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The formation entropy of single vacancies and divacancies and the frequency factors entering in. the
diffusion constants are calculated for Cu and a-Fe based on a pair-potential approach. For Cu a Morse and
a Born-Mayer potential have been employed, for a-Fe the potential of Chang and Graham. The calculations
have been performed by a determinant method and partly also by the Green’s-function method. The effects
of the long-range displacements have been carefully estimated and are very important. For the Morse
potential the formation entropy is 2.3k for a single and 4.0k for the divacancy in Cu, whereas the
temperature-independent part of the diffusion constant is 0.12 and 3.7 cm?/sec, respectively. For a-Fe, the
Chang-Graham potential leads to a formation entropy of 2.1k and to a diffusion constant of 0.16 cm?/sec for

single vacancies.

I. INTRODUCTION

In thermal equilibrium, the concentration ¢, for
single vacancies is given by

¢ = eS1/keH 12T ,

where S, is the formation entropy and H, is the’
formation enthalpy. Experimentally it is very
difficult to determine the formation entropy since,
e.g., at 1000 K an error of 0.1 eV in H, gives rise
to an error of 0.7k in S,. Previous theoretical cal-
culations are listed below and give widely diverg-
ing results ranging, e.g., for Cu from about 0.49%
to 3.1k, Thus an accurate theoretical calculation
of S, is highly desirable. As most of the previous
theoretical attempts, our approach is also based
on the assumption of a pair-potential interaction.
However, we will strictly avoid all additional as-
sumptions. Our aim is to compare the theoretical
results with new experimeéntal measurements®~®

in order to see if a pair-potential approach gives
a reasonable description of the dynamical behavior
of a vacancy.

Previous calculations of the entropy of forma-
tion of vacancies in copper include the following.
In 1955 Huntington, Shirn, and Wajda® used an
Einstein approximation for the 12 nearest neigh-
bors and obtained 1.47 for S/% (ratio of entropy
of formation to Boltzmann’s constant). In 1964
Schottky, Seeger, and Schmidt’ fitted the coupling
parameters to experimental data and using the
frequencies from the group of the 12 nearest
neighbors obtained 0.49. Both of these authors
used, in addition, elastic and surface corrections.
In 1969 Wynblatt® used an Einstein approximation
for about 700 atoms to obtain 1.67, McLellan®
used only elastic theory with a spherical cavity to
obtain 2.7 and Dobrzynski'® obtained 1.5 using a
determinant method but without relaxation. In

1972 Burton' used the frequencies from the first
six shells (86 atoms) but employed no elastic or
surface correction to obtain 3.1 for the Morse po-
tential.

With so many varied results it was felt desirable
to repeat the calculation, making use of the fre-
quency distribution from as large a group of atoms
as possible (about 150-400), to use a Morse po-
tential which fits the energy of formation of single
vacancies and to use elastic and surface correc-
tions where necessary.

Section II deals with the basic theory connecting
the theoretical and experimental quantities, Sec.
III covers the calculations based on a determinant
method, Sec. IV the Green’s-function method, and
Sec. V considers the comparison with experimen-
tal results.

II. THEORY

At given temperature T and pressure p the con-
centration ¢, (7, p) of single vacancies in a crystal
is given by

Cy= e CL/ Rl = gS1/ kg Hy [ RT 5 o 81/ k=B, /KT | (1)

Here G,(T,p)=H, -S,T is the Gibb’s free energy
of formation, S, is the formation entropy, and H,
the enthalpy of formation, which for normal pres-
sures can be well approximated by the formation
energy E,, since the difference H, — E, =pAV is
small (AV is the formation volume).

The corresponding formula for divacancies
cp, T) is

ckp, T)=3ze52/ ke B/ *T (2)

The factor 3 z gives the number of divacancies per
lattice site (z is the number of nearest neighbors).
Only two vacancies on nearest-neighbor sites

(in bee: second-nearest-neighbor sites) are con-
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sidered as a “divacancy.”

The entropy S of an arbitrary crystal can be cal-
culated, e.g., from the free energy F by S
= —(8F/8T),. It consists of a vibrational part S?
and a smaller electronic part S° (see below).

In the harmonic theory the vibrational part is a
sum of single-oscillation contributions!?

S”=k§:(-ln(1-e-"w«/">+ ”“"’/le), (3)

ehwe / kT _

where ¢y, represents the eigenfrequencies of the
system.

