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Exciton annihilation in molecular crystals at high exciton densities*
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Suna's kinematic equations describing exciton annihilation in aromatic crystals are solved for higher
exciton densities n, i.e., where n & P/y, where P is the monomolecular decay rate and y is the bimolecular
annihilation rate constant. It is found that in' case of diffusion-limited annihilation, y is a function of the
exciton density n even for n small compared to the lattice site density. In general y &s then a monotonically
increasing function of n and these density effects depend on the dimensionality of the exciton motion. For
both triplet and singlet excitons, y is a function of n in one-dimensional and two-dimensional systems only.
In the case of singlet excitons, y depends on n even in three-dimensional systems if reabsorption is a
dominant mechanism of exciton motion. Some materials are suggested in which such effects could be
experimentally observable.

Mutual annihilation of excitons in organic molec-
ular crystals has been studied by many workers. '
Suna' has presented a system of equations describ-
ing exciton annihilation which is valid for the hop-
ping model of exciton motion and which he has
solved in the low exciton density limit. In this
paper we shall extend the solution of Suna's equa-
tions to higher exciton densities.

The kinetics of annihilation of spinless excitions
are described in the steady state by

in the case of a uniform distribution p(R) =1. We
calculate p from

0= 2(P+y&)+ 2 P @(R R') p(R )
R'

—2p(R) (Q 2(R') —2(B)) —22p(B) 2(R)p(R)
R'

—ygv p [X(R' —R)+ )(.(R')]pB(RR+ R, RR+ R', RR)

0= t), —Pn -yn,2
w
R'

(4)
where & is the uniform exciton density, P is the
monomolecular decay rate, and y is the macro-
scopic annihilation rate. Equation (1) is a. general-
ly accepted phenomenological description of anni-
hilation. Suna' calculated y as

y=s XR pR

2

where p(R) is the annihilation probability per unit
time for excitons separated by R, with R the lat-
tice vector and g is the length, surface, or volume
per molecule for one-, two-, or three-dimension-
al systems, respectively. The normalized two-
particle distribution function p is defined by

(nv)'p(R) = p,(R„R,+ 0),

where p,(R„R„.. . , RJ, here for k =2, is the @-

particle distribution function as defined by Suna.

p,(R„R,) represents the probability that there is
one exciton at the site R„and one at the site R,.
For

~

R
~

—~, p(R) = 1, and p(R) decrea ses mono-
tonically with decreasing ~R~, because the anni-
hilation causes a depletion of other particles in
the vicinity of each particle. Thus each particle
is surrounded by a depletion zone which according
to Eq. (2) causes y to be smaller than it would be

for R= 0, together with the boundary condition

p(0) = 0,
which expresses the fact that no two excitons can
occupy the same lattice site.

In Eq. (4) the term 2(p+ym) = 2(l/n)'nn is a
source term analogous to o. in Eq. (1). Here un
reflects the fact that the pairs are created by a
single-particle generation z combined with already
existing particles n and (1/n) is the normalizing
factor. The monomolecular decay term 2Pp(R) is
analogous to P~ in Eq. (I), and

2 Q P(R R')p(R') 2p(R)(Q 2(R') 2(R))
R' R'

describes the incoherent-particle transport in-
,cluding the exclusion principle p(0) = 0; 4(R) is
the jump rate between two lattice sites separated
by R. All these terms contain the factor 2 because
Eq. (4) describes pairs of particles; X(R)p(R) is a
sink term which removes pairs with mutual sepa-
ration R at a rate X(R). Finally, the term

nv p (X(R' —R) + X(R'))pR(RR+ R, RR+ R', RR)

for arbitrary R, is analogous to the term yz' of
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Eq. (1). It is a higher-order term which is also
caused by the annihilation. It contains a three-
particle distribution ™p,defined by

(nv) ps(R()+ R, Ro+5,', R,) = p,(Ro+ R, RO+ R', Ro) .

with

R'

(14)

p(R, —R,) = p,(R„R„R,), (8)

(6)

The distribution function ™p,must be calculated
from an equation which involves p~, etc. Thus
Eqs. (1) and (4) are the two lowest equations of an
infinite hierarchic system of equations. Finding
an exact solution of this system is extremely dif-
ficult. fauna has solved the system in the low-den-
sity approximation by putting the higher-order
terms in all equations equal to zero. In that ap-
proximation y is a constant independent of exciton
density n. %e shall use an approximation,

p, (R), R„R,) = p(R, -R2)p(R, —Rs)p(RS-R ), (7)

which is commonly used in statistical mechanics,
e.g. , in the theory of liquids. This approximation
is good for such three-particle configurations in
which not more than two particles (e.g. , 1 and 2)
are close to each other, and the third one (3) is
far away from the pair (1,2). In the limiting case

and
I
Rx —R3I, the pairs (1,3) and

(2, 3) are not correlated and

Both A(R) and 1 —E(R) are functions decaying to
zero with increasing 8, so X'(R) -0 for 8-~.

