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&Ve have developed a new method to calculate electronic states associated with localized defects. The
method yields energy levels, wave functions, and electron charge densities with a precision which is equal to
state-of-the-art results for bulk band structure or surface calculations and thus should eventually allow

meaningful detailed comparison with experiments. The calculations are based on a scattering-type Green's-

function formulation which describes the system of a single isolated defect in an otherwise perfect crystal.
Self-consistency is achieved by an iterative recalculation'of the valence charge and then of the defect
potential. The Green's function, which expresses all of the necessary information about the perfect crystal, is

here evaluated using an eigenfunction expansion employing high-precision wave functions and band structures
obtained from a self-consistent, pseudopotential, local-density-functional calculation; The defect potential is

calculated in the same approximation, using occupied electron states of the perturbed system. The use of this

method is not restricted, however, to pseudopotentials. The possibility of extending it, e.g. , in the direction

of crystal ionic potentials with core electrons, seems quite real in the event that. such extension should be

needed, say, for studying the energetics of relaxation or reconstruction around the vacancy. The method is

applied to the example of an isolated Si vacancy. This system has been chosen to facilitate comparison to
earlier non-self-consistent, or self-consistent but artificially periodic, calculations. The results generally agree
with these earlier works but are improved in various aspects.

I. INTRODUCTION

The precise determination of the electronic
structure of localized or deey defects represents
a problem which is still unsolved. While much
progress has been made in quantitatively explain-
ing delocalized or shallow defects' ' by employing
effective-mass-type techniques, the extension of
these approaches to localized defects fails. Sev-
eral formal approaches have been proposed to de-
scribe localized defects' ' but only a few quanti-
tative calculations have been attempted. Among
those, the defect molecule or cluster calculations
are most frequently seen, ' but these usually pro-
vide only semiquantitative information due to the
absence of any connection to the host-crystal band
structure. Qualitative perturbation calculations,
based on the idea of Slater and Koster (Ref. 4)
have been carried out in several cases. ' Quanti-
tative calculations based on the Slater-Koster
scheme, have been carried out by Jaros and Brand
to study vacancies and isoelectronic impurities in
semiconductors. ' Though the calculations focused
mainly on energies, were not self-consistent, and
yielded only rather imprecise wave functions,
Jaros has indicated' that he has made substantial
progress in the direction of developing a self-con-
sistent version of his scheme.

Another approach, actually a bulk-crystal cal-
culation based on a periodically repeated large
unit cell containing one vacancy per cell, and us-
ing self-consistent pseudopotentials, has been
published recently. " Due to its simplicity this

approach is very appealing. Its main disadvantage,
however, is that the defect wave functions, though
highly localized, still overlap sufficiently from
one cell to the next to give rise to a "defect band
structure" with a width of the order of 4 eV. To
remedy this situation, one would have to signifi-
cantly increase the size of the large unit cell,
which at this time is prohibitively expensive, even
on the most advanced computers. While the defect
wave functions and thus also the eigenenergies of
individual states are affected by the proximity of
neighboring defects, the total charge density is
not. This is a well-known and important result
which has also been found in various surface cal-
culations"; namely, that the self-consistent po-
tential and charge density heals rather fast (with-
in one or two bond lengths) as one leaves the sur-
face (or neutral defect) while individual states can
still have rather long tails of several bond lengths
extension. This point must be borne in mind when
we compare, our test example with the ideal, neu-
tral Si vacancy as considered in Ref. 10.

The study of the various theoretical approaches
cited above was motivation to develop a new quan-
titative method for describing localized defects
which should be free of the inherent disadvantages
of existing methods. In particular, the method
should describe a truly isolated defect. It should
be capable of yielding wave functions, it should be
quantitative, it should be related to the host band
structure (as the various defect cluster, or large-
molecule calculations are not) and it should be
self -consistent.
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Two groups —ourselves'3 and Bernholc, Lipari,
and Pantelides at IBM'~ —have responded to this
motivation in similar ways and have decided that
the Slater-Koster, or Green's-function technique,
can be used as the key idea in a practical compu-
tation scheme. The schemes developed by the two
groups differ, however, in the basic equations
which are proposed and solved, and perhaps in
other subtler detaj. ls as well. Hence, detailed ex-
planation of the methods and comparison of the re-
sults obtained using them is of interest.

This paper represents our contribution to such
an explanation and comparison. Its object is to
present the scheme we have developed for per-
forming quantum-mechanical calculations of the
self-consistent potential, charge density, elec-
tronic wave functions, and energies associated
with an isolated, localized poirit defect in an other-
wise perfect infinite crystal. Having described our
technique, we present the first results we have ob-
tained using it to study the neutral vacancy in sili-
con.

Basically, our technique cap be described as a
quantum-chemical linear-combination-of -atomic-
orbitals (LCAO) calculation in which the coeffi-
cients in the LCAO expansion are determined by
making use of the Green's-function equations,
rather than by using the Schrodinger equation di-
rectly. The advantage in using the Green's func-
tion, as was emphasized by Koster and Slater from
the outset, is that one needs to consider the prob-
lem only in that region of space for which the im-
purity potential exists. Such a region is typically
much smaller than the region over which the wave
functions extend, at least for those types of point
defects for which a Green's-function formulation is
appropriate. The resulting problem, solving for
the LCAO expansion coefficients in the limited re-
gion of space, is simple enough computationally
that one can obtain the bound states and the Green's
function of the perturbed crystal in sufficient de-
tail to allow synthesis of the charge density. This
charge density then gives rise to a new impurity
potential and the whole process is repeated until
input and output potentials agree.

Choice of the ideal vacancy in silicon as a first
test of the method is an appropriate one for sev-
eral reasons. First of all, the electronic struc-
ture of atomic silicon, of bulk crystalline silicon,
and of various silicon surfaces has been sufficient-
ly studied, both experimentally and theoretically,
that there now exist reliable pseudopotentials
which describe the interaction between the silicon
(pseudo-) core (charge +4) and the valence elec-
trons surrounding it. Secondly, the neutral vacan-
cy is perhaps among the strongest and most lo-
calized defects which can be expected in a crystal

and therefore ideally suited for a Green's-function
study. Finally, there exists a large number of
earlier theoretical calculations with which we com-
pare the results of the technique presented here.
This comparison is initially more important than
is any comparison between a new theoretical cal-
culation of vacancy energy levels and experiment,
because of uncertainty as to the exact position of
atoms in the neighborhood of the vacancy. Indeed,
one of the long-range goals of a calculation of the
electronic structure of a defect is to provide ad-
ditional information- about atomic positions nearby
by studying the relation between the energy spec-
trum and the position of atoms near the defect. In
the present work, however, me shall be concerned
only with the calculation of the ideal neutral sili-
con vacancy-that is, a crystal from mhich a single
atom has been removed without allowing the ad-
jacent atoms to readjust position, and with the
comparison of these results to the results of earl-
ier calculations af the same system. The compari-
son indicates that the technique we use is capable
of a precision on the order of that obtained in
state-of-the-art calculations of bulk semiconductor
cryst"ls and surfaces. For this reason, we antici-
pate that the method will be able to provide useful
information on relaxation and reconstruction
around the defects as well.

