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Photoemssion spectra and band structures of d-band metals.
VII. Extensions of the combined interpolation scheme
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The combined interpolation scheme for face-centered-cubic d-band metals has been extended to higher

energies (-1.6 Ry above the Fermi level) by inclusion of more plane waves in the basis set. Momentum

matrix elements are evaluated for Cu from k-space derivatives of the Hamiltonian, and are used to calculate
the imaginary part of the dielectric constant e,. Good agreement with the first-principles results of Janak,
Williams, and Moruzzi is obtained, Momentum matrix elements corresponding to normal emission from

Cu(111)'and Cu(100) are calculated and are shown to be consistent with elementary atomic-dipole selection-

rule considerations. The occurrence of hybridization nodes in the momentum matrix elements is reported and

discussed.

I. INTRODUCTION

Earlier papers in this series'' have been con-
cerned with the interpretation of angle-integrated
photoemission spectra from d-band inetals using
a combined interpolation scheme. This work was
limited to the photon energy range 8~&12 eV. In
the intervening years there have been some very
substantial advances in experimental technique.
Specific advances are the development of angle-
resolved photoemission, the exterision to higher
photon energies, and the use of the polarized
synchrotron-radiation continuum. ' The extent to
which this abundance of new and incisive data ean
also be accounted for in terms of the combined-
interpolation- scheme approach is of considerable
interest. Such work would provide refined deter-
minations of the bulk band structures and, by a
process of elimination, would reveal those fea-
tures of the spectra due to surface rather than bulk
photoemission processes. To perf orm the work it
was found necessary to extend the capabilities of the
combined interpolation scheme described in an
earlier paper by Smith and Mattheiss' (hereafter
referred to as I). These extensions are the sub-
ject matter of this paper. Comparisons with ex-
perimental photoemission spectra will be made in
subsequent papers.
'

Two main modifications of the scheme were re-,

quired. The first was the extension of the scheme
to higher electron energies. This was done by the,
inclusion of more plane waves in the basis set, and
the details are described in Sec. II. The second
modification is related to the intensities of peaks
in the photoemission spectra. Formerly, an
analysis of peaks positions was sufficient for a
fairly complete interpretation. 'With the advent of
angle-resolved photoemission, particularly with
polarized light, the question of selectiop rules and

intensities has come to the fore. Among the most
important quantitieg determining intensities are
the momentum matrix elements between occupied
and unoccupied states. To calculate these we have
used a formula which relates the momentum oper-

. ator to 4-space derivatives of the Hamiltonian.
This formula and some preliminary numerical
results will be described and discussed in Sec.
III. The numerical work was performed on Cu,
since first-principles calculations of both the
bands and momentum matrix elements had been
performed earlier for this metal by Janak, Wil-
liams, and. Moruzzi' (JWM). These first-prin-
ciples calculations provide a most convenient
standard against which to measure the perform-
ance of the second-principles method described
in this paper. Numerical results will be pre-
sented in Sec. III for the imaginary part &, of the
dielectric function and for the momentum matrix
elements appropriate to normal photoemission
from the (100) and (111)faces of Cu.

II. PARA341ETRIZED HAMILTONIAN

A. Basis states

The Hamiltonian for nonrelativistic combined
interpolation schemes for d-band metals is ex-
pressed in the following standard form' '.

(H„H~)
K=

I

K„, H~, and K«represent the plane-wave, the
hybridization, and the tight-binding 4 blocks,
respectively. Here and elsewhere in this paper,
we shall adopt the nomenclature of I. All of these
blocks retain the same parametrized form as in
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I. However, II„, the plane-wave (or pseudo-
potential) block, has been extended to a 16&&16

rather than 4&&4 matrix.
In terms of the reduced wave vector k, the

16 plane waves included in the basis set are those
with wave vectors k,. =k+G;, where G; runs over
all eight reciprocal-lattice vectors of type (2m/