In the classical limit of high temperatures S
approaches

S'=k Y [1+In(kT/Bw,)] - (4)

By the formation of the vacancy, the atom at the
vacancy site is transferred to the surface. Thus
both the perfect crystal and the crystal with a
vacancy contain the same number of atoms. The
formation entropy S, = S¥vac)-S¥(perfect) is then,
in the classical limit,
Z (w a)2
wz

S, = kzl“’“
=1

b 1Y (we)?
=§1n(~ﬁ£3—}v—-(;z— B (5)

a=1

where (y, refers to the 3N eigenfrequencies in the
defect lattice and w% to those of the ideal lattice.
Thus for a vacancy one expects S, >0, since the gen-
eral effect should be a softening of the lattice (i.e.,

‘o
W <wo)-
A. Equivalent representations

The frequencies wfx are the eigenvalues of the
dynamical matrix D, similarly My? are the
eigenvalues of the coupling matrix ¢ (M is the
atomic mass). We can therefore give different
expressions for S, in terms of ¢ which are quite
useful for the numerical analysis. Using the re-
lation between the product of the eigenvalues and
the determinant of a matrix

3N
1] Mwi=dety, (6)
a=1 )

and the relation between the sum of the eigen-
values and the trace of a matrix

Y Hwd)=TrA(9), o

a=1

where f represents some function of the eigen-
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values, we obtain the following equlvalent expres-
sions for S, (or S,)

, =3k 1In(det¢®/detd) =32 Tr(lng° —Ing).  (8)

The determinant expression will be used in Sec.
III for a numerical calculation of S,.

Another very useful expression can be gained
by introducing the total frequency spectra Z(y)
and Z%) of the defect and ideal lattice:

Si= [ duno[2%w) - Z(w)], (9)
with

Z)=3" 8w -w)=20 3 8w~ u2)
a=1 a=1

=2pM Tro(Mw? - ). (10)

The corresponding expression holds also for Z%y).
By performing the trace in a local representa-
tion, we can write Z(w) as a sum of local spectra
2%w) -

Z(w)=)_ zXw),

with
2™w) = 2wM{mi | (Mw? - ¢) | mi)

3N

= Z lu'{‘(a)‘%(w—wa)- (11)
1

27 w) describes the local vibrational behavior of
atom m for vibrations in direction ¢ and is directly
related to the Green’s function of Sec. IV. Itis a
normalized spectrum, essenfially the total fre-
quency spectrum, but each contribution &(w ~ w,)
is weighted by the square of the amplitude u’"(a)
= (mi |a) of atom m for the direction i,

Since both the ideal and the defect crystal con-
tain the same number of atoms we can write (9)
in the form

kfdoie ¥ M0 -], (12)

i, m (#0)

The transfer of the vacancy atom to the surface
does not mean that the number of surface atoms
has been increased, since this atom is incorpo-
rated preferentially in a step or kink at the sur-
face, so that a former “surface atom” below this
atom belongs now to the “bulk.” Thus both the
ideal as well as the defect crystallite have the
same number of surface and bulk atoms. There-
fore we can in the above equation make the transi-
tion to an infinite crystal by summing over all m
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with the exception of the term m=0. Essential
contributions to the sum arise only for atoms near
to the vacancy, since for large distances z7(w)
zz‘}"‘(w). )

B. Electronic contributions

In addition to the vibrational entropy we also
have an electronic contribution which can, e.g.,
be calculated from the electronic specific heat,
varying as c,(T) 2y 7T for metals. Thus

T

se= f -(':-’i:,(,l)-dT=yT, y=kirn(E,). (13)
(4]

Since y is determined by the total density of states

n(Ez) at the Fermi energy, the electronic contri-

bution AS{ to the formation energy S, is therefore

given by the change An(E,) of the density of states

ASE= k3T An(E kT . (14)

Due to the smallness of the electronic specific
heat, this term is much smaller than the vibra-
tional contribution. In the free-electron approxi-
mation [u(E,)=3N/E.], the change An(E,) can be
directly related to the larger volume V+ AV avail-
able for the electrons in the defect crystal. Then

AS¢= k31 RT/ENAV/V,),
since
An(Ep)=(1/ENAV/V,), (15)

(V, is the volume of an elementary cell).
Assuming, e.g., E;~7 eV (Cu), 2T=1300K,
AV=1V,, we obtain a very small value of AS¢
~0.05%. Considerably larger values can only be
expected for materials with a large density of
states at the Fermi energy, e.g., transition met-
als, where n(E,) can be more than an order of
magnitude larger than the free-electron value.

C. Einstein approximation

A rather quick, first-order approximation to the
formation entropy can be obtained by the Einstein
approximation: The 3N eigenfrequencies wi are
calculated by allowing each atom m to vibrate by
fixing its neighbors. The three eigenfrequencies
of atom m are then obtained by diagonalizing the
3 X 3 matrix ¢7/" .