We are aware that localized states, such as those
associated with a vacancy, might possibly give rise
to specific correlation effects and multiplet struc-
tures which lie beyond the single-particle approx-
imation we are using here. " The first step in es-
timating the size of such effects is to calculate, in
a basis of reliable one-particle states, the matrix
elements of the appropriate energy operator.
States such as those we calculate here mill be use-
ful for that purpose but we see no point in esti-
mating these effects until after a thorough study of
the relaxed vacancy has been carried out.

In Sec. II, we describe the formalism used for
obtaining the charge density, electronic states,
change in energy density of states, and bound-state
energy. Section III describes briefly the construc-
tion of the defect potential. In Sec. IV, we give
specific details about the vacancy calculation it-
self. Results of the calculation are presented and
analyzed in Sec. V.

II. METHOD OF CALCULATION

A. Individual wave functions

A crystalline (point) defect is a break in the
translational invariance of the lattice and is char=
acterized by a defect potential which tends to zero
as one leaves the disturbance. This situation can
generally be described in the one-electron ap-
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proximation by a Schrodinger equation of the form

(Jf, +U)g(r) =EN(r),

where Hp = =,'V'+ V, denotes the Hamiltonian of the
perfect crystal and U the additional potential due
to the disturbance. The case of strongly localized
defects is characterized by U being a strong but
localized perturbation.

The form of the potential V, describing the
periodic crystal will depend on what level of so-
phistication one uses to reduce the actual many-
body problem to a one-electron problem. In any
case, it will have the translational periodicity of
the perfect infinite crystal, and thus the eigenfunc-
tions of Hp can be Bloch states of the perfect crys-
tal,

a,q„(k,r) =E„(k)q„(k,r) .
Let these be normalized in such a way that the or-

- thogonality and completeness relations are

U(r)(}(r) = U(r )q„(k„r)

»U(r)f G (r, r )U'(rr ),U'(r')6(r )d'»',

(6b')

E =E„(k,)+ iO'.

When g(r) is a bound state, the normalization con-
dition on U(r}(}(r) can be obtained from Eq. (5a) and
the normalization condition on g(r) itself. By writ-
ing Eq. (5a) in the symbolic form $=GsU(}, the
normalization of the bound state becomes
(qUG~GsUg) =(gy) =l. However, the properties of
the Green's function contained in (3a) and (4) en-
sure that, for any value of E not in the spectrum of
&„i.e., for any value of 8 at which a bound state
might possibly occur, GsG~ = dGs/d-E. Thus, the
normalization condition to be used with (6a) is

y Uy E ' Uy' y' dydee'=1.
dE

„*k,~ „.k', ~ d'r=6„„.S'k-k', (3a)

d' kg„( kr)g( kr') =5'(r-r ) . (3b)

Then a useful representation of the Green's func-
tion for the perfect crystal is

q„(k,r)q„*(k,r')
E -E„(k) (4)

Using this Green's function, the Schrodinger equa-
tion (I) can be transformed into well-known inte-
gral equations for bound states and scattering
states.

(i) For bound states, ' where E is not in the
spectrum of &„

g(r) = Gs(r, r')U(r')g(r') d'r'

(ii) For scattering states, 4' where E is in the
spectrum of Qp,

U(r)t)(r)=U(r)f G (r, r )U(r'')6(r')d'r', ('6»)

y(r) = (}„(k(),r) + Gs(r, r ')U(r')g(r') dr', (5b)

E =E„(k,)+iO+ .
These equations are exactly equivalent to Eq. (1);
the task is to devise a practical and accurate meth-
od to solve them. %e proceed in two steps as fol-
lows.

In the first step, we regard U(r)y(r), not p(r) it-
self, as the basic unknown. Equations expressing
this point of view are obtained by multiplying Eqs.
(5) by U(r):

y(r) = P C, y, (r), (8)

where P, (r) is an atomic orbital whose form and
location are fixed at the outset, and the C; are the
set of coefficients which are to be determined.
Because U(r)(})(r) is our unknown, however, we
need not satisfy (8) in all space but instead, we
need only include enough atomic centers and
enough orbitals on each center that the following,
weaker, approximation is valid:

U(r')P(r') = U(r') g G;Q((r') . (9)

It is of course possible to satisfy requirement
(9) using a reasonable number of orbitals Q, (r}
when U(r} is a localized potential. No orbital
which lies beyond the range of the potential U is
needed. Few orbitals are needed near the outer
limits of the potential because in satisfying Eq. (9),
it is wasted effort to approximate g(r') accurately

Let us now think of (})(r) as a linear combination
of atomic or other conveniently localized orbitals.
Each atomic orbital is centered on an atomic posi-
tion and each atomic position will be assigned a
number of atomic orbitals. The exact number and
exact types of orbitals at each location is to be
determined either by convergence studies or by
intuition based on the chemistry of the system
under investigation but in any case, if the atomic
positions are shifted to represent relaxation of the
crystal around a defect, the orbital centers shift
also. A vacancy location has no orbitals associated
with it, because there is no atom there to which
they belong. Thus, we consider an LCAO expan-
sion
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where U(r') is small. The greatest orbital flexi-
bility, i.e., largest number of orbitals per loca-
tion, should be permitted where the overlap be-
tween the defect potential and the wave function is
expected to be greatest.

