
PH Y SICAL REVIE% B VOLUME 19, NUMBER 10 15 MA Y 1979
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Many liquid simple metals (Ga and Sn are prominent examples) have static structure factors S(k) that
appear to depart appreciably from the predictions of standard central-force models of liquid structure. The
inferred structural anomalies take the form of weak subsidiary maxima on S(k) near the principal
diffraction peak, or even asymmetries in the peak itself. They are shown here to.be a consequence of
corresponding structure introduced into the effective ion-ion interaction by the inclusion of dynamically
screened fluctuating dipole interactions between ion cores, The effects are therefore most pronounced in ions

that are highly polarizable and in extreme cases actually manifest themselves as nonmonotonic contributions
to the pair potential at relatively short range. Less extreme behavior can result merely in a softening of the
standard pseudopotential-based pair interaction calculated in the absence of such terms. A calculation of the
effective ion-ion potential therefore. requires a knowledge of the frequency-dependent ionic and electron gas
polarizabilities and the one-electron pseudopotential. Model potentials based on reasonable estimates of all of
these are used in conjunction with simulation (Monte Carlo) methods to show that the structural anomalies

can indeed be attributed to core-polarization effects.

I. INTRODUCTION

X-ray and neutron-scattering techniques have
now developed to the point where extremely ac-
curate static structure factors are available for
a wide range of liquid metals and many of their
alloys. ' Theoretical progress in understanding
the structure of liquid metals as revealed by such
measurements has been greatly aided by the par-
allel development of numerical methods which per-
mit, at least within the model of pair interactions,
the calculation of both equilibrium and non equili-
brium properties. ' For many structural purposes,
it is well known that pair potentials can be defined
in the metallic state. In simple metals (that is,
nontransition metals) to which we restrict atten-
tion, the interactions corresponding to these po-
tentials are regarded as the sum of direct Coulomb
forces between rigid point ions, and an indirect
term originating with the conduction electrons
which incorporates the pseudopotential. This is a
response contribution and as far as the conduction
electrons are concerned reflects the finite size
and structure of the ion.

The assumption that the direct interaction never
departs seriously from Coulomb's law is normally
justified on the ground& that the mean equilibrium
separation between the ions is largely determined
by energy considerations applied to the conduction
electrons. Such separations are, for the simple
metals, much in excess of the ionic diameters. '
This view takes the ion to be an inert object: it
ignores the possibility of fluctuation or polariza, -
tion effects, the most pronounced of which are the
dispersion or Van der %aals forces. The fact
that these effects, so important in- the understand-

ing of the condensed noble gases, can be neglected
in metals is attributed to the assumption that in

simple metals, at any rate, the ion cores are con-
sidered to be not very polarizable. Given the
overwhelming strength of the Coulomb interaction
itself, Van der Waals-type interactions are thought
to be of only minor importance.

The purpose of this paper is to show that for a
certain class of simple metals the appropriately
screened interactions arising from core-polariza-
tion effects~ are not at all unimportant when com-
pared with pseudopotential-based pair interac-
tions. ' The latter incorporate the fairly com-
plete effects of screening, and it is to the some-
what weak net result that comparison of core-
polarization effects should properly be made,
rather than to the strong unscreened Coulomb in-
teraction itself. The importance of screened Van
der Waals interactions as contributors to the
thermodynamic functions' of metals has already
been stressed. Here we shall concentrate -on their
possible structural consequences, and we shall
dwell particularly on their manifestations in the
liquid state. This requires us to examine the
static structure factor S(k) which, as in the case
for most simple classical liquids can be broadly
accounted for by the hard-sphere model repre-
senting simple geometrical exclusion. ' There are,
however, noticeable deviations from the predic-
tions of this model, particularly in certain poly-
valent metals, (Ga, ' Ge, ' Sb,"Bi,"Sn,"Hg, "
Zn, ~~ and "Cd).'6 These deviations may take the
extreme form of subsidiary maxima in the vicinity
of the principal diffraction peak, or less prom-
inently as asymmetries of varying degrees in the
peak itself. (Smaller distortions of second and
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higher diffraction peaks have also been reported, ")
Somewhat less apparent still is an inferred anomaly
associated with certain of the alkali metals (rubidium
and sodium, for example) H.ere it has been noted'""
that in a comparison of their structure factors
with (1) simulations studies of systems intel acting
via r '-type potentials and (ii) experimental mea-
surements of 8(k) for liquid argon, there appears
to be the possibility that the ion-ion short-range
interaction is really quite soft. But inspection of
this region in the calculated ion-ion interactions"
from pseudopotential theory shows the opposite:
in the relevant energy range the ion-ion interac-
tion appears just as steep as, for example, a Len-
nard- Jones potential.

These are examples of departures from "expect-
ed behavior" and as a possible cause for the dis-
crepancies we shall propose the core-polarization
effects normally neglected in the treatments of
pair interactions in simple metals. As we shall
argue below, fluctuating dipole contributions to
pair interactions, even after screening by the
valence-electron gas, appear to be significant„
especially at short range, and in precisely those
simp], e metals displaying anomalous behavior in
their liquid structures. To support this proposi-
tion we will consider, in Sec. II, an extension of
recent calculations of screened Van der Waals
interactions. ' The treatment incorporates pseudo-
potential effects and therefore more properly al-
lows the electron gas to be treated as a quasi-
uniform responding medium. In discussing the
response of this medium to core fluctuations we
will need its frequency-dependent polarizability and

to include, at least approximately, dynamic ex-
change. This is not a straightforward matter and
is dealt with only approximately in Sec. III. Ef-
fective ion-ion interactions that account for in-
ner-core (Pauli) repulsion, screened pseudopoten-
tial, and screened core-polarization effects are
also presented in Sec. III. Monte Carlo calcula-
tions with these potentials are described in Sec.
IV and these provide the most direct evidence to
show that the structural anomalies are attributable
to the core-polarization terms. In the case of
those polyvalent metals with highly polarizable
cores, we find it possible for these terms to in-
troduce prominent nonmonotonic features into
otherwise shor t-range-repulsive long-range-at-
tractive potentials. Gallium is a very strong case
in point and one on which we largely concentrate.