For a nearest-neighbor model, in a fcc crystal
with a longitudinal force constant f, and a trans-
versal one f,, we have the following situation:

In the ideal lattice all Einstein frequencies for

the different atoms and the different directions are
equal, M(w3)?= 4f, +8f,, whereas in the defect lat-
tice only the Einstein frequencies of the nearest
neighbors of the vacancy are changed. The eigen-
frequency for a vibration of the neighboring atom

towards the vacancy is
Mw|2|= 3fu+8fy, (16)

whereas the two other eigenfrequencies for mo-
tions perpendicular to this direction are degen-
erate and given by

wa=4fu+7f.|.' (17)

Note that for motions towards the vacancy the
missing longitudinal spring leads to the value 3f
instead of 4f,, whereas for perpendicular motions
the missing tangential spring f, leads to 7f, in=
stead of 8f, for the ideal crystal. By inserting
these results for the 12 nearest neighbors into the
product expressions for the entropy, we obtain

(41, + 8f.|.)3
(3fu+ 8f1)(4fn + 7f1.)2 ’

For f,=0 this gives Sf= 6k In2=1.73% whereas for
f1==0.1f, one obtains SF=1.98k. Stripp and Kirk-
wood?® using a method requiring that the change in
the frequencies be small obtain a value of 1.5% for
S,. This same value could be obtained for f,=0
from the above by expanding the In terms assum-
ing (g —w})/wl to be small.

This calculation can also be performed for the
case of a divacancy and yields for f, =0 the value
SE=3.22f, i.e., a binding entropy of (2 x1.73
—-3.22)k=0.24k. These estimates give about the
correct values for the entropies, as is confirmed
by more realistic models and exact numerical
calculations in the following Sections.

(18)

sf=§121n

D. Effect of static displacements

The static displacements of the vacancy serious-
ly complicate the calculation of the formation en-
tropy since they lead to a long-range change of
the coupling matrix ¢ =¢°+ A¢. The total dis-
placement field §=3*+ 5’ can be split up into a
field 3 in an infinite crystal, which varies as 1/R?
for large distances, and into an image field 7,
which allows for a force-free surface. Since all
image fields of the different vacancies superim-
pose to yield a homogeneous expansion, their con-
tribution As{ to the formation entropy is deter-
mined by the volume change AV? due to the image
forces

AVI=3(1-2v)/(1 = V)AV, (19)
(v is the Poisson number). For Cu, aV!
® 5AV,,,a1, Since v=3, Therefore,
1_(8S 1 1 .
AS; = Yz AV =KaAV", (20)
T

where we have used the thermodynamic relation®
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- ). o

connecting (8S/8 V) with the compression modulus
K and the volume expansion coefficient g.

The effect of $° is much more difficult to calcu-
late and represents a major numerical problem.
Here we will only show that for large distances R
from the vacancy the leading contribution to AS®
of a volume element dit at distance R varies as
1/R®. This dependence will be exploited in Sec.
IOI. According to Zener'® one can calculate S, via
the temperature dependence of the free energy of
formation F,, S,=-(8F,/8T),. Since the long-
range displacements 5 are small and slowly vary-
ing, their contribution to F; can be calculated us-
ing continuum theory, i.e.,

1

AF, "'—2'

J dRY " Cipl T, V(R T, V)
igkl

xex(R; T, V). (22)

Thus S, is determined by the temperature depen-
dence of the elastic constants C,;,, and of the
strains €3,. Since the latter vary as 1/R°, the
integrand varies as 1/R%, The outer region of a
sphere of radius R therefore gives a contribution
proportional to 1/R%.

E. Frequency factors in diffusion

The diffusion constant for tracer diffusion in-
volving single vacancies is given by

D, = a’*f,eSt/ ke Br/*TT | . (23)

where ¢ is the lattice constant, f, is the correla-
tion factor (f,=0.781 for fcc), and I, is the jump -
frequency for the migration. Similarly for di-
vacancies in fcc, one has

D,=4q’f ,e52/ ke B2/ ¥TT, | (24)

with £, being the divacancy correlation factor ( £,
=0.468 in fcc). From the classical theory of Vine-
yard!* the jump frequency can be obtained in terms
of the eigenfrequencies for the equilibrium con-
figuration (v, a=1,...,3N) and the eigenfrequen-
cies for the saddle-point configuration (w$, «
=1,...,3N=-1)

3N e
w
Ha:l wgt
*
=(92-;)e'EM/". , (25)
Here E, is the activation energy for migration.

For the saddle-point configuration the eigenfre-
quency wj;,y describing the motion of the jumping

atom towards the vacancy has to be left off [since
this is an unstable mode, one has (w§,)?<0]. The
diffusion constants without the temperature de-
pendence we will refer to as D.

D= De B1+Ey)/ *T (26)

Quite analogously to the expression for S,, one
can also give equivalent representations for the
jump frequency I'; or the effective frequency *
in terms of the determinants of the dynamical ma-
trices or in terms of local frequency spectra. For
example

w* = [(detp/dete N ws 2] 22,

since
3N
detps= H M(q;f,)"’. 27
a=1l

Thus in order to calculate y*, one has, in addition
to the determinants of ¢¢ and ¢°, to calculate the
frequency (w$,)? of the “decay mode” of the saddle-
point configuration. Otherwise, however, the
problem is quite similar to the one for the forma-
tion entropy.