a) (1, 1, 1), all six of the type (2m/a)(2, 0, 0), and
the single vector (2v/a)(-2, —2, 0). This last
vector is included for reasons of fuller symmetry
as explained below. In the earlier scheme of I,
based on only four plane waves, full symmetry
was obtained only for the relatively low-lying
plane-wave-like levels such as I', (0), L„L,,
(0.75Z, ), X4,X, (1.00Z, ), and W,W,W, (1 .25 Z, ).
[The numbers in parentheses are the free-elec-
tron energies of these levels expressed as mul-
tiples of Z„where Z, = (5'/2m)(2v/a)' and a is the
lattice constant. We are using also the represen-
tations appropriate to the nonrelativistic case. ]
In the present schemh based on 16 plane waves,
the following additional complete sets of levels
are reproduced: l, l „I;, 12 (3.00Z, ); I', I'»I „
(4 00Z, ).; L,L,t I.,L, (2.75Z, ); X,X,X,. (2.00Z, );
W,W, W, (3.25Z, ). Note that the sixteenth plane
wave is required for completeness of the last
set at S', and this was the reason for its inclu-
sion. In principle, therefore, we are able to re-
produce the band structure up to energies of about
4E, .

The elements of the plane-wave block of the
Hamiltonian are expressed in the same form as
in I:

mations to certain integrals over the radial parts
of the d wave functions. ' We mention this here
merely to alert the reader to the fact that this
approximation may require improvements as the
scheme is extended to higher energies, i.e., higher
values of &; and &;.

B. Fits to first-principles band structures

To test the performance of the extended scheme,
its parameters have been fitted by a nonlinear-
least-squares method to the nonrelativistic band
structure of Cu as calculated by JWM. The JWM
calculation was performed by the Korringa-Kohn-
Rostoker (KKR) method, and the bands were then
stretched by 8/o along the energy scale in order to
obtain better agreement with angle-integrated
photoemission spectrg, . Our fit was performed to
the stretched rather than unstretched bands. The
results of the fit are displayed in Table I. The
parameters are defined in paper I, and are expres-
sed in the same units.

For purposes of comparison, we also show in
Table I the parameters obtained by fitting the
earlier four-plane-wave scheme to the same band
structure. The main difference is that the Flet-
cher-Wohlfarth parameters A, , are considerably
smaller in the 16-plane-wave scheme. This is a

TABLE I. Parameters of the combined interpolation
scheme obtained by fitting the stretched Cu band struc-
ture of Ref. 4: (a) 16-plane-wave scheme; (b) 4-plane-
wave scheme.

II,, =~A', 6,.(+V,, +Sj,(k, It)j, (k, R).P, (S,. k, ). . .

The last term is a nonlocal contribution to the
pseudopotential which takes account of the strong
effects due to orthogonalization of the plane-wave
basis states to the tight-binding d states. The
principal Fourier components V,~ of the local
pseudopotential which enter into the 16 plane-wave
scheme are VQQQp gg] j 2ppp Q2pp 3]J p

V4~ and V4,Q. For convenience V4QQ and V4„are
set equal to zero. The components VQ~, V»„and
V2pp we re already present in the four- plane -wave
scheme. The new scheme therefore introduces
the new parameters V„„V„„andV„„ thus rais-
ing the total number of disposable parameters
from 16 to 19.

As in I, the elements of the hybridization block
are expressed in the form

H,„=B,,j,(k, A)Y„(k, ) .
The spherical Bessel functions g, (&&B)which ap-
pear in both Eqs. (2) and (3) are actually approxi-

(a)

d Bands
E

A)
A2
As
A4
A5

Plane-wav~

Vooo

V2oo

V22o

V3qi
~222

Orthogonality
and hybridiz ation
R
$
B]
&e

0.3714
-0.008 2

0.013 03
0.002 29
0.005 61
0.007 97
0.002 57
0.006 34

0,014 20
-0.078 5

0.097 4
0.121 0
0.097 4
0.200 4
0.112 5

0.334
0.744
1.359
1.291

Not treated as disposable.