II. ION-ION INTERACTIONS AND SCREENED
CORE-POLARIZATION EFFECTS

We begin this section by first establishing the
many-body Hamiltonian for the system that will

form the basis of the perturbation calculation of
the eff ective ion-ion interactions. The electrons
in the system are considered divided into tmo
classes: localized core electrons (Z,. on each
ion), and valence electrons (Z =Z„-Z, , per atom,
where Z„ is the atomic number). Note immediate-
ly that this implied site distinguishability of elec-
trons is tantamount to a description of the system
in terms of a Hartree-type product state of many-
electron core functions. It is not properly sym-
metrized with respect to exchange of identical
electrons between different ions. The state is
used however, on the understanding that the neg-
lected core-core exchange effects can ultimately
be incorporated as a highly repulsive contribution
to the short-range ion-ion potential (the inner
short-range "Pauli repulsion" ). There must also
be a core-valence exchange contribution: we will
return to this when we discuss the character of
the valence-electron states.

Let 8 denote the position of a nucleus of an ion.
We introduce a density operator for the ion at 8

2 ~

"p'-„Pr) =z„a(r —i) —Q s(r —)( -. r-, , ),

where the r~, denote the coordinates of those
bound electrons assigned to the ion at B. Note
that ~e~ times (l) gives the total charge-density
operator (nuclear plus electronic). Further, sup-
pose 4 is the localized Z -electron ground stateR
of the electrons on the ion at H. Then (4 „~pR~C R)
approaches the valence S at distances from the ion
much larger than the ion size. It follows that

Z

p (q)=e'"'"Iz+ {(-e."'R, ))
= Ze" " "+v-*„(q)

can be regarded as an operator describing density
fluctuations (about a valence Z) for an ion located
at H.

Given (l) it is a straightforward matter to write
the Hamiltonian for the system. We consider N
identical ions in a volume Q. There is an ionic
Hamiltonian IIR assigned to each site R and

n n n
+RC R lofiC R y

0
4 R being the ground state as described above. If the
valence-electron coordinates are r, , then their
corresponding density operator is

NZ

p" (q) = —Q e" '~ (4)
' j=l

(again, ~e) times this gives the charge density).
We take II„ to be the noninteracting Hamiltonian
for this system. (H„=g;. , p,'/2m. )

Let v, (q) = 4){e'/q' be the Fourier transform of
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the Coulomb interaction. The Hamiltonian for the
entire interacting system in the approximation de-
scribed above is then

If=If„+ Qe-„+ „Q j-, (q)p-', (-q)v. (q)

+—~ p-„(q)p (-q)v, (q)R c

+
2& gP" (q)p" (-q)v, (q)

or'

H =HO+II q,

where

IIO =H„+
R

describes the unperturbed systems and,

ee, =-g '„-(2 li)'R(5)i)R(-t))
R,R'

+ Zi)R(a)i)"(-i)+Ii" (t))P"(-t)))
R

couples the systems together. %e note, for
example, that in the absence of the valence elec-
trons, the first term in (7), in the approximation
of localized core states, wiG give rise in lowest
order to the familiar London interactions. '

The Hamiltonian (5) can be related to the one
normally written in the pseudopotential approach
to ion-ion interactions in metals as follows: Let

(8)

represent a normalized Hartree-type state describ-
ing the electron gas and the N-ions in their ground
states. Then the expectation value of II in such a
state is

Z hl..+ 2„gv. (q) 7 (-q) p '(-q)
R

+ (ee
I (ee. —~ 2 e (e) )R

' (t))))' (-t))

+2& Zv. (q)p"(q)p (-q) I+"&,
1

q

where
Z.

''iq) =+ERR 'R (+—g (e I(( —e'R' I, )l~e ))
R

Z
$ ]

z P &( q ~ R+ 0(g)

if the ions are compact and well separated, as we

( pg „-.-, -4ee'Z). „( -).
0

R

(10)

that is to say, a coupling of the valence electrons
to point ions of charge Ze. However, what normal-
ly appears in place of (10), in pseudopotential the-
ory is

—„22 e'" Rv„,(q)p" (-q)
q R

which physically reflects the fact' that while the in-
tent is to exploit the properties of the valence-
electron system as though it were nearly uniform,
the requirements of orthogonality of the valence
states to the states described by 4 ~ force it to be
very nonuniform near the ions themselves. As is
well known, ' however, it is formally possible to.
regard the valence-electron system as quasiuniform
(particularly in the response sense) providing that
in any one-electron treatment the potential between
valence electrons and core is replaced by a pseudo-
potential v„,(q), as in (ll). We shall make this as-
sumption here (and also that the pseudopotential is
local, as written). In any one-electron theory of
the system, a local approximation to the core-
valence exchange terms mentioned above must also
eventually reside in v„. Thus if (8) is chosen as
the state describing the system, with 4" inter-
preted as a many-electron valence-electron state
with core-space inhomogeneities removed, then
we may regard

& -E &'...= 2„+v. (q)p'(q)p~(-q)

+Q ' + „Z .(q)P(q)p"(-q)
q&0

+— V~q p~q p' q +EO
@~0

as the Hamiltonian for valence electrons. The
quantity Eo in (12) is the aggregate of all q= 0
terms in the problem as discussed by Ashcroft
and Langreth. " %hen these are separated out
the first term on the right-hand side in (12) is the
Madelung energy E~ and the second and third terms
are recognized as the standard interacting-elec-

shall suppose. The second term in (9) is therefore
the familiar

~ 4~Z t- iq (R-R')

arising from point rigid ions of charge Ze, plus
small corrections arising from their finite size.
In a similar way the fourth term of (9) could be
cast in a form with leading term
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tron-gas Hamiltonian. The right-hand. side of (12)
is the starting point for the development of the
thermodynamic functions of simple metals in
which either by diagrammatic perturbation theory'
(see below) or by considering the electron gas as
a nonlinear dielectric, the energy or related
thermodynamic quantities can be developed in
orders of vp3 For most practical purposes the
electron system can be taken in its ground state
in which case the lowest-order result for the ener-
gy ls

N
~EG EN ~0 2g

( ] 4nZ ~82
2 $ pl ~qpS q

~ ~ ~ ~ ~ 0X ~ ~ ~ ~ ~ o j( (b)

X

FIG. 1. (a) Direct unscreened Coulomb Interaction
(dashed-line) between point ions of charge Ze a', t R and
R. (b) Indirect screening contribution via interacting
electron gas: Here the polarization insertion corres-
ponds to a pseudopotential coupling (dotted-line) of the
ions to the electron gas. (c) The sum of Figs. 1 (a) and
(b) resulting in an effective interaction (wiggly-line)
between ions at R and R'.