F. Isotope factor for diffusion

For an isotropic tracer one has to know the
mass dependence of »*. Since the eigenfrequen-
cies wi are, in the case of unequal masses, given
by the eigenvalues of the dynamical matrix

Drinjn= (Mm)-1/2¢1injn(Mn)-x/2 ,

we obtain for the effective attempt frequency in
the generalization of Eq. (27)

_(det[(Mm) Y/ A pmmAM/2] o,
w= (det[(Mm)-1/2(¢;ﬂJL" S(Mn)-l/Z] (w3N) )

1/2

Since the masses are the same in the equilibrium
and in the saddle-point configuration, the mass
factors of both determinants cancel each other,
so that the only mass dependence comes from the
frequency w$, of the localized “decay mode.”*®
Its frequency can be calculated by perturbation
theory from the Rayleigh quotient

ng)2=Emn(ﬁ‘?N7 ¢)mn’ﬁgN) .

200 Mm
By inserting a mass change M7= M°+ 6M of the
isotopic tracer atom, one obtains for the change
of w* (see Ref. 15);

Sw* OSwiy_ L10M g\, 10M
=- )*= -5 3pAK-

The so-defined isotope factor AK is given by the
square of the tracer amplitude &J, in the normal-
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ized decay mode {,,. Its deviation from AK=1
gives a measure of the delocalization of this
saddle-point mode and therefore of the coupling
of the tracer to its nearest neighbors.

III. DETERMINANT METHOD

The determinant expressions (8) and (27) were
used for calculating the entropy of formation of
vacancies and the diffusion constant for Cu em-
ploying three potentials: a Born-Mayer form,
a Morse form, and a nearest-neighbor Morse
form. Similar calculations were done for ¢-Fe
employing a spline potential developed by Chang
and Graham.'®!” In the Cu case both single and
divacancies were investigated, in the g-Fe
case only single vacancies.

The Born-Mayer potential used was of the form

V(r)=Ae™7, : (28)

with A=22563 eV and B=5.1020 A*. This poten-
tial was used initially by the vineyard group.
A pressure must be applied to the crystal from
the outside to ensure equilibrium. This potential
yields relatively large relaxations in the neighbor-
hood of defects, but does not give an accurate val-
ue for the formation energy of a vacancy.

The Morse potential was of the form

V(R)=D(e‘ 2a(R=R;) _ ze-a(R-Ro)) , (29)
with

D=0.17999 eV, R,=0.71346a, q=8.35526a",

and R in units of g=3.603 A. The potential was
smoothly cut off at R=1.2q. It is fitted to lattice
constant, bulk modulus, and vacancy formation
energy of Cu. With this potential both single and
divacancies were studied.

For the case of the perfect lattice it was not nec-
essary to calculate relaxations and only necessary
to calculate Indet¢. This was done successively
for various shells of equivalent atoms. The shells
were oriented about a particular atom in the lat-
tice (which then for the defect case becomes the
vacancy). Calculations were performed. for crys-
tallites usually containing from 100 to 200 atoms.
It was found that fewer atoms would not be suffi-
cient to give the desired accuracy for [In(detg)]/
N, where N is the number of atoms. Several test
cases were run to determine the nature of the N
dependence and accuracy obtainable, employing
up to 430 atoms, and making use of the symmetry
of the lattice. 'Since, in conjunction with the va-
cancy calculations, it is necessary to use the same
total number of atoms, the results for the perfect
lattice have been multiplied by (N — 1)/N for a single
vacancy and (N — 2)/N for a double vacancy. The

error introduced by this normalization should de-
crease with increasing N.

To obtain the relaxations of the atoms in the
neighborhood of the defect an iterative method
was employed which minimizes the energy as a
function of a certain number of parameters chosen
to describe the relaxations with maximum use of
symmetry. For the larger crystallites the DEVIL
program, originally developed at Harwell, was
used. In its present form the program utilizes a
mixture of steepest- and conjugate-gradient®?
methods to calculate the configuration which min-
imizes the potential energy. In order to calculate
saddle points, geometrical constraints can be
built in,

In order to simulate the vibrational behavior in
a nearly infinite crystal, the atomic region (about.
5.000 atoms) where relaxations are allowed, was _
always much larger than the inner region, where
dynamical displacements wére allowed (about
100-500 atoms). This procedure turned out to be
very important, especially since the coupling ma-
trix of the inner region involves interactions with
outer atoms, the displacements of which have to
be known accurately. )

.The calculated numbers for the formation en-
tropy still depend appreciably on the number N of
atoms in the inner region. It was therefore nec-
essary to extrapolate these values for an infinite
crystal (N—«). According to continuum theory
(Eq. 22) the region outside an inner sphere of
radius R gives a contribution varying as 1/R® to
the formation entropy.” Since N is proportional to
R®, this translates into a 1/N dependence

S(N)/E=S(«)/E+ const/N. (30)

The values obtained for different crystallites con-
taining up to N atoms, S(N), is plotted in Fig. 1
versus 1/N. The numbers at the points refer to
the number of shells taken into account (3-19).
Considerable fluctuations of the points appear and
a general 1/N dependence is not seen. Apparently
this behavior is connected with the anisotropy of
the elastic displacements: Each shell added con-
tains only equivalent atoms having very specific
orientations with respect to the cubic axes. In fact
the fluctuations can be corrected with the size and
sign of the atomic relaxations in the last shell.
Nevertheless the procedure converges and the
limiting value S(~) is estimated by the enveloping
straight lines in Fig. 1.