Equation (11) has been solved by Suna in the
"smooth approximation, "' in which p(R) is nearly
constant over those values of R for which either
X'(R) or @(R) are nonzero, and is replaced by the
average (p),~ The smooth approximation is valid
if nearest-neighbor jump rates dominate and are
nearly isotropic, ' but this is not a necessary con-
dition. By replacing X with X' and P with P' in
Suna's solution of Eq. (11), we can calculate y
from the smooth approximation of Eq. (2), which
yields

y=»&p&.,
where

(15)

X= Q X(R).

Equation (15) is in this ease an implicit expression
for y, because (p)„on the right-hand side is a
function of P' and X'. The smooth approximation
is valid only for

p(R, -R,) =1, (9) yn &&& (16)

(10)

Equations (S)-(10) then agree with Eq. (7).' "
This argument suggests that the approximation
Eq. (V) is good only for small particle densi-
ties.""'" However, this approximation has been
shown to be "surprisingly successful" as follows
directly from computer simulation and indirectly
from experiments on fluids. ""Moreover, we
shall solve the annihilation equations for a range
of particle densities [see Eq. (16) below] for which
the exact validity of Eq. (7) is not critical, and we
will show that even in this density range y may be
a function of n.

With the approximation Eq. (7) we obtain from
Eq. (4)

0= p'+ g p(% —R') p()(') —pO))( P p()(') —p()())
R' R'

—P'p(R) ——,X'(R)p(R),

where

because it requires simultaneously a fast decay
of X'(0) and a slow decay of p(R) with increasing
ft; p(R) causes a slow decay component of a'(R)
because of the approximate relationship

e(R) = p(R) . (17)

with

y"
1+y "/Xv' (18)

The condition [Eq. (16)] which keeps this slowly
decaying component of X' small is satisfied if the
exciton density is much smaller than the density
of lattice sites. We shall assume the validity of
Eq. (16). The term 2[1 —&(R)]yz can then be neg-
lected, and the quality of the approximation Eq.
(7) is not critical.

Thus y is calculated by only replacing the mono-
moleeular decay rate P by the effective decay
rate p+y~. We obtain a.ccording to Suna [Ref. 2,
Eqs. (12), (20), (22), and the Green's functions
in Table I]

and

O'=P+y~ (12) y-= 4[D(fl+y )]"'
for one-dimensional exciton motion,

(19a)

l(. '(R) = X(R) —2 [1 —«(R) ]yn, (13) y"= -4vD/(In[-, '(P+yn/D)' '8, ]+0.577) (19b)
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for isotropic two-dimensional motion, or

y"= 8mDR, (19c)

for isotropic three-dimensional motion. Here R,
is the average jump distance of the exciton and D
is the diffusion coefficient, which is related to
e(R) by'

D,.~= p Q %(R)RR~.
R

In Eqs. (19) it was assumed that

P+ yn «D/R,'.

(20)

(21)

It is readily seen that in this approximation y is
independent of g only in the three-dimensional
case. In general y is monotonically increasing
with increasing ~ to the upper limit gA. . This in-
crease is caused by flattening of the pair distribu-
tion function owing to larger P'. Owing to the
smooth approximation, the results of the discrete
lattice model are in this case identical with those
of the continuum model' if the average jump dis-
tance R, is put equal to the radius of the sphere
within which the annihilation takes place.

In case of fast decay pa D/R,', y is a function of
~ even for three-dimensional motion. Following
the same procedure as in Eqs. (18) and (19), we
obtain for isotropic diffusion

y"= 8@DR, e f(8'/O) Z, j
'P+yn+ 4'

( 4~DR ae

with

(22)

@=Q e(B). (23)

If we perform the smooth approximation of Eq.
(20), we can replace g in Eq. (22) by

4 = 6D/R,'. (24)

For long-range transport R» „il3 the expres-
sion in large parentheses is equal to 1, and with
Eqs. (12}and (24) we obtain from Eq. (22)

y"= 8vDR, (6D/[6D+R (P+yn)])e '~'""

(25)

In this case the smooth approximation is less ex-
act than for short-range transport, and in gen-
eral Eq. (25) may be just a crude approximation.
However, this equation is very instructive at
least qualitatively if we compare two cases with
the same isotropic three-dimensional diffusion
coefficient D, the same ann'ihilation rates A(R),
and the same decay rate P, but with different av-

erage jump distance R,. In this comparison the
small R, «(D/P+yn)' ' must be offset by large
jump rates e(R), and large R, «(D/p)~~' implies
small @(R). According to Eqs. (19c) and (25),
only in the latter case is y a function of n. This
difference is clearly not incorporated in the con-
tinuum model, ' and is caused by a different degree
of overlap of the exciton path with itself, which is
discussed in detail in the random-walk model later
in this paper.