where E&G is the ground-state energy of the elec-
tron gas and is just a function of volume. In (13),
«(q, 0) is the static dielectric function of the elec-
tron gas. Note that this is a linear-response re-
sult in which the electron-ion coupling is included
to first order but the electron-electron interac-
tion is included to all orders. From the present
viewpoint, the significant aspect of (13) is the fact
that apart from a one-body term, the quantity in-
volving

~
v„~' can be combined with E„ to give

1 Ar + 4mZ*e'

(
u (q))*( (

)0 ~O

X p qv -q -1

=2~+@,.(q) ~ i'(t()v'(-t() —(), ((4)
qPO

where 0'(q) =Z p'(q) is the nuclear-density oper-
ator. The form of (14) shows that

and is obtained by direct Fourier transformation
of (16) with an empty-core pseudopotential taken
from Ref. 20 and a dielectric function taken from
Ref. 24. Note that the energy at the principal mini-
mum is only -0.05 eV or -600'K: the effects of
screening, as is well known, are considerable.
For later use we also observe now that if x, is the
radius in the empty-core pseudopotential then
providing r & 2r, (i.e. , the ions are separated by
greater than an ionic diameter, which is the usual
case) 4 „(r)is simply the Fourier transform of

(4IIZ'e'/q')[cos'qr, /«(q, 0)],
which is nothing more than a screened Coulomb
interaction modulated by a simple function reflect-
ing the physical size of the ion in question.

The derivation of (13) yields the lowest-order re-

4mZ2e2
+ v„(q)D(q, o)v, .(q) (16)

I 8-
0

O
l.2-

is the Fourier transform (except" for q=0) of a
pair interaction between ions consisting of a direct
Z'(e'/r) as appropriate to well sepa-rated "point"
ions, and a response term [involving the electron-
gas static polarizability II(q, 0)] arising from the
coupling of the ions to the electron gas via the
pseudopotential. These various terms are shown
graphically in Figs. 1(a) and 1(b). The sum of di-
rect and response terms [Fig. 1(c)] will be referred
to as the pseudopotential pair interaction 4 „,. A
typical form of 4„(r) is shown for Ga in Fig. 2,

I lQ

„0.6-

0.0

I

2.0
I

4.0
r (A)

I .

5.0
I

6.0

FIG. 2. Pseudopotential pair interaction 4 ps(&)
with x, (0) = 1.15@0, qz = 1.67(a 0) using &H„& (see Table I).
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suit that contains (after averaging) the pair distri-
bution function of the ions. Terms arising from
nonlinear response can also contribute to effective
pairwise interactions. " Furthermore, (13) has
been written in a form which takes the pseudopo-
tential as local. These are approximations that
need not be made in more complete treatments
of pseudopotential pair interactions which, how-
ever, ignore di~ect coupling between ions result-
ing in the polarization of the ions themselves. It
is this particular aspect that we consider next.

To do so, return to (5) and rewrite it in the form
of (6) and ('I) (with a thermodynamic limit implied):

II=Ho+H j,
where

HO=H„+ Q HR +H~+Eo

g v, (q)
1 g

q&0

X —
&R q. ~R. -q. + ~ t R ~ P

is always to regard the valence-electron system
as homogeneous. To facilitate identification of
terms it is helpful to write

H~ =H;)~ +Hq)~ +H(„+H„„)'

where

Hp = ' —Z vR(q)) )r(-q),
q+0 R,R'

H'~ =Q ' QZe'" Rv (-q)g
q~0 R,R'

H&„= Z "„Zf(q) 4(q)P(-q),
q&0 R

(2o)

(21)

(22)

(23)H..= Z ".„' P(q)p (=q)
q&0

According to (2) v R(q) is the density-fluctuation
operator for the ion at R. Note that@',~ couples
this density to the fields due to point ions at other
locations.

Corresponding to H, (all interactions removed)
we have a ground state of the form (8), i.e.,

' 2 ~ "'=, (-a)+)p (a)p" (-a)) ( )
R, R'

0

4' =40 4R,
R

Here f(q) = v„(q)/Z v, (q), . and, in this notation, the
effective static screened interaction between ions
at the level of linear response, Eq. (15), is

P

C„(q, 0) =Z'v', (q) 1+f'(q)
i 0

—1
&e q, o

The point of (18) is that we introduce the pseudo-
potential at this stage because, as in the rigid-
or nonpolarizable-ion treatment, the later intent

where +", is the ground state of a noninteracting
electron gas. The energy of 4' is that of NZ non-
interacting electrons and N well-separated ions:
we will remove these ionic energies from the prob-
lem. To obtain the energy of the system in the
presence of H, we follow the diagrammatic pro-
cedure used by Rehr et al. ' lf H, (t) is an operator
in the interaction picture then the nth-order con-
tribution to the energy is

d"& = '
dt, ~ df, ,(e,lTHP, (f,) "H,(t„,)1@,&„8 «OO «OO

(24)

where T is the time-ordering operator and c des-
ignates the fact that only connected diagrams are
to be retained order by order. It is easily verified
that the first-order contribution from (24) vanishes
except for (23). The result is the Madelung ener-
gy, the term E„and the Hartree-Fock energy of
the uniform electron gas. If, on the other hand,
we keep H« to first order, B,.„ to second order and

H„„ to all orders we recover (13).
To obtain contributions from core-polarization

terms' it is necessary to include H« to at least

second order: the simplest such contribution in-
cludes H~(') to second order and is shown in Fig.
3. The corresponding energy is

z~) = ' g "'q) g " (q' p di D-(q q f )25 ~ Q, 0 R'~R

x DR, (-q, -q', f,),
(26)

where
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(a)

(c) R

(b)

So the energy becomes

(~) 5 v Q' v Q'

25- n q'

) i(((-((') (R-R')
2mR~R'

x(q'q )

tt gf" dv,
(

.)' (e*v.(r))'
r

2 9v t'

(e)

t

FIG. 3. {a)—(d) Diagrams included in the many-body
perturbation calculation outlined in the text. {e) The
same diagrams but in terms of an effective interaction
(wriggly-line) .

e
p

D;(q, q', t,) = (-~)&C R I »R (q) ) R (-q', t,) I c;&.