The entropy values obtained by this limiting
procedure were then corrected to the real value
for a finite crystal by calculating the image cor-
rection of Eq. (20). Rather than using experimen-
tal values for K and ¢, we have for consistency
estimated these corrections for each potential em-
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Fig. 1. Formation entropy of a vacancy for the Born-
Mayer potential as a function of the number of atoms N
(numbers of diagram represent shells) which are allowed
to vibrate. The results are not corrected for the image
expansion.

ployed by calculating

:—;j:-ga,,lndetqb (31)
numerically. The effect of the finite size of the
outer region with N,=5.000 atoms can be estimated
as follows: Using isotropic continuum theory the
boundary condition of “vanishing displacements”

at an outer sphere of radius R, (as assumed in the
previous calculations) gives for the inner sphere
of radius R, a volume change due to image forces
of ~AV<(R,/R,)® so that the total volume change of
the inner sphere is AV*[l -(R/R,)*] or AVl - N/
N,) instead of AV*. To correct for this we have

to add for the above correction to the usual image
term AV’ the smaller contribution AV=N/N,.

Since the elements of the coupling matrix depend
on a sum of terms of a pair potential which usually
include terms only up to the near neighbors, many
of the elements will be zero. Because of this, the
methods of sparse matrix analysis'® were used to
shorten the calculation. In addition the coupling
matrix possesses considerable symmetry which
can be employed to simplify the calculation. For
example, using inversion symmetry about the va-
cancy enables the matrix to be split up into four
subparts. It would then have the form

()
¢=\¢ B/ (32)

The determinant of ¢ can thus be obtained from
two subdeterminants of rank 3 N:

B C ,
det(c B) =det(B+ C)det(B - C). (33)

A () B
000 10

FIG. 2. (a) Configuration of a divacancy in fcc crystals.
The positions A and B are empty. (b) Elementary jump
of the divacancy. Atom C jumps to the site B. The
saddle-point position £ does not coincide with the center
of the triangle nor does it lie in the plane of the triangle.
The potential energy along the jump path therefore shows
a “double~hump” structure with maxima at E.

This method was used to check some of the calcu-
lations for accuracy.

The position of the saddle point for a single va-
cancy in Cu is halfway between nearest-neighbor
atoms. In this position the symmetry has de-
creased so that it requires more parameters to
solve for the relaxations. To find the negative
eigenvalue of the ¢ matrix it is necessary to solve
for all the eigenvalues and pick out the negative
one. It was found in the case of the single vacancy
that the negative eigenvalue does not change ap-
preciably with the number of atoms chosen in the
dynamic calculation. About 50 are sufficient to ob-
tain an accurate value. By examining the eigen-
vector of the negative eigenvalue it was found that
the amplitude of four equidistant first neighbors
is only 2% of the amplitude of the jumping atom.
Thus the “vibration” is strongly localized.

The situation for the saddle point of the divacan-
cy was more difficult to deal with., Figure 2(a)
shows the initial positions of the two vacancies A
and B, and the atom C that is jumping into posi-
tion B. It is not obvious what path C will take in
getting to B and thus the exact position of the
saddle point. Figure 2(b) shows the triangle
formed by atoms A, B, and C, and the center of
the triangle D. Since atom F is closer to this
plane than the corresponding atom in the opposite
direction it is reasonable to expect that the posi-
tion of atom C at the saddle point will lie “below”
the triangle shown. To find the exact position many
calculations were made for the energy of the crys-
tal with C in different positions. For the case of
the Morse potential it was found that the position
of C for the saddle point in the coordinate system
where A is 000, B is 110, and the original position
of C is 101, is given by 0.7403, 0.2597, 0.3658.
Point E is quite close to point D which has the co-
ordinates 0.6667, 0.3333, 0.3333 and the energy
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TABLE I. Results of the calculations for single vacancies and divacancies in Cu using Born-Mayer and Morse po-

tentials.
Potential Si/k (w*/2m) sect WX/ o (wiyl/2m) sect D em?sect AK
1V Born-Mayer 1.6 9.5 x 1012 1.5 1.8 x 10t2 0.045 0.96
12 -
Morse 2.3 (2.35) 17 - 2.0 2.7 x 10 0.12 0.96
nearest-neighbor Morse 2.0 (2.08)
2V Morse 4.0 27 x10%2 3.2 3.1 x 1012 3.7 0.90

difference between the two points is only 0.0021
eV, giving rise to a “double-hump” potential curve
for the motion of the diffusing atom. Because of
this behavior the negative eigenvalue. of ¢ turned
out to be very small. In addition another rather
small positive eigenvalue appeared which in turn
helped to give rise to a rather large value for the
diffusion constant since this small positive eigen-
value appears in the denominator of the effective
frequency factor.