, Having described the choice of orbitals to be
used, we now consider the equations which the co-
efficients C, must satisfy. For this purpose, we
start with the bound-state equation (6a) and a var-
iational principle associated with it, namely,

5A[y, ~]/5y(r) =0 (10a)

For the scattering states described by Eq. (6b),
the functional to be varied is

~[A) =2Rer[4] -R4]+D[0 &],
where

(16)

g [X;, D; (-E)]C, =F,(s„r,), (18)

E[y] fy"=-(r)V(r)4(r)dr,

and the algebraic equations which govern the C&

coeff icients are

with

(10b)
where

F,(n„u,) -= y*, (r)U(~)q„(u„r)d~ . (19)

and

Ã[y] —= f*(r)U(r)[)(r) dr
I

(11a)

D[g, E]=- P*(r)U(r)Gs(r, r') U(r')g(w ') dr dr' .

(lib)

The conditions (10) are satisfied when Q(r) is the
solution of Eq. (6a), By choosing (3) as the trial
function P and varying with respect to the C„we
obtain

Q[N; -D;, (E)]C =0, .

j

N;, = xUr jr Ch,

a„.(z) =- f y&(~)v(~)G, (~, ~ )

(13a)

x U(r ') P,.(1") &dt '

Equation (12) has no solution unless

oct[+,, -D,, (Z)] =0,

(13b)

(14)

—~ C;*—Do(E) C) ——1 . (15)

which determines the energy E to second-order ac-
curacy in the wave-function error. No first-order
error occurs because our matrices N and D each
contain an additional factor of U(x) which renders
the energy variational. The variational aspect of
the energy is discussed in the Kohn-Rostoker"
paper on a method for computing Bloch waves us-
ing a Green's-function technique but the underlying
mathematics is so similar to what we have here
that the Kohn-Rostoker djscussion applies without
change.

Normalization of the coefficients Cj is fixed by
inserting (9) into (V) with the result

g„(n,r) = ga.(n, a)e.(r) . (2o)

The localized orbitals 4„(r)have to be complete
enough so that (20) is valid for each of the g„(k,r)
which are needed for construction of the Green's
function in the form (4). Periodicity imposes a
far more severe requirement than is imposed on
the LCAO set used in (8) or (9), because the
LCAO's have the additional flexibility of being al-

Note that no use has been made of orbital ortho-
gonality, and that choice of either orthogonalized
or nonorthogonal orbitals is possible. Our prefer-
ence, to use the simple localized LCAO's directly,
is based on the observation that the longer-ranged
oscillatory tails which orbitals acquire in the or-
thogonalization process will cause orbitals from
more-distant locations to extend into the region of
finite U(x). They will therefore have to be included
in the set of orbitals being used in (9), increasing
the size of the computation, with no compensating
gain in accuracy, computational simplicity, under-
standing, or ease of interpretation. The choice of
orbitals whose centers move with the position of
the atoms themselves is motivated by the same
consideration; keeping the size of the LCAO set
as small as possible consistent with describing the
particular defect under study.

We now consider the second step of the calcula-
tion, evaluation of g(r) itself once U(r)((r) has been
determined. For this, we must evaluate the inte-
grals which appear in Eq. '(5). The procedure we

have found most convenient here is closely related
to the method by which the matrix elements D,&(E)
are evaluated, as we now explain.

Let us introduce a second set of localized orbi-
tals, infinite, periodic (again, not necessarily
orthogonal) but complete enough in every unit cell
to provide an approximation to the Bloch waves in
the form
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lowed to move with the atom or to change shape if
the atom is a chemically different species. The
two sets of orbitals, P;(r), the LCAO or "inner"
set, and 4 (r), the periodic or "outer" set, are
not related to each other in any way.

Coefficients B (n, k) for the expansion (20) are
fixed by carrying out a least-squares fit subject to
the constraint of strict normalization. If this
least-squares fit is carried out in Fourier space,
then the number of linear simultaneous algebraic
equations tobe solved at each value of n and k is
equal to the number of localized orbitals 4„(r)per
unit cell, and the effort involved in this step is
about equal to that of a band-structure calculation.
The functions g„(k,r) to which the fitting is done
and the associated energies Z„(k)were calculated
previously using a self-consistent pseudopotential
Hamiltonian and a plane wave basis for represent-
iqg the wave function, a feature which simplifies
the subsequent determination of the B„(n,k) coef-
ficients.

Using this local representation of the g„(k,r), the
Green's function (4) takes the form

G (r, r')= p 4 (r)G„„,(E)4*(r'), (21)

where the matrix „,„B„(n,k)B+,(n, k)
(22)

is evaluated via a Gilat-Raubenheimer-Kam" tech-
nique for the imaginary. part and a Kramers-
Kronig transform for the real part. Although cost-
ly, calculation of this matrix is a one-time ex-
pense, and it can be stored and used for a variety
of defect calculations.

Note that the G„„,(E) are not matrix elements of
the Green's function in any particular set of states.
They are expansion coefficients by which the
Green's function can be conveniently expressed in
a position representation. If the set I (r) had
been an orthonormal set of functions, then the ma-
trix elements and the expansion coefficients would
be identical numerically, but again there is no ap-
parent gain to be obtained by orthogonalizingthe
set of outer orbitals while there is a problem if
long-range tails introduce orbitals whose centers
lie beyond the region of interest.

Having developed the Green's function and wave
function in terms of the outer set of o'rbitals and
having found U(r)g(r) in terms of the inner set of
orbitals, we have the scattering state in (5b) ex-
pressed in the form

g(r) = g C (r)B (n„k,)+ p 4 (r)G „(E)U„,C, ,
'

m mnj

where
/

U„,=- C„*xUx
&

x Ch (24)

is the matrix element of the impurity potential
taken between an orbital in the outer set and one in
the inner set. The evaluation of the bound state in
(5a) differs only in that the energy Z in (23) is to
be set equal to that of the bound state as deter-
mined by (14), and the first term —the incoming
state in (23)—is absent.

These matrix elements of impurity potential be-
tween outer- and inner-set orbitals appear again
in the evaluation of D;&(E)-Eq. (13b). After using
(21) and (24), this matrix takes the form

B„(E)=g U+,G.„(E)U„,. (25)

Note that matrix elements between two inner-set
orbitals alone have already appeared, in Eq. (13a),
as the matrix N&&. Thus the equation (14) deter-
mining the bound-state energy could have been
written

det U;) —Q U*;G „(E)U„)=0, (26a)

where the indices ij refer to the inner set orbitals,
few in number, and the indices mm refer to the
outer set orbitals, many in number.