Equation (25) can also be written

(,) i g v. (q) g v, (q') g "
(f(d ~ ,

)
2A 0, 0,„- „2mq'

+Re( q

where

DR(q, q', (d)

) i( q -((') R

x dte "(d'e(rl t( ~ g'r„-.)(t)' Pr„,(t))ld'e)
~oo l

in the dipole approximation. Since the ions are
spherically symmetric on average we have

I) R (q, q', (d)

&„,I&offer In) I

where

gn gp

0 rn =CR r4R

Then,

2 g(u„,I&OI5 rIn '
( )

3 ~ CO~ p 40

where o. (&) is the frequency-dependent ionic po-
lariz ability, i.e. ,

D;(q, q, )=-"'"-"' ( )(q q).

(r —= R —R ') (26)

which is the sum of x ' for a pure Coulombic in-
teraction v, (r), as noted by Rehr et al.

Next, consider the modifications of (26) arising
from the coupling via vp of the electrons on the
ions to the electron gas the electrons of which are
coupled via v, . With valence-electron coupling
taken, again, to all orders, the first four terms
are shown in Fig. 3(b)-3(d): these can be generat-
ed by taking Fig. 3(a) and replacing the static
screened interaction v, by a dynamic interaction
v(q, (d) defined Isee (16)] by

v(q, (u) = v, (q) +f'(q)ll (q, (d), (27)

where II(q, &u) is the frequency-dependent polari-
zability of the interacting electron' gas. This is
displayed in Fig. 3(e). From the structure of
Figs. 3(c) and 3(a) and the result Fig. 3(b), we can
see immediately that the screened Van der Waals
energy can be written

d" = ——Q n'(iu)
2 27T

r '

e'v(), iu) ' 2 sv(), iu) '
9f'

~ ~~

where

v(r, tv)= d, f dt(v(e, v)e"" .

It follows that we may identify

C ,', (~)= — " n'(iu)d -d

e v(r, t'v) ' 2 ev'(r, tv))
'

X ~ +
9r r 9r

(28)

as the contribution (between ions separated by r)
to their mutual energy from screened fluctuating
dipole interactions. The explicit determination of
(28) will involve a choice of f(q), or more general-
ly its nonlocal equivalent. To demonstrate the
major effects we shall simply use an empty-core
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from Fig. 4(d) (i) and an equal and opposite con-
tribution from an ion at R' [Fig. 4(d) (ii)] which has
inversion symmetry (with respect to R') from R.
Thus for a system with inversion symmetry the
total contribution from screened monopole-dipole
interaction vanishes. When this common sym-
metry is absent, as for example at a surface, it
may be necessary to retain such terms. For the
present we assume inversion symmetry. It fol-
lows that the total pairwise potential between po-

(a)
R R

IIX- ———
R ---—-X

(b)
R R
x. . .~.. .~ ----x R R'

X - ~." R' —-- -X

R R
(c) x" ~ .~ ~"x

R
x":Qgl " ~R ~ "~ "X

R'
X

(ii)

FIG. 4. (a)-(c) Diagrams which contribute to the
monopole-dipole forces. (i) For the two-body monopole-
dipole-monopole interaction. (ii) Foi the three-body
monopole-dipole-monopole interaction.

form for f which by an argument identical to the
one used in arriving at (17) allows us to write

v(q, (u) = v, (q) cos'[qr, ((u))/e(q, &o),

where e(q, ~) is the frequency-dependent dielectric
function. [In general, r, {&ug0) may be frequency
dependent, but is not expected to differ much from
the static value. In our numerical evaluation
r, (&u x 0) is replaced by r„aconstantvalue. ] Equa-
tion (29) is the equivalent of (AS) of Rehr et at. ':
it simply reflects the importance of using a pseudo-
potential when the valence-electron system is to
be regarded as essentially uniform, particularly
over the space occupied by the ions themselves.

Before we turn to the form of the total pair in-
teraction between ions, we examine the terms
arising from H,~~ which couple the electrons on one
ion with the static (monopole) field of another.
Evidently only the static polarizability is involved
and the lowest-order contributions are shown in
Fig. 4(a). Again it is easy to see that the effective
interaction [see Fig. 4(d)]

v(q) = v, (q)+f (q)II(q, 0)

will generate the diagrams 4(b) and 4(c). Thus we
arrive at an effective screened monopole-dipole
interaction between ions

larizable ions in a simple metal is given by (19)
and (2S) or for empty-core pseudopotentials in

par ticular,

C (r) =, dqe'" ',', cos'(qr )8m q(q, 0) C

dQ 2 . 9 O'VySQ

av(r, iw) )'
Qr

(30)

n'{0) n'[(n+1)'+2]
4d4 S 4 v (31)

where all quantities are measured in atomic units.
In very polarizable ions a-10, and we get 4~ „

for the case of Ga with r-5a, andZ=3. The
screened fluctuating dipole-dipole interactions can
therefore be important.

III. MODEL EFFECTIVE ION-ION POTENTIALS

For many simple metals it is an excellent ap-
proximation to neglect the second term of (30)
when considering the effective pair potential be-
tween ions. Roughly speaking we can expect the
justification of this to hinge on the polarizability
of the ion being small though as we shall see one
has to apply this argument with caution because of
the derivative nature in the terms appearing in the
screened fluctuating dipole contribution [see (31)].
We shall now turn to the way in which the valence
electrons enter the problem beginning with the
frequency-dependent response required in (29).
It is clear that frequencies not too distant from
the plasma frequency w~ of the electron gas will
be important: if the ions are so tightly bound that
their relevant frequencies are greatly in excess
of ~~ then screening effects are unimportant and,
the second term of (30) will lead to the standard
London force.