A slight modification of the Morse potential was
also used for some single vacancy calculations
with nearest-neighbor interactions only. This
was accomplished by using a nearest neighbor
Morse potential with R, equal to (3V 2)a, ‘which
means that the nearest neighbors are positioned
at the minimum of the curve. In this case no re-
laxations are produced with a vacancy present.

Table I gives the results obtained for the case
of Cu for the various potentials used. The en-
tropy values in the brackets were calculated using
the Green’s-function approach (Sec. IV). It is to
be noted that the formation-entropy and the diffu-
sion constant are considerably lower with the
Born-Mayer potential than with the Morse poten-
tial. This seems to be a consistent feature for the
Born-Mayer. The divacancy formation entropy
with the Morse is less than twice the value for the
single vacancy yielding a binding entropy of about
0.6%. The effective jump frequencies * are al-
ways considerably higher than the maximum fre-
quency of the ideal lattice as calculated with the
Born-Mayer or Morse potential. The frequencies
w3y of the unstable saddle-point mode are about
one-third of the corresponding maximum frequen-
cy. The relatively large value of 52,, has already
been explained in part as due to the double-hump
potential for the saddle point. The isotope factor
AK=0.96 for the single vacancy reflects the strong
localization of the decay mode: Practically, only
the jumping atom moves., This is, to a lesser ex-
tent, also true for the divacancy with AK=0.90.

Calculations have also been carried out for a
typical bec metal, o-Fe, to see if any new diffi-
culties arise in treating bcc structures. Two po--

tentials were tried. First, the Johnson poten-
tial,’%2° which is a spline fit at two different
points. It was found in working with this potential
that at the fitting points the second derivative of
the potential is not continuous, and since second
derivatives of the energy with respect to coordi-
nate positions enter into the coupling matrix it
gives results that jump irregularly. Especially
in connection with the saddle-point configuration
for the single vacancy the results are quite sen-
sitive to this feature,

These difficulties can be overcome by using the
potential of Chang and Graham,!®*” slightly modi-
fied for a smooth fit.® »<2.,40 A:

V(r)=14.26T47* - 137.6507° + 499.72372
- 809.8047 + 494.5517; (34)
2.40 A< <3.3894 A:
V(7)= =0.156 14"+ 0.815729+° + 1,245 94+°
-12,24057+ 16.0187.

At the fitting point derivatives up to and including
the third are continuous so that it should give rise
to no irregularities. The V has the units of eV and
v of A.

Calculations were performed for single vacan-
cies in ¢ -Fe for the entropy of formation and va-
cancy diffusion, Similar methods to these de-
scribed previously were employed. The only dif-
ficult calculation was for the saddle point for va-
cancy diffusion, which shows a double-hump be-
havior similar to that found by Johnson. The
saddle point was found at a relative positioﬁ of
0.39 of the distance between nearest-neighbor
atoms instead of the central 0.5 position. The en-
ergy difference is again small here (0.03 eV) and
the corresponding negative eigenvalue has a small
magnitude.

Calculations for ¢-Fe gave a value of 2.1 for
S,/k, 34 x10'2 sec™ for »,*/2m, 0.89 for AK and
0.16 cm?/sec for the diffusion constant. Because
of the double-jump behavior of the saddle-point
position it would be interesting to investigate a
possible connection with the phase transition that
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occurs from g -Fe to y-Fe. Burton'! gives two
values for the entropy of formation of vacancies of
the solid (3.14 for S,/k) and the other obtained
from a functional form in K/qV where K is the
compressibility, ¢ the linear-thermal-expansion
coefficient and V the molar volume, (2.17). Our
value appears to agree well with the second of
these calculations,

IV. GREEN’S-FUNCTION METHOD

In this approach we make use of the advantages
of the standard Green’s-function description for
the vibrational behavior of defect crystals. It is
convenient to use this method for infinite crystals
since the changes ¢ =¢ - ¢° between the coupling

matrices of the defect and ideal lattices can nor-

mally be restricted to the vicinity of the defect.
Then the Green’s function G(w)= (¢ - Mw?)™ that
describes the vibrational behavior of the defect
lattice is easily obtained from the ideal lattice
Green’s function G%w)=(¢° ~ Mw?)™. Once having
calculated G%) one has to perform only simple
inversions of matrices with dimensions given by
the range of ¢. Here we will give an extension of
this method in order to calculate the formation en-
tropies of vacancies.

From the equation for S, in terms of the fre-
quency spectra Z(y), and the expression for Z(w)
in Sec. II, we obtain

S, = me*dw 2o 0 i}_;#o) (mi | 8(Mew? = ¢)
- 8(Mw? - ¢°) |mi), (35)

and by integration

<

sl=§ >

m, i (m#0)

(mi |(Ing® - Ing) | mi), (36)

where the difficulty lies in calculating the loga-
rithms of the infinite-dimensional matrices ¢
and ¢°. By using the ideal lattice static Green’s
function G°=(¢°)™ we will show how to transform
this equation into an equation where only finite-
dimensional matrices occur.