The above analysis applies to singlet excitons.
For triplet excitons the substitution P -P+yn in
Suna's analysis can also be used, because the
quenching rate of a triplet pair (1,2) by a third
triplet (3} is independent of the pair spin state of
(1,2) if all spin states of (3) are equally probable.

. This can be shown easily in the high-magnetic-
field representation. In this representation the
pure singlet pair state IS) is given by

S&=(I/u3)(10 &- I+1 -»-
I
-1+1&» (26)

where the indices +1,0, -I refer to spin quantum
numbers of the individual triplets. ' Therefore,
due to spin conservation, only pairs I0, 0),
I
-1,+1), or I+1, -1) can annihilate because they

have a nonzero projection onto the
I
S) state. The

annihilation probability is the same for all these
pairs "' If.the pair (1,2) is in one of the states

I
0, 0), I+1,+1), or

I
-1, -1), it can be quenched

by (3) if it is in the state
I 0),

I
-1), or I+1), re-

spectively. In all these cases there is only one
state of (3) which can quench (1,2), but it can
quench both (1) and (2). On the other hand, in all
remaining cases there are always two states of
(3) which can quench only one exciton of the pair
(1,2), e.g. , if (1,2) is in the state IO, +1), then
'0) is quenched by IO) and I+1) is quenched by
-1). Thus we expect equal average quenching

rates of (1,2) by (3) for all possible states of
(1, 2). The assumption of equal population of all
single spin levels is satisfactory for magnetic
fields S10 kG at room temperature.

The increase of the pair decay rate with in-
creasing tr iplet exciton density causes a broaden-
ing of the resonance lines in the magnetic field de-
pendence' df delayed fluorescence. The substitu-
tion P-P+yn into Suna's expressions' for the
triplet-triplet annihilation rate is straightforward.
Since triplet excitons usually have a long lifetime,
Eq. (21) is valid and as with Eqs. (19) we obtain
formulas for y in which density effects are ob-
servable only in one- and two-dimensional sys-
tems. Examples of such systems are organic
polymers, ' biological membranes, ' or photosyn-
thetic units. ' In a quasi-two-dimensional sys-
tem such as anthracene the three-dimensional
equation for pair annihilation can be approximated
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by a two-dimensional equation in which P is re-
placed by

P,«= @*+'P-+(+0+ 'P-')'", (27)
I

where +* is the out-of-plane hopping rate. ' In
this formally two-dimensional equation p,« is the
effective monomolecular decay rate including the
possibility that the exciton leaves the plane of
this two-dimensional motion. In anthracene' P,«
=(2 +1) x10' sec ' and obtaining triplet densities
such that @&=P,« is difficult, so y is essentially
independent of n. However, this applies only to
the kinetics of the annihilation, without consider-
ing the annihilation products. It is known that the
magnetic field modulation of delayed fluorescence
is a function of n, because part of the annihilation
events leads to a triplet exciton. ' This dependence
has been analyzed elsewhere. "'

For resonant nonradiative diffusion of singlet
excitons" in aromatic crystals the average hop-
ping rate D/R,' is much larger than P.~' With y~
6 P, Eq. (21) is satisfied, and from Eqs. (19) it
follows that y is a function of n in one- and twp-
dimensional systems only. This excludes the
aromatic crystals in which the dipole-dipole
transfer" is dominant, because these crystals
generally have at least two nonequivalent mole-
cules per unit cell and the diffusion may be con-
sidered nearly three-dimensional. However, in
some crystals the diffusion due to reabsorption
may be dominant or at least not negligible. " The
reason for this is that, although the jump rate is
relatively small, the jump distance is much larger
than in nonradiative transfer. In this case p= D/