There is, of course, a relationship between Eq.
(26a) and the equation for the bound state which
emerges when the Green's-function equation (5a)
is simply expressed in an orthonormal basis, "
namely,

det 5„,—Q G'„(E)U„,= 0 . (26b)

However, these equations are certainly not iden-
tical in terms of the size of the determinants which
must be considered to achieve a given level of pre-
cision in determining F. . We suspect strongly that
the variational nature of Z determined using (26a)
favors this form over (26b) for a given size deter-
minant but this matter has not been studied in de-
tail.

B. Evaluation of the charge density

The state g(r) given in (23) is one which corre-
sponds to and is labeled by a particular incoming
8 tate so Qp We also label the coeff icients C& by
the incoming state n„jg,. I.et us also introduce a
matrix which will appear frequently below, namely,

u.,(Z)=-g G.„(Z)U„,. (2'I )

Z =E„(k,)+i0', (23)
Then the state in (23) is
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8(nk„,r)= g 8 (r)(n„(n„k,)

r P kl , ( „n) C( n„,k)) . (28)

The charge density is obtained by summing over
all such scattering states (n„k,) whose energies

lie below the Fermi energy g~:

p..., (r) -=Q f 8'k)r(n. k,r')I'e(n —n.„(k,))
ufo Bz

= P 4.(r)p...C.*,(r),
where

(29)

p„,:—Qf 8' en.( n—R„(k,)) k„(n„k,)r P 8)( )rC(n k)„)

(x p. ,(n„k,)+ u. ... ,(~)C, (n„k,), ~ -=Z„,(k, )+ iO' . (30)

The coefficients C,. may be evaluated from (18) and

(19), making use of the localized representation
(20) and the definition of the matrix elements (24)
between the inner and outer sets of orbitals:

C&(n„ko)= g M, ('(E„(k,))U„*&B„(n„ko), (31)
&n

p"..', (Z) = p-u. ,(Z + io')M, ,'(E)
cjn

i 'j'n'

x U +;ImG „„(Z+ i0+ )U„,;,

xM,-,', ,(Z)*5*,, (E+ iO') . (33e)

where

M, ,(Z) =N, , D-,, (z+-iO') .
We insert (31) into (30) and before integrating, in-
sert a

dz 5(Z -Z„(k,))= 1

no

d' k, 5(E-Z„,(k,))B.(n„k,)B+(n„k,)

=-m 'ImG „(E+i0'),

into the integrand. The only terms in the integrand
which depend on (n, k, }, as opposed to being func-

tions of Z„(k,), are the B (n„k,) terms. The n,
sum and the Po integration can be performed first
before the E integration, using

The important points here are that the sum over
all incoming states has been reduced to a one-di-
mensional integral over energy, and that any res-
onant behavior in the integrand, i.e., sharp peaks,
is contributed by the term M '(E). The integral
is evaluated numerically on a moderately fine
mesh. If there is a resonance or other near-sing-
ular behavior of M '(E) within a particular mesh
interval, then energy-dependent numerators and
denominators are expanded as power series in E
and the integral is evaluated analytically over that
interval.

We can indicate a heuristic derivation of (33)
which may be useful in suggesting the relationship
between this form for the density and that used in
Ref. 14: The Dyson equation relating the unper-
turbed and perturbed Green's functions

G =Gp+GoUG,

a result which follows from (22). This procedure
lets (30) be expressed as

can be rewritten

G -G() =G()U(U —UG()U) 'UG() . (34)

p(o) E +p(1)

with

+p(.') (E)+p"..' (Z)],

p', (E) = ImG~ .(E+iO'—),
p"'.(E) = g 5,.(E+ i0')

ign

(33a)

(33b)

G —G() ——5(E)[N -D(E)] 'l)(E)+ .
The change in density is-given by

(35a)

Ep
&p(r) = —— dE Im[G~(r, r) -Gs(r, r)] . (35b)

I

If we identify G,U with S,UQoU with D, and U with
N, as is suggestedbyE(Is. (2V), (13b), and (13a),
then this relationship takes the form

x M;. ,', , (E)*g)*,, (E + iO'), (33d)

xM, ('(E)U8', ImG„(E+.i0'), (33c)

p(2&, (E)-=P ImG „,(E+i0')U„...
Expressing G and G, in terms of outer-set orbi-
tals, N-D(E) in terms of inner-set (LCAO) orbi-
tals, and u(E} as a matrix between the two sets
allows the terms in (35b) to be put into correspond-
ence with those in (33).
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C. Evaluation of the change in density of states

Callaway' has shown that the change in density of
states caused by a localized defect is given by

E 1 dy(E)
m. dE (38)

where P(E) is the scattering phase shift which is
obtained from the determinant of 1 -G,(E + iO')U by
using the definition

«till -G.(E+f0')Ull =R(Z)c'"",
withR and p real

We noted in Secs. IIA and IIB that the operator
1 Go(E)U in th-e standard formal theory' and our
matrix N D(E), the mat-rix of U —UG, (E)U with
respect to the LCAO states, play similar roles in
the two formulations. Bound-state energies are de-
termined by the vanishing of their determinants;
resonant behavior is determined by the sharp peak in
their inverses. By analogy, we expect that N-D(E)
contains all information required to extract bn(E).
A suggestive, but far from rigorous a.rgument can
be given by consi. dering the formal operator rela-
tionship

Det jjU —UG, (E + ~0')U jj
= det jlU lldet Ill -GoU II

I

Evaluating the determinants in our LCAO basis

The change in density used in Ref. 14 was ob-
tained by rewriting the Dyson relationship as

G -G, =-[1—(1-G,U) ']G, ,

and using a complete set of localized states to
evaluate all the operators involved. Quantitative
comparison between the two approaches reduces
to asking whether the smaller size of the matrix
[N -D(E)] ' evaluated in the LCAO basis has cost
any computational loss of accuracy relative to use
of the larger size matrix [1-G,(Z)U] ' in the lo-
calized basis. We believe that the greater flexi-
bility of the LCAO basis permits equal accuracy
with fewer. orbitals but again, a detailed. compari-
son has not been carried out and the question is
still an open one.

Expression (33) is only the scattering state con-
tribution to the charge density. Any charge as-
sociated with bound states whose energy lies be-
low the Fermi energy must also be included. The
total density matrix p can be shown to satisfy
the Kohn-Majumdar' theorem: it is continuous as
a function of impurity potential even if a bound
state is split off from, or returns to, a band edge
as the potential varies. This is essential for a
self-consistent treatment.