The simplest (Lindhard") form for e(q, &u) re-

with v(r, iu) given by. the Fourier transform (29).
Though (30) represents a considerable simplifica-
tion, particularly through the choice of pseudo-
potential, it is sufficiently accurate for us to draw
a general conclusion concerning the effect of f(q).
As is well known, the introduction of the pseudo-
potential into calculations of pair interactions be-
tween static ions has a pronounced effect. ' Here
the screened Van der Waals contribution involves
dynamic properties of the electron gas rather than
static, but the effect of f(q) is no less pronounced.
For example, using represeritative values of F'„
we find that v(r) at typical nearest-neighbor sep-
arations, can behave as a/r", where n -12. Thus
as a rough estimate, we find for separation x
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suits from the random-phase approximation (RPA),
but suffers from thh neglect of exchange and cor-
relation effects which we find to be as important
in this problem as they are in their influence on
the pseudopotential pair interaction. " To include
them properly is a difficult undertaking and we
have followed a route suggested by Langreth, "
namely, to write

1 II,(q, a&)

E (q, (d) 1 + [1—G (q, (0) jII (q, (d)

(where II, is the Lindhard polarizability) with

G(q, v) representing an approximation for exchange
and correlation effects (see Table I). The form
of (32) is identical to that obtained by Hubbard"
in summing a restricted set of diagrams arising
in the perturbation calculation of the polarization.
In this calculation, and in others of a similar
spirit, the correction for exchange and correla-
tion is static. Truly dynamic corrections have
been proposed by Kleinman, ' Qverhauser, and
Langreth'3: in Langreth's calculation the choice
of exchange and correlation correction is guided by

TABLE I. Electron dielectric function„Eq. (32).

1 IT.O(y, co) q
~(y, ~) 1+ [1-G(y,v)]II, (y, ~) ' 2'

Hub

G

1 y2

2 y2+ [—'(1+0.158/7I dao)] &

Eq. (33)

~RPA

Table given in Ref. 28

G=O

1 1+y' 1-E'
G(qiu)=4 .

1
+ (33)

where

the use of a variational principle. A reasonable
approximati. on for q~2q~ can be shown to be

y (1 —y)'+ x' 1 1, 2x 1, , (1 —y)'+ x'
E=x 1+—In~ » ~

——x+—-y tan ' » -1+ (1 —y2+x') ln
2 (1+y)2+xa 2 x x +y'-1 4y (1+y)'+x2

+x tan

1 1D=1+
2y2 (1+0.158/n'aoqz) '

with y =q/2' and x =@u/4ye~.
It is important to note that although the deriva-

tion of (33) preserves certain symmetry con-
straints, ' it is nevertheless an approximation.
Since an exact expression for c(q, &o) is lacking,
it is not possible for us to judge the relative merit
of (33) versus other approximations, ""such as
that of Toigo and Woodruff2' (which is also static).
On the other hand, it is worth emphasizing that
the essential aspects of screening of the fluctuat-
ing dipole forces appears to be present when any
of the various approximations for G is used. It is
only a matter of degree to which these effects are
ultimately manifested in the resulting effective
pair interaction: the results we shall present are
based both on Eq. (33) (which at least attempts to
go beyond the static approximation for exchange
and correlation effects) and on various other static
approximations.

To investigate the dependence of the screened
fluctuating dipole contribution on electron density
(which governs, for example, the plasma frequen-
cy), the pseudopotential (represented here as an

empty-core form), and exchange and correlation
correction, we have rewritten (28) as

C „'~(r)= — "
o.'(iu)E(iu),

p 7T

where

9 v J'~zQ 2 Bv 'v~ zQ

in which, according to (29)

v(r, iu)

dc18 47Te cos (qp ~)
( ) ( 4)

(2m)' q' c (q, iu)

The form factor

E=E(iu, r„q~, G)
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n (iu) = a.,/[1+ (u /u, )'], (35)

I.O—

0.5—

fashion in the two classes of metals.
Figure I shows the sensitivity of F to different

choices of the response function, all calculated for
the same r, and qz(u = 0). The response functions
used are those discussed above; i.e., taken from
Toigo and Woodruff~' (TW), Hubbard, 24 and HPA22

(all static exchange and correlation corrections)
and Kleinman and Langreth" (KL) (dynamic). Note
that the form factors coincide at small separation,
and although they are qualitatively similar at
large separation there are quantitative differen-
ces that can affect the ultimate shape of the effec-
tive ion-ion interaction.

To obtain the ion-ion interactions themselves,
we also need the frequency-dependent polarizabil-
ities n(&g) for the ions-. Though these can be cal-
culated in principle, "and also can be measured"'
over a large (but necessarily limited) range of
frequencies, we have adopted a Lorentzian form

where n, is the static polarizability and is avail-
able for many metallic ions. ' The parameter up,
a measure of the binding of the electron in the
ion, can be adjusted to the low-frequency depen-
dence of the polarizability. Such a value of u, will
not, of course guarantee that the sum rule satis-
fied by the physical n(+) will be satisfied. As it
happens, however, the conclusions we shall draw
next do not depend very seriously on the choice of
Qp With the se remarks in mind, we have cal-
culated

4,', (r) = —
3

due'(iu)F(iu, r, , qr, G),
2w

(36)
/

with a given by (35), and the screened pseudopoten-
tial pair interaction from

z' V
e„,(r) =, dg e'" ' ' ' cos'(qr, ) . (37)

The Fourier transforms required here are per-
formed numerically with values of r, again taken
from the literature. ' As noted earlier the sum

4~ ~+@„,must be augmented at very short range
(separations on the order of an ionic diameter)
by the core-core exchange repulsion which for our
purposes can be sufficiently well approximated by
a simple Born-Mayer form @su(r) =de s".

It is possible to find in the literature a range of
values for A. and B depending on the system of in-
terest. The values quoted very often also depend,
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Table I).

FIG. 8. Effective ion-ion potential for Ga, q& =

=0.885(ao ), 7'~ =1.25ao, w~ (0) =1.43ao, 0,'0=1.7A, uo
=10 eV, A =5.67x10~~'K, B =8.5 (A ~). Solid-line,

dotted-line, & (see Table I) ~ C ps (&);
Hub

r~(0) = 1.43ao, dashed-line, &KL,
' dash-dotted»&, &H„b,
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for a given system, on the nature of the electron
'states chosen. For example, in the case of Cu,
a recent Hartree-Fock calculation'~ which uses
ionic wave functions appropriate to the neutral
atom, does not agree with a more extensive varia-
tional calculation for a true ion." This indicates
that the orbitals used in the latter may be more ex-
tensive than those taken from a neutral-atom cal-
culation. As it turns out the results we present
reflect more the longer- ranged part of the potential,
and though the short-range cutoff is neces-
sary, as discussed above, the values attached toA.
and 8 do not influence the calculations signif icantly
(the values quoted in the captions to Figs. 8 and 9
show a typical range of variation). For the alkali

metals the Born-Mayer repulsion term is exceed-
ingly small for inter-ion separations typical of
normal liquid and solid densities. In some of the
polyvalent metals (e.g. , Ga) the Born-Mayer re-
pulsion term might become significant at reason-
able compression.

