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Two-dimensionil electron gas in a strong magnetic field
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Some interesting properties of the phase diagram of a two-dimensional electron gas are calculated within
the framework of Hartree-Fock picture. We find that the system is unstable to the formation of a charge-
density wave at temperatures well above the classical Wigner solid transition temperature.

I. INTRODUCTION

Recently there has been a great deal of interest
in 'the properties of quasi-two-dimensional elec-
tron gases. In these systems [electrons accumula-
ted at the interface of a metal-vacuum-helium
(MHV} structure' or at a metal-oxide-silicon
(MOS) sandwich], ' the energy-level spacing for
motion perpendicular to the plane of the structure
is large compared, for example, to the tempera-
ture or Fermi energy of the electrons. In the
plane the electrons move like quasi-free-particles,
their interactions being dominated by their
interactions with the other electrons. Thus we
have, to a good degree of approximation, an inter-
acting two-dimensional (2-D) electron gas.

A fascinating aspect of this type of configuration
is that the surface electron density in these sys-
tems may be varied over many orders of magni-
tude, thus in effect varying the strength of the
Coulomb inter actions. The dimensionless strength
of this interaction is quite generally the ratio (I',)
of mean Coulombic energy (V) to mean kinetic
energy (K) in the system. For large enough values
of this parameter, we expect that the system would
like to minimize its potential energy and should,
in fact, condense into a solid. Such a solid transi-
tion (Wigner condensation) has been conjectured
theoretically" and has been shown to exist for
reasonable experimental parameters T.', = 95 in the
MHV system by means of a numerical evaluation
of the problem of 104 interacting classical parti-
cles. ' It has even been suggested' that melting
of the solid occurs when the free energy for the
creation of pairs of line defects become negative.
%'hile such a theory seems to give a reasonable
estimate of the classical parameter I'„'it dis-
agrees in detail with the numerical calculation.
A X-like singularity in the specific heat seems to
be present in the numerical results, while the
theory predicts a smooth transition. In addition,
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FIG. 1. Schematic phase diagram of the two-dimen-
sional electron gas. The solid curve is obtained by
setting (V)/(K) =I'0 with (V) and (X) evaluated for
a noninteracting Fermi gas. The dashed curve is sim-
ply a plot of Eq. (1.1). The ratio ref'0=5 is picked for
purposes of illustration (n~=4m e !m+0, T~= 2e m/
ro).

such a classical theory cannot predict melting at
zero temperature as the density is increased. All
such classical theories lead to a phase diagram
characterized by the parabola

n = (k TI' /7r' e )

in the g-T plane. This parabola, shown as the
dashed line in Fig. 1, divides solid from liquid.

Another theoretical model' suggests that an in-
stability of the transverse mode in the solid sig-
nals the onset of melting. It "predicts" a curve
for the phase diagram over the entire range of
temperatures, classical and degenerate, shown
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@AT*=2eqm/I", .
The density scale is still set by

n, = (4/vcP, ) (I/I",) .

(1.3)

For an MHV system and for I'0 = 100, T*=30 K
and n, = 10". Qn the other hand, we obtain T*
=0.05 K and yg, ——10" if we use m~= 0.2m and &0

= 10 to simply characterize MOS devices. It would

then seem that for MQS systems the region of Wig-
ner crystallization cannot be reached unless one

goes to extremely low temperatures. ' However,
in the presence of a strong magnetic field, the
phase diagram may be drastically altered and the
Coulomb-localized [Wigner solid (WS)] portion of
the phase diagram may in fact become accessible
to experiment. ' In fact, several recent experi-
ments suggest that the magnetotransport of MQS

devices at fields of about 100 kG are anomalous. '
In this paper we would like to theoretically explore
the properties of an idealized 2-D system in the
presence of a strong magnetic field (B}oriented
perpendicular to the surface. For noninteracting
electrons and large enough fields (&u, = eB/mc
»@AT,Ez) the electrons are trapped in the
lowest Landau level, i.e. , they cannot move in the
plane and there is no kinetic energy in the problem.
Under such circumstances the system is quasi-
zero-dimensional, and Coulomb interactions, at
all densities, are expected to have drastic effects
on its low-temperature properties.