D. Use of symmetry

Even though the introduction of a point defect
destroys translational symmetry, certain point-
group operations will in general still leave the
crystal invariant. The largest point group which
will do so depends on the type of atomic recon-
struction or Jahn- Teller-type deformation around
the defect. It is computationally very convenient
to take advantage of these remaining symmetry
properties and to use symmetrized basis functions
in the various expansion sets. To create sym-
metrized orbitals the projection operator tech-
nique" may be used. A symmetrized orbital is
then symbolically given by

Q„"'(r)= gD„,(R)o„Q;(r),
R

(38)

where the sum runs over all operations g of the
defect point group. The symmetrized orbital is
labeled by two symmetry indices, the irreducible
representation 1 and the partner index p, (in case
of multidimensional representations) and by a
repetition index a. D represents the unitary rep-
resentation matrices. Due to the systematic na-
ture of Eq. (38) the construction of symmetrized
local orbitals can most conveniently be done on a
computer in analogy to the construction of sym-
metr ized plane waves. "

The merits of using symmetrized orbitals which
bring the matrices in Eqs. (13), (22), and (30) into
block-diagonal form are twofold: first, the com-
putation time and storage to solve the lineh. r sys-
tems of Eqs. (12) and (18) is drastically reduced
and, second, the solutions can be identified direct-
ly in terms of their symmetry. In particular, each
representation gives rise to its own contribution
to the scattering phase shift and thus, its own

change in the density of states. Callaway' gives a
full discussion of this matter.

III. DEFECT POTENTIAL

The defect potential U(r) is the difference be-
tween the total potentials for the imperfect crys-
tal and the perfect crystal. The physical approxi-
mation we use is a one-electron potential, con-
sisting of a local pseudopotential to model the in-

gives

detjl&~g -D;,(E+@')
ll
=R(E)c'"',

where R(E) = detjjN„jjR(E) is real because the im-
purity potential U(r), being real, causes detjjN;, jj

to be real.
We calculate the phase shift p(E) by using Eq.

(3V) and we use (36) to infer the change in the den-
sity of states.
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teraction between the ionic cores and the valence
electrons we are interested in, a Coulomb poten-
tial to describe how the valence electrons influ-
ence each other, and a local function of the val-
ence-electron density to account for the exchange
and correlation effects which are not contained in
the Coulomb potential as calculated from the
charge density.

Evaluation of all the terms for both perturbed
and unperturbed systems and subtracting one from
the other offers no special difficulty or novelty,
except for construction of the Coulomb potential.
We use the same ionic pseudopotential as reported
in Ref. 10 and the same form of local exchange and
correlation potential, X with + = 0.79, so as to aT-
low us to study how the results obtained by our new
technique compare to those obtained by state-of-
the-art self-consistent pseudopotential band-struc-
ture calculations when both are applied to exactly
the same physical and mathematical problem.

For constructing the Coulomb potential, we have
found it convenient to use fast Fourier transforms
(FFT), an exceedingly efficient computer algorithm
for computing discrete Fourier transforms of a
variable given on an evenly spaced mesh of points.
We transform 5p(r) =-p(x) -p, (x) into Fourier space,
solve Poisson's equation there, and then transform
the resulting potential back into position space.
Use of discrete Fourier transforms, however, im-
plies a periodicity in real space which thp true
charge and potential do not have. To avoid dif-
ficulty from this source, we find it useful to apply
the FFT technique only to those parts of the charge
distribution which give rise to relatively short-
range potentials. In this way, the potential which
arises from the charge distribution (spuriously)
replicated into adjacent periodic cells does not ex-
tend into the cell in which the potential is desired.
We accomplish this by first approximating the act-
ual charge distribution by a distribution which is
(a) simple enough analytically that the resulting
potential can be evaluated analytically and exactly
and (b) has exactly the same low-order moments

(charge, dipole, and quadrupole) as does the act-
ual distribution. The FFT technique is then ap-
plied. to the difference between the actual charge
distribution and the approximating charge distri-
bution. The potential which results from use of
the FFT is both weak and short ranged, and, when
added to the analytically evaluated part of the po-
tential, corrects for the small difference between
the true Coulomb potential and the analytically
calculated one.

All three components of the defect-potential
pseudopotential, Coulomb, and exchange corre-
lation are obtained in numerical form and the
needed matrix elements of U between symmet-

rized inner- and outer-set orbitals are accumu-
lated numer ically.

The loop of self-consistency is entered by taking
a,n ad hoc defect potential, calculating a complete
set of matrix elements, and evaluating a charge
density as described in the previous subsections.
A new defect potential is calculated using the
charge density. A portion of the new potential is
blended with the old and the process is repeated
until input potentials and output potentials agree
to within some specified limit at all points of
space.

IV. DETAILS OF THE VACANCY CALCULATION

Having described the formalism and method by
which the calculations were performed, we now

give specific details concerning the vacancy cal-
culation being reported here.

A. Choice of orbitals

Gaussian orbitals, of the for~

(r) =l', (n)r'e- "

were used in both the LCAO set g, and in the
outer set p„.Kane" has investigated the band
structure of Si using orbitals of this form and has
provided data on the number of orbitals and their
decay constants versus the accuracy with which
the band structure from a known Hamiltonian can
be reproduced using them.

1. LCAO orbitals

A portion of the Si crystal structure in the neigh-
borhood of the vacancy is given in Fig. 1, and in

VACANCY

NEAREST NEIQHBPR

2ND NEAREST NEIGHBPR

FIG. 1. Perspective view of the diamond structure
with a single vacancy in "ideal" environment.
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a *0.15

o =0.25

space:

V;.„(q)= -(a, /q')(4we'Z/0)

x [cos(a,q) +a, ]exp(a4q~), (40)
gth2nd 3rd

I

4
I

2~ 5r
r(A) rr ~~

r ~+ =0.15
a "- 0.25

FIG. 2. Radial variation of the defect potential (full
line) used in our calculations. Also indicated is the.
radial extent of Gaussian orbitals with various decay
constants as used in the calculations.

Fig. 2 w'e show the spherical average of the vacan-
cy potential. Also shown in Fig. 2 are the dis-
tances of the first- and second-nearest neighbors,
and around each of these, the spread of the Gaus-
sian wave functions of various decay constants.
We have taken 11 orbital, s for each atom. s, p,
and d with n =0.2 a.u. , and two additional s func-
tions, with z = 0.15 and cy = 0.25 a.u. . No LCAO's
are needed at the vacancy site because there is
no atom there, none are needed at second-nearest-
neighbor sites because there is insignificant over-
lap with the vacancy potential there and so we are
left with orbitals only on the four nearest neigh-
bors. There are 44 orbitals in all and the size of
the largest matrix [N -D(Z) j to be inverted, that
for representation T, (see Sec. 1V A 2) is only
8x8.