0.343 0
0.003 3
0.020 86
0.005 96
0.008 03
0.012 13
0.003 13
0.009 49

0.015 01
-0.143 7

0.071 3
0.092 8

(0.410) ~

0.757
1.116
1.131
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consequence of the fact that in the 16-plane-wave
scheme there is more opportunity for hybridiza-
tion.between the plane-wave and d states. . The
overall effect of the hybridization is to push the
lower-energy d bands to lower energies rela-
tive to the upper d bands, thereby increasing the
d-band width. These leave a smaller proportion
of the d-band width to be accounted for by the d-d
overlap embodied in the Fletcher-Wohlfarth par-
ameters. The 19 parameters of the 16-plane-
wave scheme were-fitted to 39 energy levels. Th
overall rms error was O.OI5 Hy. For' the lowest
six bands the rms error was 0.008 Ry. .

part of the dielectric constant. These first-
principles calculations of &, provide an excellent
standard against which to test the performance of
second-principles methods. JWM also pregent re-
sults for the band-by-band decomposition of &,
providing a more detailed test. Calculations of &,
and its band-by-band decomposition have been per-
formed using the scheme of the present paper, and
the comparisons with the first-principles results
will now be made.

The standard expression for E, is'

III. ' MOMENTUM MATRIX ELEMENTS

A. Basic expression

In the standard formalism of band theory, where
the wave functions are expressed as Bloch func-
tions, the momentum operator may be written in
terms of the Hamiltonian operator~:

m sH$)-4 ak (4)

(5)

In other words, we apply to SH/Sk the same uni-
tary transformation which diagonalizes II.

B. Results for e2 (w)

In addition to the Cu energy bands, JWM also
report numerical results for &„ the imaginary

In the combined interpolation scheme, the matrix
elements of H are all given as analytic functions
of k. The momentum matrix is therefore obtain-
able by simple differentiation. Note that all the
parameters which enter into II have been complete-
ly determined by fitting to the energy bands. We
therefore have the important. point that Ne genera-
tionof P by the differentiationofHdoesnotrequire
the introduction of any additional disPosable Para-
meters. In spite of the obvious appeal of such an
approach, it does not seem to be widely recogniz-
ed, and has been used on only a few occasions in
the past. '

Expressed in terms closer to actual computa-
tional usage, momentum matrix elements be-
tween specific states are obtained as follows. Let
u„& (m=1-21}and u„, (n =1-21) represent the
eigenvectors associated, respectively, with the
energy eigenvalues F& and E; generated at some
point k. (The 16 plane waves and 5 tight-binding
d functions give a total of 21 basis states. ) The
three components of the momentum matrix ele-
ment between these states are then giveri by

Note that Eq. (6) contains no further disposable
parameters. This permits us to assess the per-
formance of the present scheme in absolute as
well as relative. terms. 7he k-spy, ce integral in
Eq. (6}was performed by a Monte Carlo method
whose essential details are described in an earl-
ier paper of the series. '

The numerical results for e, are shown in Fig.
1(a) where they are compared with the experi-
mental measurements of Beaglehole and Erl-
bach. ' The overall agreement is.good. The cal-
culations reproduce the two principal maxima at
about 2.5 and 5.0 eV, although the former is
somewhat weaker and the latter somewhat stronger
than those observed experimentally. Comparisons
with a more. extensive set of experimentaldataare
to be found in the paper by JWM.

The band-by-band decompositions of the calcu-
lated s, are shown in I ig. 1(b}. These compare
very favorably in general shape and magnitude with
the first-principles results of JWM shown in Fig.
2. The contribution between bands 6- 7 involves
plane-wave-like initial states and plane-wave-like
fina& states, at least in the energy range h~& 7
ev. All the other contributions involve transitions
between d-like initial states and plane. -wave-like
final states. In a constant matrix element ap-
proach, where e'e, is related directly to the. joint
density of states, the various contributions 1-6
through 5-6 would be roughly equal in overall
magnitude. It is seen, however, that the inclusion
of momentum matrix elements enhances the 5-6
contribution and suppresses the 2- 6 contribution
relative to the other d- plane-wave contributions.
The joint density of states of the 6- 7 contribution
is very small relative to the other contributions,
since both initial- and final-state bands have steep
slopes. With the inclusion of momentum matrix
elements, however, the 6- 7 contribution is com-
parable with, and even exceeds, the 1-6 contri-
bution.
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FIG. 1. Calculated
values of e~. (a) compari-
son with experimental
data of Ref. 9 (dashed
curve); (b) band-to-band
decomposition.
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TABLE II. Comparison between the optical matrix
elements (P«] calculated by the first-principles
method of JWM and the second-principle combined-
interpolation-scheme method of this paper.