We have calculated the effective ion-ion interac-
tion4

for Ga, Na, and Hb for a reasonable range of
parameters appearing in (30) and for different
choices of dielectric function (see Figs. 8-13).
From the results it appears to be the case that
for ions with high polarizability the screened flue-
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FIG. 10. Effective ion-ion potential for Hb using ~H„b
(see Table I), q& =0.358(ap ). 4z'&-+4„,(4„,is very small
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FIG. 12. Effective ion-ion potential for Na using eH„b
(see Table I), pz =0.474(a "0~), 4& &+Op, (4 is very
small in this region of separation). Dotted line, rc
=1.66ap, rc(0) =1.66ap, up=30 eV, +0=0.2A; solid line,
4'

~ rc (0) 1.66ap.

tuating dipole interaction has an important in-
fluence on the repulsive part of @„. This in-
fluence can range from a "softening" of the short-
range part of the effective ion-ion interaction in
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FIG. 11. Same as in Fig. 10 except that &„„is used
(see Table I).

FIG. 13. Same as Fig. 12 except that ~z„is used (see
Table I). Solid line, r, =1.46ap, up=15 eV; dotted line,
rc =1.66ap, gp= 30 eV; dash-dotted line, 4, , rc(0) 1.66ap.
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monovalent metals such as Rb (Figs. 10 and 11),
to the formation of a secondary minimum in poly-
valent metals such as Ga (see Fig. 8 and 9). The
detailed shape of 4,«reflects the choice of the
exchange-correlation correction used in e(q, &g).

But the essential factor in obtaining a secondary
minimum is that the screened fluctuating dipole
interactions be sufficiently large yet be a rapid
function of separation. These conditions are most
likely to be met in polyvalent simple metals with
highly polarizable yet compact ions (i.e., with
rather small r, and large q~). The characteristic
nearest-neighbor separations in the alkali metals
is such that the contribution from 4 ~ „ tends rather
to lead to a general softening of 4,«. This is con-
sistent with the interpretation by Page et aE."on
the inferences that can be drawn on 4,« from the
structure of liquid Rb (see Sec. I).

A subsidiary minimum in 4,«ought to pave
structural consequences provided it is within reach
of typical thermal energies. We will consider this
prospect in more detail in a moment, but for the
present an inspection of Table II shows that it may
not be fortuitous that those liquid simple metals
exhibiting anomalies in their static structure fac-
tors S(k) are polyvalent metals whose ions con-

Ll
Na
K'
Rb'
Cu
Hg2'
Zn

d2

Ale
'

Ga
+

Si4'
Ge'
Sn4'
Pb4'
Sb'

~ 5+

1 2
1 6
1 6
1 6
1 10
2 10
2 10
2 10
3 6
3 10
3 10
4 6
4 10
4 10
4 10
5 10
5 10

0.56
0.88
1,115
1.5
0.93
0.484
0.673

. 0.59
0.608
0.7

0.686
0.78

0.79

0.0286
0.2
0.9
1.7
1 7 (5)

2.78
0.8
1.8
0.053

-1.7'
0.729"
0.04
1.0
3.4
0.6 d

0.36 d

0.45'

3.7
3.55
3.61

3.6
5.1

4.15
3.6
4.75
4.4
(2.5)
(1.0)
4.2

3.2
3.9

~Number of electrons in the outer shell.
"Estimate of empty-core radius taken from Ref. 7.

Note: such estimates are not unique.
'Experimental values from Ref. 31.

Estimates from Ref. 44.
'Estimates listed in Ref. 45.

Estimated to be close to Cu', which is more reliable
than Zn2'.

TABLE II. Parameters for the ions of the simple
metals. Here & is the valence, m the number of elec-
trons in. the outer shell of the ion, ~, is the empty core
radius used in Eq. (17), and eo is the static polarizabil-
ity. Also tabulated is the excess entropy of melting per
ion, Sg/A%g .

Z m r, (A)" 0. {A~)' S /Nk

tain a filled (10-electron) d shell. The large num-
ber of outer ionic-electrons leads to a relatively
high polarizability and the polyvalency ensures
a large Fermi momentum and a small ~, . In prin-
ciple the primary minimum and secondary mini-
mum in 4,«will define two characteristic dis-
tances which in turn may emerge in S(k). That
they in fact do has to be established by direct cal-
culation for it is known that features in a pair po-
tential at distances greater than the principal min-
imum generally have little effect on the S(k) of
dense simple liquids. Section IV is therefore de-
voted to a discussion of a series of Monte Carlo
calculations of S(k) for a model system interacting
with a model potential containing the major fea-
tures of 4 «.

These calculations will show that the anomalies
in S(k) can be attributed to screened fluctuating
dipole interactions. It is worth remarking here
that simulation studies on the alkali metals have
already been performed and a calculatidn" of S(k)
for liquid Na utilizing a Lennard- Jones-like poten-
tial has been shown to agree quite well with the
measured S(k). On the other hand a recent simula-
tion" on Rb leads to a conclusion that a short-
range potential softer than x "will give better
agreement with experiment. This is consistent
with our calculations on Rb: for u, -ao eV and o.,
=11.48(a', ) we find a repulsive core resembling
much more an v "behavior. In contrast to this,
the calculations in Na [for which o.0-1.35(a',)] con-
firm a rather hard core resembling x ~. We
should remark though, that recent simulation
studies~ on liquid Na appear to be somewhat in
conflict with the reported agreement of the mea-
sured S(k) with other machine studies carried out
near melting of a system interacting via r ~-type
potentials.

Finally it should be noted that the point we have
made concerning the importance of core-polariza-
tion effects will be relevant to certain alloy sys-
tems in which one or more constituents possesses
highly polarizable ions. In an alloy, the Fermi
wave vector can change with concentration and the
relative weights of screened pseudopotential and
core-polarization effects will likewise change. Be-
fore these are investigated systematically how-
ever, it may be necessary to understand in more
depth the dynamics of the interacting electron gas
which enter, as we have noted, in the rather poor-
ly known exchange and correlation corrections to
~(q, (o).