2. Outer-set orbitals

For the present case we used the same 11 orbi-
tals per atom for the outer-set orbitals. Because
the outer-set orbitals are used to construct states
which extend beyond the impurity potential, we
have studied the effect of using orbitals out as far
as fourth-nearest neighbors from the vacancy.
The results presented here have been calculated
using orbitals out as far as second-nearest neigh-
bors, 1V sites in all. This leads to a total of 187
outer orbitals. The size of the largest density
matrix p „,that for representation T„is 29x29.

B. Evaluation of unperturbed wave functions

The host-crystal eigenfunctions g„(k,r) are ob-
tained from self-consistent pseudopotential calcu-
lations. The calculations are based on an ionic-
silicon pseudopotential as used in Ref. 10, which
has the following analytical form in momentum

with the parameters a, =1.5432, a, =O.V9065, a,
= -0.36201, a, = -0.01807 (a.u.). The wave func-
tions are expanded in plane waves, i.e.,

q„(k,r) = QG„(k,G)e'
C /

(41)

with the sum running over reciprocal-lattice vec-
tors G with ~G ~' ~ 6 Ry. We choose this particula. r
representation, since it'yields rather accurate po-
tentials and wave functions for semiconductors.
With the choice of Gaussians and plane waves, all
integrals needed for the evaluation of the B (n, k)
coefficients can be evaluated analytically. Wave
functions were. evaluated on a mesh of 70 points
per 4'8th of BZ, energies on a grid of 203 points per
~~th of BZ.

C. Evaluation of the Green's function

The Green's function G~(r, r') is evaluated in a
spectral representation as given by Eg. (4). For
this purpose the complex function is separated in-
to its real and imaginary parts. The imaginary
part may be written

(43)

Since Gs(r, r') is a function of r and r' the actual
evaluation is not done for G~(r, r') but for the in-
dividual matrix elements G, (Z). of Eg. (22).

First the imaginary part of the integrand of
G „,(Z) is evaluated on the grid of 70 k points in
the irreducible part of the Brillouin*zone of the
host crystal for which the wave functions and the
B (nk) coefficients had been evaluated. The size
of this grid was dictated by the phase fluctuations
in the wave-function product in Eq. (4) at the max-
imum distance r -x' of interest. At the same time,
a reasonable number of valence and conduction
bands have to be included to warrant sufficient con-
vergence of Ge(r, r') for the energy region of in-
terest. The matrix elements M, (R, n) defined by

ImG, (Z) = g d kM .(k, n)6(Z —Z„(k))
BZ

, (44)

ImGs(r, r') =-w g dkp„(k,r')g„(k,r)
n

x &(Z-Z„(k)). (42)

The real part is then obtained by Kramers-Kronig
transformation:



G. A. BARAFF AND M. SCH I, UTER 19

are then fitted, band by band and element by ele-
ment, to periodic Fourier expansions of the form

M (k, n) = P Mqe' (45)

D. Self-consistency

After the one-time evaluation of the Green's-
function matrix [Eg. (23)], charge-density and po-
tential iterations were carried out. Each com-
plete iteration involves evaluating matrix elements
of the defect potential U(r), multiplications to pro-
duce D(E) and f)(&) [Eqs. (25) and(27)], inversion
of N D(E) [Eq.-(31)], multiplication to obtain p~'~,

p '~, and p
' [Eqs. (33c)-(33e)], and construction

of the defect potential. This can typically be done
at a small fraction, one-fifth of the cost of a su-
percell calculation. " A self-consistent solution
was assumed to be reached after input and output
potentials agreed on average to 0.016 eV. The
largest potential fluctuation occurring at the origin
was 0.36 eV.

V. RESULTS FOR THE IDEAL Si VACANCY

As a first structural model we have studied the
neutral Si lattice vacancy in its "ideal" structure.
In this structure, the a,toms surrounding the va-
cancy site remain in their bulk crystalline posi-
tions after the vacancy is created and the structure
retains T„point-group symmetry. A portion of the
Si crystal structure with the vacancy is shown in
Fig. 1. Every Si atom is tetrahedrally coordinated
and the valence electrons form covalent bonds
linking the neighboring atoms. As a result of cre-

where the sum runs over real lattice vectors R~.
There are actually far fewer coefficients Mz than
there are lattice vectors P~ because M is sym-
metric as a function of k under all the point-group
operations and we utilize this symmetry to the ful-
lest extent. Wi.th the aid of this expansion the ma-
trix elements M (k, n) are now easily evaluated
at a larger number of grid points (i.e., 203 points
per,—', th of BZ). The integration in k space in Eq.
(44) is then performed using the Gilat-Kam" meth-
od which requires linear expansions of E„(k)and
M (k, n). This procedure yields highly converged
matrix element ImG, (Z) as a function of energy.
It consists essentially of calculating density of
states functions weighted by some 0-dependent
functions.

In a next step a Kramers-Kronig transformation
of each matrix element yields the real part of the
Green's-functionmatrix elements. We have exper-
imented with up to 20 bands in the Green's func-
tion. The present results were computed using 15
bands, 4 valence and 11 conduction.

TABLE I. Character table of the. point group Tz.

E 8C3 3Cp 6$4 60~ Basis function

Qg) rg
Q2) r2
(E) r3
(rg) r4
(T&) r5

1
1

-1
0
0

1 1
1 -1
2 0

—1 1
—1 -1

1
-1

0
-1

1

d(y' —z, 3x' —r')

p, d(x'y, yz, zx)

ating a vacancy, four bonds are broken. Four val-
ence electrons- which previously participated in the
broken bonds are removed together with the neu-
tralizing Si ' core. The atoms around the neutral
vacancy now experience a different potential and
localized electron states may occur. In fact one
may view the vacancy as a small internal surface
and the four surrounding atoms as surface atoms.
In the simplest conceptual model, one may assume
that only electrons of these four "surface" atoms
are perturbed. This amounts to a total of 4x4 =16
s and p localized electronic states whi. ch might
combine to form bound states or resonances in the
valence electron spectrum. Whether these 16
states are sufficient, or whether more states in-
volving second- and third-nearest-neighbor atoms
are actually needed, is determined self-consistent-
ly by the extent of the defect potential.

