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The complete linearized Poisson equation for the potential of impurity ions in a semiconductor, including
the spatial variation of the dielectric function, is solved numerically by an equivalent variational principle,
incorporating a functional recently proposed by Brownstein. The resulting -potential is compared and
contrasted with previous formulations which neglect a term involving the derivative of the dielectric function.
In the region where this function becomes a constant, the chosen potential approximates that of Dingle,
while at the impurity site it is greater than the latter by a multiplicative factor equal to the dielectric
constant. Within the linear approximation, the present potential is believed to contain the correct
embodiment of spatial variation in the dielectric function in a self-consistent manner. The electron-
conductivity mobility, in the Born approximation, is also determined with this potential. Comparison with
analogous calculations and with some typical experimental data as reference is made. It is found that the
present theory of ionized-impurity-limited mobility yields a significant improvement over the Dingle theory

and over prior treatments of this problem.

The present paper is a continuation of a series'™®
concerning the contribution of iohized—impurity
scattering, in the Born-approximation theory of
Brooks and Herring, ¢ to the electron-conductivity
mobility in a semiconductor. The mobility has
‘been calculated using an impurity-ion potential

derived from the linearized Poisson equation whére

the static dielectric-constant «, in that equation, is
replaced by a spatially varying dielectric function
K(r). The familiar impurity-ion potential, due to
Dingle, ®

G0 =(ey/Kr)e ™ Ro, (1)

follows from the linearized Poisson equation with
the uniform dielectric constant. In Eq. (1), e,
denotes the magnitude of the electronic charge and
R, is a screening length characteristic of the
electron density, the temperature, and the partic-
ular semiconductor in question. In the following,
Ko Will designate the mobility calculated by use

of ¢,.

The generalization of ¢, to include the spatial
variation of the dielectric function has recently
been proposed by Csavinszky.® The potential was
chosen arbitrarily.to be a linear combination of
two screened Coulomb potentials, ‘

$,=9o[Ce™ For (1= Clem/Ro]. )

The advantage of this form is the subsequent ap- -
plicability of ¢, to any theories of ionized-im-
purity scattering based on the Dingle-type po-
tential. The constants » and C in ¢, are para-
meters which must be calculated numerically for
each semiconductor and for each desired value
of R, by means of an equivalent variational-prin-
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ciple approach which is described fully in Ref. 6.
In Ref. 2, the ratio of the mobility u,, calcu-
lated using ¢,, to u, was presented as a function
of the free-electron concentration for both Si and

Ge and of the temperature, for Si only. It was
found that i, was greater than u, for degenerate
doping and approached p, for nondegenerate dop-
ing. As the Dingle mobility u, is already known
to be an overestimation of the measured quantity,
this result was not entirely satisfactory.

An alternative potential, also due to Csavinszky,
in which a more physically accurate boundary
condition was used, was the subject of Ref. 3.
This potential has the form

¢, = ¢0[1 + (Ko - l)e-"] . (3)

Here a is the parameter to be determined numer-
ically from the variational calculation. It was
found that p,, the mobility calculated with ¢,,
drastically under estimated both u, and some
typical experimental points.® As our calculation
of u, only takes ionized-impurity scattering into
account, and inclusion of other scattering mecha-
nisms would bring the total mobility to even lower
values, this result was not promising either.
Examination of ¢, reveals that it remains signif-
icantly larger than ¢, at distances much greater
than a lattice constant away from the impurity ion
(see Fig. 2 of Ref. 3). However, this does not
seem to correspond physically with the behavior
of the dielectric function. This function,