IV. MONTE CARLO CALCULATIONS FOR MODEL
SYSTEMS

Vfe now discuss the results of a series of Monte
Carlo calculations carried out for two model liquid
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FIG. 14. A model potential used in the Monte Carlo
simulation of liquid Ga.

systems in which the particles interact with dif-
ferent pair potentials. Both of these potentials
display a secondary minimum at small separation
attributable to core-polarization effects [see Figs.
10(c) and 14]. We have used the Monte Carlo meth-
od" to obtain the structure factor S(k) by directly
evaluating

{38)

with

N

Q„= g exp(ik 8,.), (km 0).
j=l

The canonical ensemble averages implied in (38)
are over the configurations generated by the Monte
Carlo procedure. 'Here N is the number of par-
ticles (up to 400) which are taken as confined in a
cubic box to which the standard periodic boundary
conditions are appended [the S(k) is therefore
evaluated at reciprocal-lattice vectors (K)]. Mar-
kov chains containing up to 1.9X 10' configurations
were used in order to ensure adequate conver-
gence. The pair correlation function g(v) can also
be evaluated directly by recording the normalized
probability of finding pairs separated by r aver-
age( over the Markov chain.

We have tested this Monte Carlo procedure ex-
tensively by performing calculations with systems
in which the particles interact with standard po-
tentials not displaying the short-range secondary
minimum. The results for both S(k) andy(r) are
in good agreement with published results. In ad-
dition we have performed a series of simulation
studies in which the interaction between particles
is taken as'C „(r) alone (the pair potential based
on the pseudopotential formalism). For the case
of liquid Ga [see Figs. 2, 15(a), and 15(b)] we ob-
tain results that are quite typical of simple liquids,
for both S(k) and g(t'). This seems to be a clear
indication that the structural anomalies cannot be ac-

(a)
4.0— (b)

3.0-

S(R)

2.0—
g (r)

2.0

l.0

0.0 [.0 2.0 3,0
k(A )

I

+0 6.0

I I I I

0,0 I.O 2.0 3.0 4.0 5.0 6.0
r(A)

I

FIG. 15. (a) &(k) calculated with the potential of Fig. 2 (no core-polarization effects) using 145 particles. Here T
=296'K and the density is 0.0528 (A 3). (b) g(&) calculated with the potential of Fig. 2 (T=296'K).
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FIG, 16. S {1~) calculated
with the potential of Fig.
14. {a) At a temperature
T =400'K. Here, + =—200,
+=- 145, and ~ =- 100 part-
icles. {b) At a tempera-
ture T =269'K. Here,
+—= 200 and - =145 part-
icles. {c) At a tempera-
ture 7.' =229 K. Here
." =—400, + =—200 and
~=—145 particles.
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counted for within standard pair force models,
but require the inclusion of forces with a different
physical origin. The calculations we now de-
scribe have been carried out to test the proposi-
tion that the structural anomalies are directly re-
lated to the core-polarization contributions to the
potentials. They have been carried through in two
stages. P'irst we performed a series of explora-
tory simulations on systems in which the charac-
teristic features of the pair potentials (e.g. , posi-
tion of subsidiary minima, characteristic barrier
heights, etc.) were systematically varied in order
to understand the consequent effects on the result-
ing structure factors. From these studies we are
able to conclude that the proposition just described
is fundamentally correct. For further analysis we
therefore adopted a single model potential to repre-
sent liquid gallium; the secondary minimum occurs
at 2.4 A, as shetyn in Fig. 14. For this choice we
calculated both S(k} and g(r) at a number density of
0.0528 A ' (and using up to 400 particles in order
to check the size dependence of the procedure).
The results of this series of calculations are shown
in Figs. 16-19. The most prominent result is the

appearance of the "structural anomaly" on the peak
of S(k) which is qualitatively similar to the experi-
mental observation. (See Figs. 20 and 21.) A
comparison between our calculated structure fac-
tor and the experimental curve, particularly with
respect to the location of the subsidiary maximum
leads us to conclude that the model potential used
is likely to embody the essential physical features
of the actual effective pair potential between gal-
lium ions. Inspection of the effective ion-ion in-
teractions that we have actually calculated (Sec.
III) reveals that one such prominent feature, the
appearance of nonmonotonic behavior in the pair
potential, can be obtained over a rather wide
range of parameters.

We have also calculated using the potential of
Fig. 14,the pair distribution function g(r) for liquid
Ga. It displays a striking bimodal distribution
[see Figs. 19(a)-(c)] reflecting the fact that the
secondary minimum is a preferred region for par-
ticle localization. On account of the magnitude of
the potential barrier separating the two minima
in the potential, small changes in temperature
have relatively minor effect on the structure re-
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and g(i') at three different temperatures, but
again at a fixed number density of 0.0528 A '.
The results (at T = 323, 373, and 423 'K) are given
in Figs. 1S and 19 and may be compared with the
experimental data given in Figs. 20 and 21. The
data, itwillbenoted, are for T=233 and 296'K:
the point is that reducing the temperature below
the values cited above for the simulations leads
to states which cannot be guaranteed to represent
liquids. In this respect, the structure in the po-
tential ls quite important.

The calculations show that much can be inferred
about the detailed form of the pair potentials in
this class of metals by systematic analysis and
matching of the S(k) determined from experiment
over a range of temperatures with the S(k) ob-
tained from machine calculations. As noted earljer
the precise form of S(k) clearly depends on the
nonmonotonic part of the potential, and this, in.
turn, has a nontrivial dependence on ion-core po-
larizability, and electron-gas dielectric functions.

We end this section by comparing the results
obtained here with those from other calculations
addressing the problems of anomalies in S(k). In-
tegral equation studies3' of systems interacting
with potentials of the form

o.o
0.0 I.O 2.0 3.0 4.0 5.0 6.0

r (A}

FIG. 17. g (r) calculated with the potential of Figure
14 at (a) T ~400'K, (b) T =269'K, (c) T =229'K. Ver-
tical bars denote typical estimated errors.

flected either ing(r) or in S(k) [see for example
Figs. 20 and 16(c) for a temperature of 229 'K].
As temperature increases, however, the potential
barrier becomes progressively more surmountable
and it becomes more probable for pairs of ions
to occupy the higher-energy minima [see Figs.
17(a)-17(c)]. At very high temperatures (kaT
» barrier height) only the inner repulsive part of
the potential is physically important and the struc-
ture approaches that of a simple liquid. The dim-
inishing character of the anomaly in S(k) at 400 'K

[Fig. 16(a)] is thus to be expected. On the other
hand, structure in g(r) still persists [Fig 17(c)].
which provides yet another example of the fact that
S(k) is relatively insensitive to the details of pair
interaction.