The defect point group T„hasfive different rep-
resentations and thus allows for five different sym-
metry types of defect states. The character table
of T& is shown in Table I together with atomic
transformation properties for s, p and d functions
centered at the origin, i.e., at the vacancy site.
In Table II we list the symmetry decomposition of
s-, p-, and d-like basis functions centered at the
vacancy site, and at the first-, second-, and
third-nearest-neighbor shells. One can, e.g., see
that s- and p-like functions centered at the first-
neighbor sites induce (A, ) I

„

I'„I;, and (T, ) I,
representations. Some of the states formed by
linear combination of these functions are bonding
combinations and should be found among the val-
ence bands as resonances or true bound states.
Some of them are antibonding and will be located
higher up in tPe conduction bands.

Another simple conceptual model, but one which
is somewhat easier to reason about, is obtained
by considering bonding orbitals rather than s-, p-,
and d-like atomic functions. In a simple four atom
approximation, the four dangling bonds pointing
towards the vacancy induce the (A, ) I', and the (T,)
I', representations. If one includes the back bonds
(or dehybridization), additional I'3 and I"4 contri-
butions appear and the situation is equivalent to the
16 orbital model mentioned above. Since the dang-
ling bonds, not the back bonds, should be most af-
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Vacancy s I'f
P 15
d I'3+ I'5

First neighbor s rf+ r5
p rf+ r3+ r4+ 2r&
d I f+ 213+ 2I'4+ SI'5

Second neighbor s rf+ r3+ r4+ 2rs
p 2 I"f + I'2+ 313+ 4I'4+ 51 g

d 3rf+ 2r2+ Gr3+ 7r4+ Srs

Third neighbor s rf+ r3+ r4+ 2rs
p 2r f+ I f+ 3I3+4I'4+ 5rs
d 3rf+ 2I2+ 5r3+ 7r4+ Srn

fected by creation of the vacancy, one expects the
most important changes in the density of states to
occur in the A, and T, representations.

In Fig. 3 we display the calculated bulk electron
density of states for silicon and on the same en-
ergy scale, the A, and T, phase shifts induced by
the self-consistent vacancy potential. The phase
shifts have been calculated according to Eq. (37)
and describe the energy distribution of changes
induced in the density of states via Eg. (36). Note
that the integral of Eq. (36)
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FIG. 3. Bulk density of states of Si and the A f and T2
phase shifts induced by a neutral isolated vacancy.

TABLE II. Symmetry decomposition according to the
irreducible representation of Tz of local atomic orbitals
centered at the vacancy site, the first-, second-, and
third-nearest-neighbor shells of the diamond structure.

shows that the number of states gained (or lost) in
the energy intervalE, &E&E, is equal to u ' times
the difference in phase shift at the energy limits of
the interval. Sirice the imaginary part of the
Green's function vanishes in the band gaps, the
phase P(Z) must be a multiple of m for any energy
in the gap and thus the total number of states
gained by an entire band (the integral above with

E, in the gap above the band and E, in the gap be-
low it) must be an integer, positive, negative, or
zero. The same statement applies to states of a
particular symmetry type, ' provided that Q(E) is
calculated using that block of N-D(Z) appropriate
to the particular symmetry, which is how the A,
and T, phase shifts are calculated.

From Fig. 3 it follows that for the A, symmetry,
the neutral ideal vacancy has neither gained nor
lost a state from its valence band. This is in con-
trast to the T, symmetry, for which a net phase
change of n is found for the valence bands, indi-
cating the loss of one threefold-degenerate state.
This state is recovered as a true bound state
about 0.7 eV above the valence-band edge. The
value is somewhat higher than the 0.5 eV extracted
by Louie etal."as the center of gravity of the
"supercell" defect band and it is very close to the
0.8 eV calculated by Bernholc etal." in their self-
consistent scattering-type calculation.

To obtain a neutral vacancy, we have assumed
that each of the threefold-pegenerate T, states in
the gap is filled to one-third occupancy, resulting
in a system which is both electrically neutral and
invariant under T„.Such occupancy is unstable
with respect to symmetry-lowering Jahn-Teller
distortions and so direct comparison with experi-
ment is not yet appropriate. However, the position
of the boundstate at 0.V eV is consistent with ex-
perimental observations and their interpretations
according to which there is a symmetry-lowering
Jahn- Teller distortion which lowers the band state
by about 1 eV,"and according to which the bound-
state energy level of the neutral vacancy is found
near the top of the valence band.

The overall shape of the phase shifts displayed
in Fig. 3 is qualitatively similar to the non-self-
consistent tight-binding results of Kauffer etal. '
and in nearly quantitative agreement with the re-
sults of Bernholc et al. '4

As seen by comparison with the density of states,
structure in the phase shifts-is usually correlated
with structure in the density of states. This cor-
relation arises because the imaginary part of a
Green's-function matrix element is the product of
the density of states of the appropriate symmetry
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FIG. 5. Contour plots of charge Quctuations of T2
symmetry induced over the total valence-band region
(1) and for the bound state at 0.7 eV (2). Units as in
Fig. 4.

FIG. 4. Charge-density contour plots displayed in a
(110) plane of atoms containing one vacancy. The total
integrated change in charge density of A& symmetry (1)
is compared to charge-density Quctuations associated
with the A& resonance at-8.4 eV (2) and the A& reson-
ance at —1.1 eV (3). The values are given in units of
electrons per Si bulk unit cell.

(a function with sharp structural features) and a
rather smooth function of energy. This structure
influences the phase of the determinant of N D(E). -
The most striking example of this correlation is a
low-energy A, resonance, which occurs at the
minimum in the density of states of virtually every
calculation of the ideal vacancy in diamond, Si, or
Ge "' ' ' regardless of how much these various
calculations differ among themselves in the place-
ment of the bound state. The bound-state energy
is, like the strength of the resona, nce (the phase
change across the resonance) more sensitive to
the strength of the vacancy potential.