Transition (Ry)

fz„f'/2m fJ „f'lorn
(Ry) (Ry)

JWM (Ref. 4) This work

4 5
PHOTON ENERGY (eV}

6

FIG. 2. First-principles calculations of e ~ and its
band-to-band decomposition by Janak, Williams, and
Moruzzi (Ref. 4).

L) Lg
L3 Lg
L3 Lp'

Xg ~X4~
Xg X4
X4 -Xg

0.344
0.214
0.106
0.336
0.540
0.289
0.387

0.051
0.012
0.193
0.721
o.o42
0.120
0.780

0.055
0.006
0.070
0.823
0.051
0.083
1.039
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sponding to normal emission from the (100) sur-
face, is shown in Fig. 4. Unlike the situation along
FI., there are a number of unoccupied bands in the
range 0.8-2.2 Ry. The bands of b,, and h„sym-
metry can be eliminated since they correspond to
states with zero escape probability. The actual
wave functions corresponding to these states are
-as follows:

2.6

where („iP„g„and (~ are, respectively, the plane
waves with vectors 4+ 5-;;„k+5-,», k+4»„and
k+6»-, None of these waves is propagating nor-
mal to the surface, and so cannot match to an ex-
ternal wave in the normal direction. This leaves
the two bands of 4, symmetry. We shall refer to
these ag the final-state bands. The lower of the
final-state 6, bands occurs at 1.152 Ry at X; close
to Xits wave function is composed primarily of
the plane waves k and k+ G;,„,both of which are
propagating normal to the surface; escape proba-
bility is therefore high. At higher energies this

2.2
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band hybridizes with the other final-state 6, band.
In the absence of hybridization this second 6, band
would cross the first at about 2.3 Ry and k,
-0.31 X, and would have the wave function

(8)

which (like 6„ and 6,) is of zero-escape-proba-
bility form. At energies above about 2.3 Ry, the
high escape character will follow the upper 6,
band.

Matrix elements for transitions into the upper
and lower final-state 6, bands are represented,
respectively, by the dashed and full curves in the
right-hand parts of Fig. 4. Results are for the ini-
tial state 6, and 6, bands; transitions from the 6,

'and h„bands have zero matrix elements for all
k, in accordance with atomic dipole selection
rules to be discussed in Sec. IIID. As indicated
above, the high photoelectron-escape character
fo&lows the dashed curves in Fig. 4 for 0 S 0.3l"X
and the full curves for k ~ 0.31 X. The i.nterest-
ing behavior in some of the curves which occurs
at II,,s (0.2-0.4)1 Xis associated with the hybridi-
zation effects between the two final-state 6, bands.
The zero value of ~PI, j' for transitions from. the
lower initial-state 6, band into the lower final-
state 6, band which occurs at k -0.7I'Xis attribu-
ted to a hybridization node of the kind discussed
in Sec. IIIE.

—0.1

FIG. 4. Band structure of Cu and momentum matrix
elements along the [100] direction. The full (dashed)
curves in the panels on the right show the variations
with jt~ of j PI&( for transitions from the initial-state
bands indicated to final states to the third (fourth) bands

, of 4~ symmetry. For the 6& initial states we have
PI&j) [100j; for the b, q initial states we have PII& [100j.