In the second stage of our Monte Carlo calcula-
tions we have examined a system in which the mod-
el pair potential displays a minimum at 1.9 A
(see Fig. 9), the parameters otherwise being ap-
propriate to Ga. We have simulated both S(k)

@(r)=c„,(r) +(A/r)e'"

[where C „s(r) is a hard-sphere potential] report
a structure factor with a distinct subsidiary maxi-
mum. Similarly, for step potentials" of the type

C(r) =0, r&Xo

c (r) =e, rJ(r(zg
@(~)=~ ~&a

results from both Monte Carlo simulation and
calculations based on the random-phase approxima-
tion also show subsidiary maxima in S(k). Since
the potentials we propose are characterized in
part by two length scales, , one smalle~ than the
usual effective hard-sphere radius, the appear-
ance of such structure in these calculations is only
partially consistent with our results. However,
there is one important difference; these calcula-
tions base their effects on long-range (A. = 2.1)"
features while our structural anomalies have their
origin in the short-range part of the effective pair
potentials. Since X =2.1 is rather large, we would
also expect anomalous structure in the small-q
region at low and intermediate densities. Further-
more analytic results' indicate that at high den-
sities the effects of the repulsive step in C (r) on
the structure of the system should begin to dis-
appear.
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FIG. 18. S(k) calculated
with the potential of Fig. 9c
using systems ranging from
100—250 particles: (a) &
=423 K, (b) T=373'K, (c)
T= 323 'K.
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V. DISCUSSION

We have shown by direct Monte Carlo simulation
that anomalies in S(k) very similar to those ob-
served experimentally can occur when a model
pair potential is used that displays a secondary
minimum at a separation smaller than that char-
acteristic of the primary minimum. We have also
shown that in polyvalent metals whose ions are
substantially polarizable an ion-ion interaction
that properly includes screened fluctuating dipole
interactions can develop such a secondary mini-
mum. In the case of Ga, the screened Van der
Waals interaction is a noticeable part of the entire
interaction and is rather readily identified with
the structural anomaly. It is also interesting to
note that Ga, along with other metals in the group
displaying structural anomalies, has an unusual
ability to supercool. This tendency may fo11ow
quite naturally from the presence of the minor
potential barrier separating a closer, but higher
energy, nearest-neighbor position, from a more

distant lower-energy position. The possibility
of trapping particles in an energetically metastable
position may allow a transitory fraction of them
to be at a locally higher density. It is worth noting
that in the solid phase, Ga has but a single near-
est neighbor and this is found" at a relative sep-
aration of 2.44 A. Whether this can also be traced
to the nonmonotonic feature in the potential will
ultimately require an accurate calculation of the
structural energies for the crystal. But it is clear
that if the equilibrium properties of the solid are
sensitive to such features, it is very likely that
the dynamics (e.g. , the phonon spectrum) will also
be.

It is certainly of relevance to enquire about
other possible mechanisms that might produce
nonmonotonic features in a pair potential. Since
the response properties of the interacting elec-
tron gas depend only on its density, any mechan-
ism that might result from the theory of dense
electron systems seems unlikely. Note, in par-
ticular that aluminum and gallium resemble each



5120 K. K. MON, N. %. ASHCROFT, AND G. V. . CHESTER 19

T=425 K

(a}
2.50—

T=255 K

2.00—

I.O

ti

f

pl

T= 575 K

S(I )

I.50-

g (r)

0.0—
I.OO

I.O

ss r ~ ~
I y+ ~ I

~ I

0.50—

0.0—

T=525 K

(c)
0.0

I II

I.O 2.0 3.0 4.0
k(A )

I I

5.0 6.0

I,O
FIG. 20. Experimental measurement of S (0) for

liquid Ga at T =233oK (from Ref. 8).

I I I I I I

0,0 l.0 2.0 3.0 4.0 5.0 6.0

r(A}

FIG. 19. g (x) calculated v iththepotentialof Fig. 9(c):
(a) T =423'K, (b) T =373'K, (c) T =323 K, Vertical
bars denote typical estimated errors.

other very much in this respect (they have about
the same electron density): yet there appears to
be no anomalous structure in the observed4' S(k)
of liquid Al. (We note in passing that the polar-
izability of Al" is very small, see Table II). We
may also cite evidence from alloy data. In liquid
alloys such as Sn mixed with Ag where both con-
stituents are immersed in a common electron gas,
the experimental data~3 shows a strong subsidiary

5.0—

S(k)

FIG 21 Exper imental
measurement of 8(k) for li-
quid Ga at T=296'K (from
Ref. 8).

I.O

0,0
I

I.o 2,0 3.0
k(A }

4.0 5.0
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maximum on the principal peak of Ss„~„(k), asym-
metry in S,„«(k), but no anomalous structure in
S~,p„(k). This argues against the electron gas it-
self as an indirect source of the structural anom-
alies.

There is however, the question of three- and
higher-body forces originating with nonlinear re-
sponse in the electron gas. Their role in deter-
mining. the equilibrium structure of liquid metals
has not been fully resolved. On the other hand,
if they do play a role and this is ultimately re-
flected as a structural feature, it is then difficult
to reconcile this manifestation only with metals
with filled d-electron cores, and not, for example,
in others (e.g. , Al) which lack this feature but
otherwise have rather similar pseudopotentials.
This does not dispose of many-ion forces entirely,
since there are also dipole-dipole-dipole (and
higher) effects going beyond the terms calculated
here. But these have been estimated by Behr
et al. ' to constitute a rather minor correction to
the dominant dipole-dipole term. Perhaps more

importantly the corrections are attractive and will
tend to reinforce the features we have been dis-
cussing.

Finally we may remark that in systems interact-
ing via potentials displaying nonmonotonic fea-
tures, we may anticipate thermodynamic conse-
quences" particularly in the entropy or heat capac-
ities, and especially at higher temperatures.
Table II shows, indeed, that in just those metals
with prominent structural anomalies there appears
to be evidence of large excess entropies at melt-
ing. This suggests that although we have confined
our attention to static structure, other thermody-
namic and transport properties (and even non-
eguilibrium effects such as glass formation) should
now be considered for this type of potential.
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