Qualitatively a new energy or temperature scale
e'/e, l is introduced into the problem. Here l
=(hc/eB)' ' is the radius of the lowest Landau
level and e'/e, l at 100 KG is about 100'K even for

as the solid curve in Fig. 1. The instability theory
is roughly characterized by another value of the
parameter 1",(f',) or equivalently (5 =1),

4m'e4 4 1 2e4m
n, = =, =, uT, =, (12)

z2
0 0 '0

where a =(me2} ' is the three-dimensional Bohr
radius and I'0=-5 depends on the details of the
theory. In the classical regime, the instability
theory seems to seriously overestimate the solid
region and the defect theory' wins out, although
problems with the nature of the transition persist.
At low temperatures, where quantum-mechanical
effects are important, the situation is reserved.

Assuming I"0~I'» then from the above argu
ments and from the fact that 2e4m is the only

energy in the problem, we see that the tempera-
ture scale (the temperature at which the phase dia-
gram begins to deviate from the classical curve)
given by Eq. (1.1) in this 2-D electron gas is set
by

II. FREE ENERGY AND THE TRANSITION
TEMPERATURE

Our model Hamiltonian is given by

(2.1)&= 2 P~(q)[p(q)p(-q) —e ' ' "p(o)]

Here 6(q) =2)we'/e, qS, and e, and S are the effec-
tive dielectric constant and the total area of the
system, respectively. The charge-density opera-
tor is defined by

p(q) fdre 'e'p(r=) fdre ' 'd (r=)d(r), (R.2)

y(r)=pa y (r).
X

In Eq. (2.3) p» =(L/2mP) f dX where L is the
linear dimension of our system and P»(r) are the
Landau wave functions for the lowest level, i.e. ,

(2.3)

P»(r) =(m' 'lL) '"exp[-iXy/P —(»- X)'/2l']. (2.4)

By the use of Eqs. (2.3) and (2.4), we can rewrite
Eq. (2.2) as

p(q) = p exp[-iq X- —,'(ql)']a»~ a»
x +

(2.5)

where X, =X+ ,'Pq„and q„is th—e o.th component of
q.

The order parameter of the CDW with a wave
vector q=Q is (p(fI))), where ( ) is the thermal
average. From Eq. (2.5) we see that the require-
ment of finite (p(Q}) is equivalent to setting,

(at a» ) =(2m/L)(s(tq))e'o "5(q, —q„)
+[a(Q)]+e 'o. 5(q, +q„)J,

(2.6)

Here b, ((q)) is a complex constant independent of
X and is of the order of v. The X-dependent phase
factor in Eq. (2.6) follows from Eq. (2.5) and the
requirement that (p(q)) be finite for q=Q. Using
Eq. (2.6), the CDW in real space is given by

the Si MQS. Since there is no kinetic energy in the
problem, all parameters except the occupation of
the lowest Landau level v=2E~/I&a, -=2vnP are of
order 1. Thus for v-=1 the transition temperature
in any theory is probably of order e'/e, l.

We will, in fact, be able to show that within a
reasonable Hartree-Fock (HF) picture, the system
develops a charge-density-wave (CDW) instability
as the temperature is lowered. Still within the
framework of HF theory, we will be able to esti-
mate T, and discuss the nature of the transition,
i.e. , its order. We fjnd that for all fractional oc-
cupations of the lowest Landau level except one
half that the transition is first order.
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(t(~))=
2 * f &'~(~(~))~"'

(4) .
(2mP

(2. 1)

U(Q} l (e'Ie, g, )

0
0.5—

In terms of the order parameter b, (Q}, the
Hartree-Fock Hamiltonian for Eq. (2.1) is given
as (see the Appendix)

a =-Q ((p(Q, )e"("'"U(Q,)[&(Q,)]++H.c.}
Q~

—M(Q, }~~(Q;}p)+x.z„ (2 8)

where the operator N, represents the total num-
ber of electrons. In Eq. (2.8) the existence of
several order parameters b, (Q,) corresponding to
different wave vectors Q, has been assumed. The
summation over Q, is restricted so that Q, and

-Q, should not be counted twice since b, (-Q;)
=[6,(Q,)]*. In Eq. (2.8}Zo is the Fock energy in
the normal state when the charge density is uni-
form, and the Hartree-Fock potential U(Q} is given
as (see the Appendix)

(g)
' '", (.n..l ~&(

)'
2 ( 4

i Qo 2

-0.5—

FIG. 2. Plot of the effective HF potential in momen-
tum spa,ce (b).