R,', and according to Eq. (25) p is a function of n.
In the literature experimental data on singlet dif-
fusion in aromatic crystals scatter by more than
an order of magnitude, which, we believe, is
caused at least in part by the varying roles of
reabsorption and surface quenching in different
experimental methods. Since the influence of re-
absorption in general cannot be excluded even in
thin samples because of total reflection at the
surface, and since surface effects are not well
understood, we would like to propose that detailed
measurements be made of the dependence of y on
n in thick samples in order to clarify the ratio
between nonradiative and radiative transfer in
these systems. In one- and two-dimensional sys-
tems the reabsorption is negligible, but according
to Eqs. (19a) and (19b) density effects on p are pos-
sible. Again a detailed study of the dependence of
y on z should provide a better understanding of
exciton transport. Systems which are worthy of
study include the weak charge transfer complexes
anthracene (naphthalene) tetracyanobenzene, in
which two-dimensional exciton motion has been

q= [Jl(Z)/Z+ I]&1, (29)

where Z is the average number of exciton jumps
during its lifetime and E(Z) is the average num-
ber of sites visited during the exciton lifetime.
In general, with smaller Z, that is, with decreas-
ing exciton lifetime, the overlap of the exciton
path with itself becomes smaller, which means
that g is increasing. For large Z, that is, for
long exciton lifetime, g is independent of Z only
for three-dimensional motion. ' For Z —1, which
is equivalent to p=D/R,', q is Z dependent even
for three-dimensional motion, as can be seen
easily by comparing two cases, Z= 1 and Z= 2.
This is essentially the same result as in Eqs.
(19) and (25). As in the case of annihilation, mea-
surements of the trapping rate on the trap density
in thick doped crystals w'ith bulk excitation wouM
separate the influence of the radiative and non-
radiative transfer of excitons. Such a study could
be made with the present intense dye lasers on
some of the purer aromatic and substituted aro-
matic hydrocarbons.

In order to plot the density dependence of y it is
convenient to introduce new dimensionless pa-
rameters

and

I'„=ygXv

r = y/Xv.

(29)

(30)

The meaning of these parameters is clear if we
recall that Xg is the annihilation rate for D-~
and that y„ is the annihilation rate for X-~.'
%ith this notation the one-dimensional case is
described by

proposed, "and dichloronaphthalene, where again
a one-dimensional triplet motion is present. '4

In view of the similarity between trapping'of ex-
citons and annihilation of excitons, which can be
seen as mutual trapping, it is expected that sim-
ilar density effects will occur in trapping. With
an increasing density of the traps the exciton life-
time decreases, which flattens the exciton-trap
distr ibution function and increases the trapping
rate. This can be illustrated simply in terms of
a random-walk model. "

It is well known that during random walk a par-
ticl.e can visit the same lattice site more than once
and that the probability of this is higher for sys-
tems of lower dimensionality. " Visiting the same
lattice site more than once makes the trapping
less efficient. The trapping efficiency is propor-
tional to the ratio
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FIG. 1. Dependence of the relative annihilation rate
I' on the relative exciton density n/n* for one-dimen-
sional diffusion.

1"„=1"'„(1+I'n/n~)' ',
where

n/n* = n&v/p

is the relative exciton density and

(32)

(33)

(34)

The calculated dependence of 1" on n/n* is pre-
sented in Fig. 1. It is clearly seen from Fig. 1 or
Eqs. (31) and (32) that in order to observe the den-
sity effect we must be able to obtain exciton den-
sities such that I'n/n*& 1. The total change of I'
from n=0 to n ~ is equal to 1/(1+ I'0). This
means that I'„should be small, y„s A.zr, which is
the case for diffusion limited annihilation. In or-
der to obtain the full information from density-de-
pendent experiments in one dimension the exciton

density must be varied in a range of at least about
five orders of magnitude.

We do not present the plots for Eqs. (19b}and
(25); however, these two cases are qualitatively
described by Fig. 1. Their main differences are
a weaker density dependence of y„ in Eq. (19b) be-
cause of the logarithmic function, and a stronger
density dependence of y„ in Eq. (25) because of
the exponential function. The dependence of the .

limiting values y (n= 0) and y (n= ~) on y„(n= 0),
given by Eq. (18}, is the same in all cases.

To summarize, in the case of diffusion-limited
annihilation of excitons (that is, for Xva y"), the
annihilation rate y is a monotonically increasing
function of the exciton density &. For z much less
than lattice site density, y can be calculated by
simply using Suna's results where P is replaced
by p+ yn. For n approximately equal to lattice
site density, higher-than-second-order correla-
tion of excitons becomes important. The neces-
sary conditions for n dependence of y are (i) yn
a p, and (ii) the dimensionality of the exciton mo-
tion is lower than three or the average jump rate
of the exciton is comparable to its decay rate. It
appears that studies of the dependence of y on &

in materials such as the weak charge transfer
complexes anthracene (naphthalene) tetracyanoben-
zene (p-10' sec ') in which two-dimensional ex-
citon motion has been proposed would be ideal for
observing these density effects.
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