By defining two subspaces C and R, where C
contains the vacancy and R all other atoms, we
have

. (sb%c ¢%R> ) <0 0 ) -
2=\ oo 0%/ ™7 \0 g,/

In order to extend the summation over all atoms
we introduce an auxiliary matrix

. (‘Pg‘c 0 ) ) R (1n¢occ 0 )
b= 0 ¢un with lnq): 0 Ing,, /)’

(38)

and obtain

S =-§ >~ (mi|lng® — Ing | mi)

23 (03] mg® - 1nd |00 (39)

The last term can be rewritten in terms of the
Einstein frequency o, and the local spectrum
2%w) of the ideal lattice whereas the first term
can be expressed as the trace. For cubic crystals
we obtain

S;=% K(Trlng° - Tr Ing)

_3% f T o 1n<ji—>zg(w). (40)

Since the matrices ¢° and ¢ are symmetric, we
can change the first term as follows

Tr Ing® — Tr Ind = In(det?) — In(detd)
= ~Indet[(¢*)"¢] = - Indet(1+G°),  (41)
where we have introduced the static Green’s func-
tion G°=(¢°)™ and the difference between the cou-
pling constants ¢=¢ — ¢°.
If we now consider two subspaces D and R, where
D contains all atoms with changed coupling con-

stants and R all other atoms, the matrix ¢ has
only nonzero elements in subspace D:

®pp 0) )
go:(o 0/ (42)

Then we obtain

. 1+ G%D‘pDD 0
det(1+ G%p)=det G };%D 1 /=det+Ghpepp)

(43)
and for the entropy
S, = -3k Indet(l+ G p@pp)
w
-3k [ o <‘9' )2%w). (44)
o wg/

The importance of this equation is in the fact that
only matrices and determinants in subspace D
have to be calculated which is especially conven-
ient when the coupling parameters are restricted
to a small number of atoms contained in a few
shells. A similar expression was obtained by
Govindarajan® for the case of a substitutional de-
fect.

Numerical calculations were carried out using
three potentials appropriate for Cu, the Morse
potential and the Born-Mayer potential of Sec.

II, and a pure nearest-neighbor potential, for
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which the results are independent of parameters
used.

In the case of nearest-neighbor interaction there
are no relaxations in the presence of the vacancy
and the changes of coupling constants are re-
stricted to nearest neighbors. As an exact result
for an infinite crystal we obtain the value

S, = 2.08%, (45)

with the integral term yielding the contribution
0.25. This is about 20% higher than the value
1.73 obtained in the Einstein approximation.

In the case of the Morse potential the relaxations
are rather small. If ¢ is restricted to the fourth
shell (55 atoms), we obtain

S,=2.35k. (46)

In the case of the Born-Mayer potential it was
impossible to obtain sufficient accuracy due to the
large relaxations involved. Calculations were per-
formed up to the sixth shell (87 atoms) yielding a
much lower value (1.32) than in the case of the
Morse potential. However, an estimate of the
error due to the restriction to six shells gave a
correction of the same magnitude as the value it-
self. This indicates that calculations for a much
larger number of atoms would have to be per-
formed which were not possible on the computer
used.

To show the effects of the relaxations, calcula-
tions for the two last potentials were carried out
with and without relaxations. In the case of the
Morse potential the change from no relaxations
to full relaxations was small (2.28 to 2.35). How-
ever, in the case of the Born-Mayer potential, the
change was large (2.52 to 1.32) again verifying the
importance of large relaxations.

It is instructive to examine the local vibrational
spectra of the atoms in the vicinity of the vacancy
which can be calculated from the imaginary part
of the defect-lattice Green’s function:

z’i"(w)=(2Mw/1T)1mG',”,-'"(w)- (47)

Contrary to the ideal lattice where for cubic sym-
metry the local spectrum agrees for all directions,
the spectra of atoms in the presence of the va-
cancy depend on the direction. In Figs. 3(a)-3(c)
we show the spectrum for the nearest-neighbor
atom at position 110 in the three principal direc-
tions [110], [110], and [001] for the case of the
Born-Mayer potential and for the [110] direction
for the case of the Morse potential (Fig. 4). In
either case no localized modes were found. The
main difference from the ideal spectrum occurs
in the [110] direction where the frequency distri-
bution is considerably shifted to lower frequen-
cies. This can be explained by the absence of the

z{w)

z{w)

z(w)

Wmax W

FIG. 3. Local vibrational spectra for a nearest neigh-
bor of the vacancy by using the Born-Mayer potential.
For comparison the spectrum for the ideal lattice is
shown for the same potential (dashed line). The vacancy
is located at 000, the nearest neighbor at 110. (a) Vibra-
tions of the nearest neighbor in the direction [110], i.e.,
towards the vacancy. (b) Vibrations in the direction
[1T0]. (c) Vibrations in the direction [001].

z(w)

w

FIG. 4. Local frequency spectrum of a nearest neigh-
bor for vibrations in [110] direction by using the Morse
potential, compared with the spectrum for the ideal
lattice (dashed line) with Morse-potential interaction.
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coupling to the vacancy in this direction and is
also reflected in the particular lowering of the
Einstein frequency for this direction. The local
spectrum for the other two directions of the near-
est neighbor and for all directions of more dis-
tant neighbors are much more like the ideal spec-
trum. In the case of the [001] direction there ap-
pears to be a shift to higher frequencies, probably
due to the strengthening of the nearest-neighbor
bonds.