Kr)t=K3'+ e —Ae®T ~BeTT, 4)

which is an analytic approximation based on the
isotropic Penn model,® was formulated by Azuma
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and Shindo'® for Si and by Okuro and Azuma'! for
Ge. The parameters «, B8, ¥, 4, and B are
constants specific to a given semiconductor and
are tabulated in Refs. 10 and 11. (There appear
to be two misprints in Ref. 10. See Ref. 6, foot-
note 8 for details.) The function x(») reaches its
uniform value k, at a distance of the order of a
lattice constant away from the impurity ion.
Therefore, we would expect that a ratio of the
modified potential ¢, to ¢, would approach unity
within a distance of this order of magnitude.
Obviously, ¢, does not have this behavior. In the
present paper, we formulate an impurity-ion
potential ¢ which we believe to be the correct
embodiment of the spatial variation of the dielec-
tric function in the linearized Poisson-equation
approximation. The electron mobility u is calcu-
lated with this potential and we discuss the re-
lationship of u to p,, i,, and u, and to some
typical experimental data.

Incorporation of the spatial behavior of the di-
electric function into the derivation of a more
complete linearized Poisson equation has been
discussed in detail elsewhere.® The electric dis-
placement D () which is defined by

Ber)=k@)Ew), (5)
is introduced into the Maxwell equation
v.-D= 4mp, (6)

where p denotes the screening-charge density. By
writing the electric field as the negative gradient
of the potential, and treating ¢ and k as functions
only of », Eq. (6) becomes
dmp  Kk'(¥) .,

k() k()

2
S g 7
P!+ T+ (1)
Upon expanding the Fermi-Dirac integral of order
3, F,/2» which occurs in the exact expression for
the charge density, to linear order in e,¢ (r)/kT,

p takes on the form
4ﬂe§m*3/2(2ﬂkBT)1/2

pP= - h3 5-1/2(179)¢(r)' (8)

Here m* is an isotropic effective electron mass,
7, is the reduced Fermi level, and the other sym-
bols take on their usual meanings. The Fermi-
Dirac integrals are defined in Eq. (2) of Ref. 6.
Additionally, by defining the screening length R,

16m%eim**/2(2qk s T)!/ 2

R;?=
0 Kohs

g-l/z(nv) ’ (9)
using Eq. (8), and making the substitution ¢(r)
=(k,r/e,) ¢(r), Eq. (7) is transformed into
Z/)"—R-ozll) -KORgzzl)(e'“'—Ae'B'-Be'”)
=—k(r)(ae®" —~ABe™" —Bye? ") (¥’ =¢/7).  (10)

The term on the right-hand side of Eq. (10), which,
for convenience, shall be called S, has been ne-
glected in previous impurity-ion-potential calcu-
lations.®”” The magnitude of this term has been
discussed in several references.®'?*'® In Ref. 6, S
is considered in terms of ¢ rather than 3. As it
is the ¥ equation which will be solved using the
variational principle, this argument may be mis-
leading.

In Ref. 12, it is noted that S is very small at
large distances from the impurity ion. For this
reason, it'is set equal to zero in order to find the
solution of the asymptotic form of the linearized
Poisson equation. In Ref. 13, S is treated as the
inhomogeneous part of a second-order differential
equation and a particular solution is achieved
using the two solutions to the corresponding homo-
geneous equation, derived in Ref. 6, with the ap-
proximation that k() =«k,. The final result is that
the particular solution contains terms which are
negligible in comparison with the homogeneous
solution in the limit of very large ». Therefore,
it is concluded that the asymptotic validity of the
impurity-ion potential of Ref. 6 is established.

As discussed in Ref. 3, however, it is not the
asymptotic behavior of the impurity-ion potential
which is disturbing but the behavior near the ori-
gin. The expansion of the Fermi-Dirac integral,
leading to Eq. (8), is strictly only valid for large
7, but the nonphysical behavior of ¢,, everywhere
but in the asymptotic limit, leads us to consider
the small-» behavior further. It should be appar-
ent that, in the region of small #, S is not negli-
gible with respect to the rest of Eq. (10). Specif-
ically, for Si, at R;=30 a.u., and using the po-
tential ¢, defined below in Eq. (16), the ratio of
S to the left-hand side of Eq. (10) ranges from
approximately 1.4-665 as v decreases from
5.0-0.1 a.u. As it is in this region where the
most variation of k(») occurs, we feel that is it
essential to seek a solution of Eq. (10) which would
include the previously neglected term.

