cy; —=Cy, from the energy of the
crystal compressed along [001] and expanded along
[100] and [010] to keep the volume exactly constant.
We use the relation

AE ;= 6,,0n(C g = Cyp)é? (31)

with €,0m the volume per atom and e=3A(c/a). In
Fig. 3 we plot 2a(C; ~Cjy,) in order to facilitate
comparison with w%, below. In contrast to the
TO calculation, we find that the direct ion-ion in-
teraction (/) tends to destabilize the crystal.
This is because the nearest-neighbor distance
increases to second order in the strain. The in-
direct interaction of the ions via the valence elec-
trons, i.e., the band-structure contribution (BS),
compensates the negative ion-ion interaction.
Furthermore, it is only with the inclusion of the
electron-electron correction EE that this mode is
even stable. This finding is especially interesting
in view of the fact that many tight-binding models
neglect the EE as well as the II terms complete-
ly.”'16 The correction term CE lowers the cal-
culated energies, and makes the results closer to
the experin{ental value,

The comparison of the calculations denoted 1 and
2 shows that the convergence is similar to that for
the TO; however, the fractional effect upon the
final result is much greater. The difference in
the quantity E 5 +E ,, between calculations 1 and 2
is only ~6%, but this leads to a difference of ~25%
in the final value. - Further steps in the self-con-
sistency loop would be expected to lower Eg+E,,
by an amount of 6%, so that result 2 is close to
convergence as well as to the experimental value.

We have also calculated the Griineisen constant,
with the result given in Table III. Here the can-
cellations are even larger, and the experimental
value®® is a very small positive coefficient. The
calculated value is also small but still larger than
experiment, Therefore, we conclude that the mod-
el-ion pseudopotential calculation we have carried
out adequately explains the shear modulus Cyy =Cy,
at Si and its relation to the electronic states.
However, it is not sufficiently accurate for Si to
predict in detail results for modes in which the
cancellations are largest, namely, the Grineisen
constant,

Another important result is that convergence for
the structural energy could only be obtained by in-
tegration over a large set of special points [de-
noted by ¢ =4 in the Appendix, requiring (10) 20
points in the (un)distorted case], implying that in-
teractions between 3a/v2 and 4a/v2 are impor-
tant, Therefore, the microscopic calculation
shows that Cy; —~Cy, is highly influenced by long-
range interactions. This is in agreement with
phenomenological models such as those of Refs.
31 and 32, There it is shown that four-body
forces involving third to sixth neighbors contrib-
ute ~Z of the restoring forces for Cyy —=Cy,.

The crystal formed by displacing the atoms in a
TA(X) pattern is shown in Fig. 4. It has four
atoms per cell and a tetragonal Bravois lattice
with basis vectors (1,1,0)e/v2, (1,1,0)a/v2, and
(0,0,1)a. The harmonic frequency is calculated
from )

OE, = 3(zmg o, (32)

where AE, is the change in energy per atom pair,
and u is the displacement magnitude. Because the
displacements « are perpendicular to the bond vec-

A

A8

FIG. 4. Displacement pattern for TA (X) phonon mode.
The labeling of the atoms corresponds to that used in
Fig. 5. All white atoms move together to the lower
right, and all black atoms to the upper left.
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Si  TA(X)

FIG. 5. Charge density for a crystal with a TA(X)
displacement pattern. The inset and the larger set of
atoms shown in Fig. 4 define the labeling of the bonds.
A center of symmetry is maintained for bonds 1-2 and
2-4, but is lost for bonds 2-3 and 2-5. The “rotation”
of the bonds is apparent in the 3-2-5 plane in the lower
figure, and the change in shape is clear in each draw-

ing,

tors, the restoring forces are angular in charac-
ter. Since the TA(X) mode belongs to the same
symmetry as the Cy; —C,, shear deformation, and
the local environment of the atoms is similar, the
contributions to the two modes are also similar,
as shown in Fig. 3 and Table II. The results
demonstrate that mw?, is reduced compared to
2a(Cyy —Cy,), which is in agreement with the ex-
perimental fact that w;, is anomalously low, but
the amount of the reduction is not as great as
found experimentally. The convergence is very
similar for 2a(Cy; —Cy;) and mwi,; however, be-
cause mw%A is smaller, the fractional effect is
larger. We conclude that a fully self-consistent
result would lower the calculated w;, and would
explain the “anomalous” softening.