(2.12a)

of the order parameter and by considering one
kind of order parameter, 6(q), we obtain for 5FO

5F"=~[U(q) + U(q)'f'(E. )]~(q)'

(a~)'12
l =)((((Q)()—(((Q) T ) &(0)' (2.12b)

2w P
(g) (2.9) where ~=S/2mP. In Eq. (2.12a) f'(E,) is given

by

Here ~Q ~=q and I,(x) is the modified Bessel func-
tion. The Q dependence of U(Q) is shown in Fig. 2.

In order to determine the critical. temperature of
the phase transition, we evaluate the difference of
free energies between the CDW state arid the nor-
mal states with a fixed total electron number. It
can be written in terms of the thermodynamic
potential 9 as

5Z =-S,,Q) —S', (n)

=fl„gp) flo(p.}—+ (V p.)&. —

where N, is the total number of electrons and p,

and p, are the chemical potentials of the CDW
state and the normal state, respectively. We will
determine 5F to order b, (q, )', using sf'(g, )/a p, ,
=-N„i.e.,

O'0
5F =n„jp.)-n, (p, )+2(p, —p, ,)' '2P' + ~ ~ ~ (2.11)

BWo

A. Second-order transition

First we estimate the critical temperature under
the assumption that the transition is second order.
In this case it suffices to consider the contribution
to 5F to second order in the order parameter.
By noting that p, —p, , is proportional to the square

T, = v(1 —v) U, = 0.557v(1 —v)e'/e, l,

Iq(=q, =l 588f-'. .
(2.13a)

(2.13b)

Note from Eq. (2.13b) that the wave vector of the
CDW is independent of the degree of filling v if
the transition is second order.

Several features of T, are worth noting. As
advertised, T, is of the order e'/&, I and the period
only depends on l. The density dependence is para-
bolic and symmetric about v =-,'. The symmetry of
all the physical. properties. ,about v =-,' is a general
property of the Hamiltonian, Eqs. (2.1) and (2.2},
which follows from the invariance of this Hamil-
tonian under a transformation g„-b~ . The ex-

Xp
plicit form v(1 —v) for the transition xs not a gen-
eral property but a characteristic of the HF equa-
tions. At low densities the CDW transition tem-
perature is linear in n, unlike the classical transi-
tion temperature which goes like n'~'. In Si MOB

&[expP(&o —p ) I)+'
dE,

In obtaining Eq. (2.12b), we used the relation
f'(E,) = -v(1 —v)/T. Thus we see that the instabil-
ity of the normal state is determined by the maxi-
mum value of U(Q), U(q, ) =U„i.e. ,
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T,= 20'K for 8 =100 kG at v =0.5 (n= 10" cm 2).
This is a rather high temperature when compared
with the classical temperature for the transition
to a signer solid at the same density in the ab-
sence of a magnetic field. Using the numerical
results of Hockney and Brown, T„=2'Kfor
v=0.5 and B=100kG.

To put the relation between the classical transi-
tion temperature 7'„and the quantum CDW temper-
ature T, in the proper perspective, we have plot-
ted both temperatures for a fixed 100-kG field as
a function of v (density) in Fig. 3. The classical
temperature is low compared to the CDW tempera-
ture unless v&10

The classical transition temperature to a Wig-
ner solid (WS) is about one order of magnitude
smaller than our estimate of the CD% transition
temperature. In fact, careful consideration of the
WS phase diagram in a magnetic field amplifies
this difference. Using a Lindeman melting cri-
terion designed to reproduce the classical result,
we find that the solid region is strongly suppressed
in the presence of zero-point fluctuations. " In

fact, at fields of 100 kG we find that the %8 no

longer exists for v ~ 10 '. At these "high" CDW

temperatures, the strong short-range order which
is not included in our HF description has not had
time to build up, and our HF description is a good
one.