As indicated above, Eq. (10), without the right-
hand side, has already been solved®” by means
of an equivalent variational principle. In those
cases, the functional chosen was

Fo==3@") = 3kRT1/k(r)]Y? . (11)
In order to solve the full Eq. (10) by the variation-
al method, a new functional, which will yield Eq.
(10) upon its substitution into the Euler-Lagrange
equation, must be devised. Such a functional has
been proposed by Brownstein, ** namely,

Fy =% (— (¢’)2+41TG1P2) _££+£(ﬂ>4l (12)

k") 27 "2\« /¥

Here, « is understood to refer to k(r) and G is an
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abbreviation for —«,R;?/4m. Because the correct
boundary condition at the origin is

Yor~0) =k, , (13)
rather than
Yr-0)=1, (14)

Eq. (12) has been altered slightly to read
? 12 ’ 4
F:LZ‘.(_ (zpr)2+é_7r_cwz> __K__Zp_,,_K_Kg (’_"((_02) _1_ (15)

K 2 r 2 7
The trial function, ¥, used in the variational cal-

culation and the corresponding ¢ have the forms
d=e" B[1+ (k,~ 1)e?7]
¢= ¢o[1 + (Ko - l)e-”] » (16)

satisfying Eq. (13), where p is the variational
parameter. The term in square brackets can be
viewed as a correction to the Dingle potential ¢,.
This term can be seen to approach unity at large
7. This is physically reasonable as the dielectric
function approaches a constant value, the value
used to produce ¢,, in this limit. The question
remains, however, of how rapid this approach to
¢, should be. As was discussed in Ref. 3, the
values of parameter a, (analogous to our p) that
are obtained using Eq. (11) with the boundary
condition, Eq. (13), are such as to cause the po-
tential produced ¢, to remain significantly greater
than ¢, at distances much larger than a lattice
spacing. Remembering that «(7) reaches its
uniform value at a distance of the order of a lattice
spacing away from the ion, this behavior is not
acceptable.

Figure 1 shows curves of the parameter p as a
function of the screening length R, for both Si and
Ge. The only appreciable deviation from a con-
stant value occurs in the low-R, (high-degeneracy)

00 : s L L L L s L

R, (a.u.)

FIG. 1. Values of the parameter p occurring in Eq.
(16), as a function of the Dingle screening length R, for
Si and Ge.

range. It is interesting to note that p levels off

at approximately the distance of a lattice spacing.
For Si, the value of p varies only from 0.3127-~
0.3491 as R, increases from 10-250 a.u. Over
the same R, span, the variation in p for Ge is
0.5314 to 0.5802. For comparison with the pre-
vious parameter, a, for Si at R,=30 a.u.,
a=0.0018 whereas p=0.3233. Thus the correction
term of Eq. (16) reaches unity much faster than

it did in the case of ¢,.

The actual behavior of the impurity-ion potent-
ials may be seen explicitly in Fig. 2, where we
have plotted ¢,, ¢,, ¢,, and our ¢, for Si at
R,=15 a.u. It can be seen that ¢ approximates
¢, at a much lower value of » than does ¢,. The
distance at which ¢ approximates ¢, is of the
order of magnitude of the distance at which ()
=K, (see Fig. 2 of Ref. 10). Thus, the small
change in k(r) from the uniform k, value, which
occurs near the origin, is translated into a small
variation in the impurity-ion potential from the
Dingle potential. We note that, as defined by the
boundary condition, ¢ is k, times greater than
¢, at the origin. ‘

In the first Born approximation, we determine
the mobility arising from ¢ to be expressed by the
proportionality

b2 b2
-lgc 2y __ "o _1)2 2y __ Y3
}.L 1n§1+ b3) 5t (ko =1) <ln(1+ b3) I b§>

+ (Ko = 1)[1n(bgb§+ b2+ b3+1)