D. Atomic-dipole selection rules
I

Some of the qualitative features of the momen-
turn matri:x element variations shown in Figs.
3 and 4 can be understood in terms of elemen-
tary atomic-dipole selection rules, From here
on let us always take the g axis along the surface
normal. The group representations corres-
ponding to the [001] and [111]directions for the
d orbitals are indicated in Table IG. The two
doubly degenerate A, states have the same sym-



PHOTOEMISSION SPECTRA AN D BAWD. . . . VII. 5025

z II [001] d orbital

m=0
3g —t'2 2

pz
zx

A3
upper

TABLE III. Symmetry xepresentations of the d orbi-
tals appropriate to the [001) and [111]directions, and
grouped according to magnetic quantum number m.

of Shevchik et al. is that this behavior arises as
a natural consequence of Eq. (4) and does not re-
quire the introduction of any new disposable
parameters.

The success of the present approach in its
consistency with Eq. (9) appears to be in disa-
greement with certain conclusions of Shevchik
and Liebowitz. " They argue that an orthogon-
alized-plane-wave (OPW) approach for the final
states will be inadequate, just as a single-plane-

Xg
n

X
A3
lour er

wave approach is. The present scheme however
is based on the OPW method. The omission in
the argument of Ref. 11 is that while it considers
orthogonalization to coze levels, it takes no
account of orthogonalization and hybridization with
the valence d states. It is these effects, repre-

metry and are therefore allowed to mix; the dis-
tinction indicated in Table III in this case is
therefore not exact; the uppe-r A3 band is pre-
dominantly of yz and zx character but has a
small admixture of xy and x -y2, and vice versa
for the lower A3 band. The unoccupied A, band
and the lower final-state A, band are s-like at
the zone boundary (I., and X, levels), but be-
come progressively more p,-like on moving into
the zone. As mentioned earlier, the s-like final-
state character at the zone boundary accounts for
the zero matrix elements from the predominantly
d-like initial states X„X3, X2, Xs, L„and L3.
Within the zone where the P character becomes
stronger, we expect: a strong matrix element
from the d band of 3g —~ symmetry having

P&, II z; a weaker matrix element from yz and zg
with Pz~ II y and Pz& II x, respectively'; zero matrix
element from xy and x' —y'. The numerical re-
sults of Figs. 3 and 4, and in particular the zero
matrix elements for 6,, and a, , are consistent
with these expectations.

These atomic-dipole- selection- rule conside ra-
tions have been anticipated, and used with empiri-
cal success by Shevchik and co-workers. ' They
propose that the momentum matrix elements be
expressed in the form

P« ——Au, ~+Bu~y +Cu3, 2 „2a+Du, &,

where u,„, u, and u3, 2 „2 represent components
in the eigenvector of the state li); u, is the cor-
responding s component and, for present pur-
poses, may be equated to the component of the
lowest plane wave lk). This expression goes
beyond the simple plane-wave final-state ap-
proximation in which only the last two terms of
Eq. (9) would be permitted. 4, 8, C, and D
and their dependences on k are treated as dispos-
able by Shevchik et p/. As stated above, our
results are consistent with Eq. (9). The impor-
tant difference between our approach and that

sented explicitly in Eqs. (2) and (2), which are
crucial in the successful operation of the pre-
sent scheme.

E. Hybridization nodes and minima

We have remarked upon the zeros and minima
which occur in

l Pz, l
/2m at certain points in k

space. These are termed "hybridization nodes"
for reasons which will now be explained. The
nodes are particularly conspicuous in the transi-
tions from the lower 6, and A, bands. These
are both strongly hybridized bands being plane-
wave-like near I' and progressively more and
more d-like on approaching the zone boundary.
We therefore expect the momentum matrix
element to consist of two channels, associated
with the two kinds of wave-function character.
The relative amplitudes of the two channels
will vary with k, and if they are of opposite
sign, it is possible that there mill be a point
in the zone where the momentum matrix el-
ement changes sign, giving rise to a hybrid™
ization node. This explanation is essentially cor-
rect, but the details are more complicated, as
will be seen below from an analysis of the actual
numerical results for the 6, transitions.

The wave functions in the lower initial-state
b, band and the lower final-state 6, band may be
reasonably approximated as follows:

I
f& =~.lk&+~.

l d3.2-,2) (10)
lf&=~.l»+~ .Ik+G).