The mechanism for the softening of the TA can
already be seen in our calculations. Consider the
changes in the charge density of the distorted
crystal shown in Fig. 5. For the TA distortion
there are two inequivalent types of bonds. Type I
maintains inversion symmetry (the bond between
atoms 1 and 2 in Fig. 4) and only the magnitude of

the bonding charge decreases due to a change in
bond length of second order in the atomic displace~
ment. (All bonds are of this type for the Cy; —=Cy,
shear.) For the bonds of type II, the center of
symmetry is lost, allowing an off-center charge
relaxation reminiscent of a bond-charge displace-
ment.’’ We see also that the shape as well as the
magnitude of the bond charge changes. It is this
off-center motion and asymmetric change in the
shape of the charge which allows the crystal to
lower its energy for a TA mode relative to that
for the Cy; —C;, elastic mode.

The results for the TA mode were at convergence
in the lattice of special points for the set of points
mapped from the ¢ =3 set in the fcc (see Appendix),
Since Cyy =Cy, required that g =4, we see that wra
involves only forces of range shorter than those
in Cyy =Cyy. This is in agreement with the phe-
nomenological models, " ¥ where it is found that
w?, is determined solely by the simple second-
neighbor bond-bending forces, whereas Cy; —=Cy,
is greatly affected by longer-range forces.

Results for the Griineisen coefficient are given
in Table III, The primary result is the large
negative value which has been found experimentally
for Si and other tetrahedral semiconductors.®
This has been interpreted® as a tendency toward
the phase transition to the g-Sn structure which
is analogous to the dramatic softening of w, in
the sequence of elements C-Si-Ge-Sn. In our cal-
culations, the effect is primarily due to the nega-
tive ionic contribution which increases in magni-
tude as the lattice is compressed. The electronic
contributions to the Griineisen coefficient are
small in contrast to the result for Cy; =Cy,. We
see that the final result is qualitatively correct
but considerably larger than experiment.

The calculated energies for Cy; =Cyy and wr,
may be compared with the empirical tight-binding
results of Ref. 15, There, only the band-structure
energy was considered for the case where the
nearest-neighbor distance 7 did not change. The
present results are for constant volume, in which
case T increases to second order in the displace-
ments, The additional positive contribution to
AE s from AT qualitatively explains the large value
of AE g found here compared to that reported in
Ref, 15, The ion-ion and electron-electron terms
also contribute in the present work, and lead to a

. final answer close to that of Ref. 15.

We conclude that the model ionic pseudopotential
and local-density-functional approach for Si is
adequate to predict the basic structural properties
of Si such as the elastic constants and optical-
mode frequencies. In the present form, it is ap-
parently not accurate enough to predict the con-
stants to better than ~20%, or to predict very
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sensitive quantities such as d(Cy; —=Cyy)/dV. It
does predict the softening and the strong pressure
dependence of the TA(X) frequency. However, for
the TA mode the cancellations are so extensive
that there is a large fractional error in the final
value due to lack of convergence in the present
steps toward self-consistency. For this mode,
further calculations are required to definitively
describe the TA restoring forces and the relation '
to charge density.

V. CONCLUSION

In conclusion, we have described a practical
method to calculate the charge density and total
energy of insulators as a function of the atomic
positions without any adjustable parameters. The
method is based on the local-density-functional
formalism,? 3 and relies upon the special-point
technique.”!’ Our scheme is not restricted to
small displacements and in general involves the
solution of self-consistent equations. Here,
special attention was given to the formal and
practical aspects of the scheme with respect to
small distortions and small deviations from self-
consistency. In particular, we derived the rela-
tion to the dielectric-function € formalism and we
showed that deviations of the charge density from
the self-consistent density give rise to an error
of the total energy only to second order in the
deviation. We also demonstrated how the number
of special points needed for convergence shows
the range of interactions involved.

Results were calculated for Si employing a rigid-
ion model potential for the Si!* ion!® together with
a plane-wave basis. Computations were carried
only to first order in self-consistency with care-
ful analysis of the effects of self-consistency.