R2+R? 1+02 :I _
-(EFRE In 1+b:23 —Q. (17)
Here we have defined b,=2kR, and b,=2kR,, where
k is the electron wave number and R,=R,/(1+pR,).
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FIG. 2. Impurity-ion potentials ¢, ¢, ¢, and ¢,
as functions of distance » from the origin. The curves
are for Si with the Dingle screening length Ry=15 a.u.
The lattice constant for Si (10.3 a.u.) is displayed for
reference.
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FIG. 3. Ratio of electron-conductivity mobilities p/p,
as a function of electron concentration. The calcula-
tions for Si and Ge are shown for T=77.4°K and T
=300 °K.

Similarly, the electron mobility calculated using
®, is
petocin(l+b2) — b2/ (1+53)=Q,. (18)

The proportionality constant is the same in Eqs.
(17) and (18) and, thus, the ratio of the new
mobility to the Dingle mobility will be given by

B/ 1o=Qy/Q . - (19)

‘Figure 3 contains graphs of u/p, as a function
of electron concentration for Si and Ge at tem-
peratures of 300 and 77.4 °K. The new mobility
u shows the greatest deviation from u, in the
degenerately doped region. The ratio levels off
to approximately 0.89 and 0.97 for Si and Ge,
respectively, at a concentration of 10'® cm™ and
300 °K. Therefore, even for dilute doping, K/,
is still significantly different from unity for both
Si and Ge. The temperature change makes virtu-
ally no difference in the mobility ratio in the de-
generate region, for both Si and Ge, but, in the
nondegenerate region, the lower temperature is
associated with a higher mobility ratio. That is,
the lower the temperature, the closer u is to p,,.

In Figure 4, we display the concentration de-
pendence of the various mobilities u, K, ,, and
Wy, calculated for Si at 300 °K, and also some
experimental points® for reference. It can be
seen that u lies below p, but above u, and also
above the experimental points. The effect on the
electron mobility of the new potential is, thus,
in the proper direction and does not overshoot the
experimental points as u, does. It is to be ex-
pected that, were the contributions from other
scattering mechanisms taken into account, u
would lie even closer to the experimental points.
Therefore, the effect of taking the spatial varia-
tion of the dielectric constant into account in the
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FIG. 4. Electron-conductivity mobilities p, pg, py
and p, as functions of electron concentration. The ex-
perimental points, A, are taken from Ref. 8. The

curves are for Si at room temperature.

formation of an impurity-ion potential is to lower
the electron mobility. This is what one would ex-
pect from the form of k() and also accords
physically with the experimental data.

Some cautions as to the applicability of this
potential should be noted. First, as the concen-
tration of atoms in undoped Si, ° for example, is
5% 10%% cm™, it is possible that, for high impurity
concentrations, the assumption that the dielectric
function of the doped semiconductor is identical
to that of the undoped material may be untenable.
For this reason, we consider the calculations in
the heavily-doped regime to be the least reliable.
A useful extension of this work would be to con-
sider the problem of a concentration-dependent
dielectric function. Additionally, the linear ap-
proximation made in arriving at Eq. (8) for the
charge density is strictly only valid for large
values of 7. Since our primary interest has
proved to be in the small-» region, it would be
elucidative to consider more terms in this ex-
pansion, i.e., to consider the nonlinear Poisson
equation. An approach to this problem has re-
cently been proposed by Csavinszky.!s

The present calculations are being extended to
other semiconductors, such as GaAs or ZnSe, by
formulating their dielectric functions in terms of
Eq. (4). We have already begun such work with
the aid of the Walter and Cohen'® dielectric func-
tion curves. Alternatively, one could use the di-
electric function of Schulze and Unger.'” The re-
sulting potentials should also be useful in other
calculations of the equilibrium and transport pro-
perties of doped semiconductors. Applications
are currently under way.
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