In evaluating (f l
P li) there will be four channels

of which we shall consider only the following
three:

Pi uk', 0+G Vk+G

P2 4 ff k+G k+0

P3 =upped kvk '
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(b)

U

0

X

FIG. 5.. Amplitudes of various components and channels
in the momentum matrix element for transitions from
the lowermost b,q band to the high-escape-probability
final-state A~ band.

The P's represent the elements of the momentum
operator between the basis states lk), lk+G),
and ld3 2 2). Their variations with k~ are shown
in Fig. 5(a). Well away from the zone boundary,
v~ is small, so we can limit the discussion to
P, and P, . The coefficients u~ and u» are of op-
posite sign (whereas P~~G and P~~o have the
same sign provided k, &0.751'X). There is
therefore a destructive interference which is
directly responsible for the minimum at k,
-0.71X in the combined matrix element shown
in Fig. 5(b). The situation is complicated, how-
ever, by the fact the P~ ~~ changes sign at
slightly higher k, .

Near the zone boundary, the initial state band
is predominantly d-like so that we may neglect
u„and limit discussion to P2 and Ps of Eq. (11).
The coefficients v~ and v~~ are of the same sign,
and at X they are equal. This is the well known
s-like combination of the X& level. The values
of P» ~ and P»~~ are equal and opposite at X,
giving rise to a zero matrix element. The zero
matrix element expected on the basis of atomic-
dipole selection rules between d and s states may
therefore be alternatively thought of as a hybrid-
ization node, where the hybridization occurs be-
tween the plane waves lk) and lk+G) in the final
state.

The combined matrix element p, +p2+p3, shown
as the dashed curve in Fig. 5(b), accounts for
the basic shape of lP~, l

'/2m as shown in Fig. 4.
It is clear, however, that other channels must
also contribute since p&+p~+p3 crosses zero
twice (once at k, =0.581"X' and 0.77I'X), whereas
there is only one minimum at k, -0.71X in the
complete results of Fig. 4. (The additional

minimum for 6& in Fig. 5 at k~-0.3I'X is at-
tributed to another hybridization node associated
with the hybridization of the two final state 6,
bands. )

The basic requirement for a hybridization
node is two hybridizing bands whose wave func-
tions form symmetric and antisymmetric com-
binations. Then, depending on the relative sign
of the corresponding P's, the matrix element for
transitions from one of these bands is likely dis-
play a node or minimum. Since such circum-
stances are quite commonplace, we expect hy-
bridization nodes to be distributed quite fre-
quently throughout the Brillouin zone. They can
be associated with either final-state or initial-
state hybridizing bands. It would be of con-
siderable interest to hunt for these nodes experi-
mentally.

There is an effect which will tend to prevent
the experimental observation of hybridization
nodes. This is the lack of strict conservation of
k, due to the fact that the surface breaks trans-
lational symmetry perpendicular to the surface.
If the smearing along k, is not too severe, the
hybridization nodes should survive and be ob-
servable as minima.

IV. CONDLUDING REMARKS

Vfe have described in this paper a computa-
tional scheme which promises to be very useful
in the interpretation of angle-resolved photo-
emission spectra from d-band metals. The next
obvious step is to calculate some theoretical
spectra and compare with experiment. This work
is in progress and will be reported in due course.

Although our emphasis has been on normal
emission, the scheme can be just as readily
applied to off-normal emission. In this case
the following considerations concerning the
plane-wave decomposition of the final state will
come into play. In the combined interpolation
scheme, the wave functions of the unoccupied
states are predominantly plane-wave-like, and
may be written

(12
C

The coefficients u~, ~ are generated by the scheme
as components of the eigenvectors. For each
plane wave there is the possibility of matching
onto a running. wave in the vacuum and thus gen-
erating an observable photoelectron. The co-
efficients u~, ~ will enter into the relative inten-
sities of these contributions; it would be of in-
terest to investigate how these predicted inten-
sities compare with experiment.
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