B First-order transition

As seen from Eq. (2.9), U(Q) is a function of
~Q ~

and the maximum value of U@) occurs on a
circle @~=Q, in momentum space. This fact
introduces the possibility of a first-order transi-
tion, since any CDW with wave vector IQ ~

=Q, has
an equal right to evolve at T =T,. If the charge
density with Q, ((Q, (= @,(} were to start building
up, those with Q, and Q, which are oriented 120'
apart and satisfy Q, +Q, +Q, =0 would also build
up (see Fig. 4). Qf course, the choice of the di-
rection of Q, is arbitrary in our present model,
but once Q, is fixed, for example, by a boundary
condition, Q, and Q, should also be. In the follow-
ing, we consider the case where we choose such a
particular set of three order parameters. "

In order to incorporate the possible fact that the
absolute magnitude of the wave vector Q, is not
necessarily equal to Q, at the first-order transi-
tion, we assume ~Q, ~

=Q arbitrary and determine
Q variationally. For this purpose we evaluate the
difference of the free energy 6I between the
normal state and the CDW state as a power series
in A(Q} up to fourth order. The third-order contri-
butions are shown diagramatically in Figs. 5(a} and
5(b)." The straight lines represent one-particle
Green's functions and the vertices are the order
parameters 6(Q,). These two terms are complex
conjugates of one another. They give a term

LIQUID
5F3=- N2(UQ)'f (E,)(h,A,A, +c.c)

x cos(-', I'Q, x Q, ~ e,), (2.14)

where a, =—a(Q, ) and e, is the unit vector in the
direction of the magnetic field. In deriving Eq.
(2.14) we noted the following fact for the phase
factor in Fig. 5(a):

0.05

I

0.5

FlG. 3. Transition temperature in this HF theory.
The solid curve shows the second-order transition tem-
perature. Thd dashed curve is a plot of the classical
transition temperature for a fixed B=100kg.

FIG. 4. Three wave vectors of the charge-density
waves involved in a first-order transition.
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PexPI-( — Q ( X+ " +Q„X+)'Q„+X" +Q,„X+
X

' ' XexP -i
X

(Q,„Q„-Q„Q,„)).x

In Fig. 5(b), on the other hand, the phase factor is

PexPI-ip Q„X+ p'" +Q„X'+PQ,„+
p

" +Q„X+P
X

. P=&exp -f
2 (Q„Q..-Q., Q )

p
=%exp i2-(Q„Q,„-Q,„Q,„)

J

The contributions to Q gp) —QQ(»», ) in the fourth order in b,
&

are given by

(2.15)P(Q) f"(X)(4 P leg) ep g leal'le, . l'(2 (+Pe@a,ex i», e)»
$

.

Note that the term fb, , ~' does not have any phase factor whereas, regarding the phase factor, the term
(b, , ( ~b, , ~

(i x j) has two different contributions. These contributions are shown in Figs. 6(a)-6(c). In Fig.
6(a) the phase factor is cancelled. On the other hand Figs. 6(b) and 6(c) contain factors given by

exP ~ '" X+
2

+ ~, X+l' ~, +
2

' — f. X+8 ~, +
2

' — ~. X+
2j X

=exp[fP(Q Q, —Q, Qg, )] ~

exP -i Q,„.X+ 2'"
(
—Qq„X+I'Q„2" —Q;„~X- PQg, + 2" +Qg„~X-

=exp[fP(Q„Q,„-Q„Q;,)1,

» -v. =U(Q)'f"/f' Q I«l'.
1

In Eq. (2.16), ff"» is defined as

(2.16)

respectively.
Since

8 QQ(P, Q) BN,
8 po s(((p

the change of the chemical potential p, pp ls given
by

f"'=-v(1 —v)[6(v ——,')' —,']/T'. — (2.17c)

6F =NUQ(adQ+ bb.
Q

+ chQ),

Q=3 1
v(1 —v)

T P(Q)),

(2.18)

(2.19)

f) = —2[U(Q)/T]'v(1- v)(1 —2v)cos-,'v 3 (Qo'

By using the relation f'(EQ) =f' —(p —p )f" in Eq.
(2.12a) and by setting a(Q, ) =a,e' &, we may finally
write

(„» d"[expp(E, —p, ) +I]
dz'.

0

and the first few are

f =-v(1-v)/T,
f"= v(1 —v)(1 —2v)/T',

(2.17a)

(2.17b)

x cos(e, +8, +8,),
c = ~[U(Q)/T]'v(I —v)[+ —( —2)']

+ [U(Q)/T]' v(1 —v) [1—cos-,'0 3 (Q I)']

x [6(v ——,')' ——,'] .

(2.20)

(2.21)

By noting that cos —,'&3(QQI)' =0.48 at QQ/=1. 568,

Q)y-

-Q Q -Q. -Q Q.
l

x 0)

(a)

-Q) Q)

(b)
Ql 0 —Q.

l

FIG. 5. Contributions to the thermodynamic poteritial
in third order.