OQur calculated lattice constant was too small by
~13% and the bulk modulus by about 28%, indi-
cating the need for a better (possibly nonlocal)
potential in order to describe symmetry-conserv-
ing distortions. We stabilized the theoretical
crystal at the experimental lattice constant by
means of an ad hoc linear repulsive term between
nearest neighbors. For distortions which lower
the crystal symmetry, we then investigated TO(T'),
Cyy —Cyy, and TA(X) distortions and predicted the
harmonic energies of these modes, their pressure
coefficients, and the cubic force associated with
the TO(T') mode. Predicted theoretical results
were found to be close to experiment, except for
the TA(X) harmonic energy and d In(Cy; —Cy,)/d Inv,
for which the corresponding experimental values
are extraordinarily small. Our investigations
showed those cases to be very sensitive because
of near cancellations, so that they require better

convergence in self-consistency than obtained in
our calculations. From the convergence of the
special-point summations, the forces involved
were found to be of short range in TO(I') and
TA(X), and of longer range for the elastic Cy; =Cy,
deformation. One important result was that the
proper inclusion of electron-electron interactions
was vital for stability against shear. Altogether,
the theoretical considerations and calculational
results presented here are encouraging for the in-
vestigation of structural properties of semiconduc-
tors. They also indicate hope for other calcula-
tions in which periodicity can be used, for exam-
ple, determining the equilibrium properties of
crystalline surfaces. ’
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APPENDIX

Here we discuss the relation of the range of
forces to the convergence in a number of special
points. It is most convenient to follow the ap-
proach of Monkhorst and Pack,!? although the
generator methods of Chadi and Cohen!’ may be
used as well. The range of forces may be de-
termined by examining the energy as a function of
the displacement of atoms in the various low-
symmetry distortions. First, we consider a dis-
tortion which reduces the point-group symmetry
to the identity, i.e., the lowest point-symmetry
possible. In the special-point approach, the ener-
gy (as well as the charge density) is approximated
by

E(f)=2_Egze'™, (A1)
m
where m =(my,my, mg) and ﬁ,—;, =Z)§=1 mif{r is a di-
rect-lattice vector. Let the grid of special points

be defined by the vector of integers ?:(7,,1'2,1'3)
according to

3
Efzzugéi > (AZ)
i=1

where the éi are the reciprocal-lattice basis vec-
tors and the u; are given by the values

uij=(21’j _q_l)/Zq: /Vj=1>-'-’q' (A3)

The grid of points is specified by the integer g,
where the grid spacing is inversely proportional
to q. .

Monkhorst and Pack!” showed that the integrals
over k implied in Egs. (17) and (21) may be written

AF =fd3kE(E) =ZE(E;) +Z’EaS;\ s (A4)
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where 2 excludes the m =0 term, and the final
term is given by

(=1)m*maemy) a1/ a whenever eachm is
Sz= a multiple of ¢q

0 otherwise

(A5)
In this paper we have evaluated the first term on
the right-hand side of Eq. (A4) as a function of ¢,
and varied g until convergence was reached. That
is, we found the value of ¢ for which the final term
is negligibly small, It is clear fro_xp the derivation
that this means that all E;z= 0 for m_for which
Sz#0. The smallest lattice vector Ry for which
Sa#01is R, ,p=9R;. Therefore, convergence
for a given value of ¢ implies that interactions in
the Hamiltonian for atoms separated by gR, or
larger vectors is negligible, In the case of dis-
torted fcc crystals, this is the range ga/v2 which
was used in the text in Sec. IV.

We note that for cases with higher symmetry,
the above considerations are not sufficient. In
that case, the upper identify in Eq. (A5) has to be
replaced by

22(_1)(m1*m2+m3)(q*1)/q’ (A6)

ch

where the sum is over the star Cjz or m or ﬁ,;.,
respectively. The summation in Eq. (A6) may
lead to a cancellation between terms which are
opposite in sign., Thus the range of the interac-
tions which are taken into account exactly in the
special-point sum is greater. The range is always
increased, never decreased, by these cancella-
tions, For example, in the undistorted fcc case,
the very large range of interactions accounted for
by only a small set of reciprocal points, as shown
by Chadi and Cohen,17 can be readily derived by
examining the cancellations in the sum in Eq.
(AS6).
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