In terms of computational use the Green’s-func-
tion method takes longer and requires more stor-
age than the determinant method and is unable to
perform calculations with a large number of
atoms. It is not as flexible with respect to changes
of the problems (e.g., for the saddle-point prob-
lems). It does however give additional interesting
information for .the local spectra and yields exact
results for infinite lattices, if the force-constant
changes are restricted to the vicinity of the defect.
To have two independent methods is also very use-
ful for a check on the results.

V. COMPARISON WITH EXPERIMENTAL RESULTS
AND DISCUSSIONS

Simmons and Balluffi®® measured the concen-
tration of vacancies in other metals and on the
basis of these suggested a value of (1.5 +0.5)% for
the formation entropy of Cu. As pointed out re-
cently by Hehenkamp and Liidecke® these authors
used some experimental data, which can no longer
be considered as significant. A reevaluation of
the same data by Hehenkamp and Liidecke gave
S,=(2.4£0.5)%. Resistivity measurements of
Hehenkamp and Sander* with lower accuracy give
S,=(3.5x1.5)k. Bourassa and Lengeler! have
measured the resistivity quenched into Cu single
crystals. By assuming the vacancy concentration
at the melting point to lie between 150 and 200
ppm, they obtain a value of (2.20 +0.15)% for S,.
Recently Mantl and Triftshfuser? obtained by a
combination of positron annihilation measure-
ments and of resistivity measurements a value of
S,=(2.6 +0.5)% for Cu. All these measurements
agree very well and compare favorably with the
theoretical value of 2.3% for the Morse potential,
Note however that the value for the Born-Mayer
potential is significantly smaller (S, = 1.6%).

Other experimental work on resistivity has been
performed by Lucasson et al.?* and others.® On
the basis of their results Brudnoy?® quotes the
range of values for the entropy of formation as
between 2.9% and 3.5%2. From work on specific
heat Kraftmekler and Strelkov?® give a value of

3.7k,

In connection with diffusion measurements,
Weithase and Noack® have recently carried out a
review of all diffusion measurements for vacan-
cies in Cu (for which one should look for refer-
ences) in addition to doing some tracer and NMR
work of their own. For single vacancies the re-
sult for D is 0.114 cm?/sec for their own tracer
measurements and 0.160 cm?/sec for a combined
analysis of all measurements to date, Our results
for the Morse potential (0.12 cm?/sec) thus ap-
pears to be reasonably close whereas the Born-
Mayer value (0,045) seems to be too small here.

For divacancies the errors involved are usually
larger. Weithase and Noack report a value here
of D=3.4 cm?%/sec for their own tracer work and
6.4 cm?/sec for a combined analysis. Our results
(8.7 ecm?/sec for a Morse potential) compares very
well with their tracer result. Since the results for
the divacancy involve the nature of the potential
in the region of the double hump for the divacancy
in the saddle-point position and the sensitivity to
the potential generally, it is not surprising that
the calculated value should be different from the
combined experimental one.

In the case of ¢-Fe, Hettich, Mehrer, and
Maier® report a value of 1.0 cm?/sec for D. Our
result (0.16 cm?/sec) is less than this, indicating
possibly that we have not chosen a good potential
for ¢-Fe or that again the double-hump nature
of the saddle-point position for a single vacancy
is involved. . : .

Concluding from the close agreement with the
experimental results, one can say that the short-
range Morse potential gives a good description of
the vibrational behavior of vacancies in Cu, which
we consider as representative of fcc metals. This
is in agreement with the general findings of John-
son'® and Dederichs et al.*° that short-range po-
tentials like the used Morse give a reasonable de-
scription of the formation and migration energies
of single and divacancies in fcc which is not the
case for the Born-Mayer potential nor for the
longer-ranged Morse potential of Cotterill and
Doyama.* Note that the Born-Mayer potential
gives also worse values for the formation entropy
and especially for the effective diffusion frequency.

Such short-range potentials also lead to relative-
ly small atomic relaxations around the vacancy.
Clearly a value of -0.5V, for the relaxation volume
cannot be obtained from these potentials. Further,
as, e.g., discussed in,!°° these potentials pre-
dict that small-vacancy aggregates have a compact
three-dimensional form like small voids rather
than two-dimensional dislocation loops. It re-
mains to be seen if these predictions based on
short-ranged central potentials can be verified
experimentally.
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