FIG. 6. Contrabutzons to the thermodynamic potential
in fourth order.
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we see that 8, +8, +8, =0 (v) if v& —,
' (v&-,'). The

first-order transition temperature T, determined
by the equation a= &'/4c is now given as

I I

(Tl
—T~) I Tc xlO

U(Q) l~ A cos'P
' U(Q, )Ji B+C cos'P (2.22)

where P = —,'W3(QI)', and A, B, and C are defined
by

0.8—

A = v'v(v ——,')',
+r(~-2) i

C = v —~(v ——,')'.

(2.23a)

(2.23b)

(2.23c)

0.6-

OA

Maximizing T, with respect to Q or P, we obtain
the deviation of T, from T, [Eq. (2.13a)] as shown
in Fig. V(a). In Fig. V(b) we show the Q =Q„which
gives this maximum. It is seen that Q„decreases
as v deviates from —,'. This tendency is reasonable
in view of our discussion concerning the nature of
the transition at low density, where we expect a
transition to a solid whose basic periodicity Q~
=2.69 v"'l '. Q~ is shown as the dotted curve in

Fig. I(b). The variation of Q„is a reasonable
first approximation to such a behave. or.

0.2

0 0.1 0.2 0.3 0.4 0.5

(a)

III. DISCUSSIONS

We have examined the CDW phase transition
within a Hartree-Pock approximation using the
usual delocalized I.andau wave functions. The
physical picture which emerges from these cal, -
culations is that two-dimensional electrons in a
large magnetic field will have a variety of phase
transitions linked up with the formation of a CDW.
This CDW occurs at temperatures high compared
to the classical transition temperature and evolves
in a second-order fashion with a bit of first-
order character. It is harmonic in character
near the transition T,. As the temperature is
lowered, we expect the period and harmonic con-
tent of the CDW to change, evolving towards an
anharmonic Wigner solid. If we solve a nonlinear
version of it, the HF theory presented here gives
us an appropriate framework within which we can
analyze such problems.

We do not believe that our transition represents
the actual melting temperature of the CDW, but
rather a kind of transition between an essentially
gaslike phase and a phase with charge-density
waves but no long-range order. The long-range
order in angle and position will probably be des-
troyed by defects near the classical melting point
or at least at temperatures low compared to our
T„according to one version or another o'f the
defect-melting theories. ' We do, however, expect
that our transition may show up as a quantitative

I i

0 O.t 0.2 - 0.3 0.4 0.5

(b)
FIG. 7. First-order transition temperature and the

wave-vector variation in this HF scheme. The dotted
line shows the wave vector for the Wigner solid Q z„
while the dashed straight line is the constant wave vec-
tor Qo in the HF scheme.

change in the degree of short-range order, e.g. ,
that the structure factor may have a rather sharp
peak atour Q„below our T,. The reason is that
the density of dislocations, while finite, may not
be very high because as the CDW becomes less
solidlike, the core radius a, of the dislocation in-
creases, and their entropy, which is proportional
to -b ln(ncP) decreases (although T„which depends
on the coefficients of the logarithms in energy and
entropy, will still be low). We propose, in other
wo'rds, that Hartree-Fock probably gives a good
description of the short-'range order, which will
become very pronounced at our T, and below.
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APPENDIX

The Hartree-Pock decoupling of the Hamiltonian [Eq. (1)] is

vqpq p-q

-y v(q((p(-q))p(q)-g P v(q(exp( —
e -iq, (X-q') ax a„(a ax ).(0)'

(Al)

The first term of Eq. (Al) is trivially given as

Sv(Q)~(q)e ' "p(Q) +H.c.
while the second term is evaluated by using Eq. (2.6), i.e. ,

-n(q) pa~ g„e'&~"Q v(q)exp — +ip(q„q,-q~„)-[a(q)]*gu~ a„e'o~r
X a X

xgv(q(exp(- q
(p(qv(q-q, qq)(=, -(a(q)p(-(q)+[a(q)] p(q)(a"""'

x d'q
2

exp —
2

+il'(q, q„—q„q,) ~

e2 v 1/2 (qf)2
=-(~(q)p(-q) [~(q)]*I (q)}, , —,

Equations (Al) and (A2) yield the desired results.
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