Our A, phase shift here is dominated by two
strong resonances. A sharp A, resonance at -8.4
eV has a strength of 0.4 states and a width of 0.1
eV. A broader A, resonance having a strength of
about 0.6 states and a width of about 0.6 eV is lo-
cated at about -1.1 eV. These two resonances
correspond to A, -symmetry combinations of most-
ly-s-like (-8.4 eV) and mostly-p-like (—1.1 eV)
orbitals centered at the four nearest-neighbor
atoms. This behavior can clearly be seen in real-

-space charge plots as shown in Fig. 4. Here the
total A, -type valence-charge perturbance (1) is
shown together with the -8.4 eV resonance dis-
tribution (2) and the -1.1 eV resonance distribu-
tion (3). The densities are given as contours in a
(110) plane containing parts of a silicon chain and
one vacancy. While the total A, perturbance yields
zero net charge (i.e. , no loss or gain of any states)
and thus contains both negative and positive charge
fluctuations, both resonances (2) and (3) contain
only positi0e charge fluctuations whose integral
over all spice must equal 0.4 and 0.6 states, re-
spectively. These numbers are obtained from the
phase-shift analysis. Direct real-space integra-
tion of the charge fluctuations in Fig. 4 is limited
by the spatial extent of our outer orbitals. For
the two resonances, only 50% of the correct charge
is contained in our "outer-set" basis set. The re-
maining charge extends beyond the range of our
basis, i.e., beyond second-nearest neighbors.
However, since the self-consistent procedure is
solely based on the potential and therefore on the
total charge perturbance, the incomplete descrip-
tion of individual states is without consequence.

Similar arguments apply to the T, symmetry. In
Fig. 5 the integrated valence-band charge pertur-
bance of T, symmetry (1) is compared to the dis-
tribution of the (to'tally) occupied bound state (2).
While phase-shift arguments predict integrated
net charges of -3 and +3 states, real-space inte-
gration yields only 90% and 60% of these values,
respectively. The trend towards higher localiza-
tion for the total charge perturbance can be seen
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by'the opposite sign of long-range charge fluctua-
tions in the scattering-band charge (1) and bound-
state charge (2), respectively. The charge dis-
tributions displayed in Figs. 4 and 5 combined with
the phase-shift curves of Fig. 3 give us an intuitive '

picture of the main changes in the electronic struc-
ture of Si induced by a netural vacancy. While the
simple dangling-hybrid argument, given before
would predict the occurrence of one A, and one T,
feature, dehybridization effects (or equivalently
the involvement of back bonds) modifies that pic-
ture slightly. There is a T, and an A., combination
of mostly-p-like states in the vicinity of the gap
(i.e. , at 0.'f and -1.1 eV), the T, state lying above
the A, state because of its larger kinetic energy,
and there is an other A, combination of s-like
states at -8.4 eV. The corresponding 7, combina-
tion of s-like states does not give rise to a single
sharp resonance.

No significant phase-shift structures appear for
the representations I', and F4 which involve mainly
states at larger distance from the vacancy and be-
yond the effective range of the potential. The in-
duced small charge fluctuations, however, are in-
cluded inthe self-consistent procedure; their real-
spaee distributions are shown in Fig. 6. No I', -
type charge perturbance exists for the present cal-
culations which, because of the short range of the
defect potential, involve s-, p-, and d-type "inner-
set" I CAO's at only the four nearest-neighbor
atoms (see Table H).

If the calculated charge perturbances of the var-
ious representations are added to produce a total
charge distrubance at the vacancy, a rather short-

range charge density is obtained (see Fig. 7, panel
3), which essentially is confined to a cavity ter-
minated by the nearest-neighbor atoms. This is in
contrast, as we have seen above, to the behavior
of individual states which can be quite extended.
This behavior of fast "healing" of a perturbance
has also been found for semiconductor surface
systems" and is one of the fundamental concepts

, underlying the present formalism. The same range
of charge disturbance, of the order of a bond
length, is also found in calculations of the spatially
dependent static dielectric function using various
simple models of the valence charge of a semi-
conductor. "

Also shown in Fig. 7 are contour plots of the to-
tal unperturbed silicon charge (1) and the total
charge in the presence of a vacancy (2). As for
the charge perturbances, shown before, the dis-
plays have been prepared by expanding the Bloch
waves in an infinite set of orbitals C (r) and re-
taining only those orbitals ("outer set") which in-
fluence the density in the neighborhood of the de-

FIG. 6. Contour plots of charge fluctuation of 13 (top)
and I'4 (bottom) symmetry integrated over all valence
bands. Units as in Fig. 4.

FIG. 7. Contour plots of the unperturbed (1), perturbed
(2) and total change (3) of charge densities induced by a
silicon vacancy. Units as in Fig. 4.
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GREEN'S FUNCTION RESULTS SUPER CELL RESULTS

TOTAL
VALENCE CHARGE

A) RESONANCE

-8.4 eV

FIG. 8. Comparison of
charge densities calcul-
ated in the present work
with some "supercell"
results of Ref. 10. The
total perturbed charge
density (top), the lower
(- 8.4 eV) A& resonance
(middle) and the T2 bound
state (bottom) are shown.
Units as in Fig. 4.

Tp BOUND STATE

0.7 ev

feet. No information is lost in this way but the
display lacks the translational periodicity one
would expect to see.

The total valence charge in the presence of the
vacancy (Fig. 7, panel 2) clearly shows the disap-
pearance of bonding charge with the removal of
an atom. This situation is very reminiscent of that
of the (111)surface" which also showed a
"smeared out" and rounded charge distribution
which decays rapidly into "vacuum. " The charge
densities calculated here agree closely with those
calculated in Ref. 10 using a supercell-band-
structure technique (see Fig. 8). It is clear to us
that the supercells chosen in that work were large
enough to isolate the periodic defect potentials but
not large enough to r'emove the overlap of indi-
vidual bound states and scattering resonances,
which can be more extended than the potential.

In Fig. 9 we show the spherical average of var-
ious components of the calculated defect potential.
While the present method does not use any spheri-
cal approximation to the potential, angular aniso-
tropy is small (-10%) and the spherical average
does contain all the physically significant features.
The removal of one (pseudo-) Si ' ion is described
by the spherically symmetric potential -V;.„ac-
cording to Eq. (40). The self-consistent arrange-
ment of four missing electrons yields a Hartree
potential V„which compensates the long-range
Coulomb tail of -V;,„.A repulsive effective ex-
change-correlation potential V„,results as the dif-
ference between exchange-correlation potentials
with and without vacancy. The total defect per-
turbation potential V&,t is of very short range-as
can be seen from Fig. 9. Due to the dielectric
screening of the silicon host crystal p„,is of

shorter range than the corresponding (negative)
silicon-atom pseudopotential.

Also indicated in Fig. 9 is the total defect poten-
tial of the "supercell" calculation of Ref. 10, where
the potential was evaluated using a relatively low
cutoff (2.8 a.u. ) of Foui'ier components. This in-
troduced spurious oscillations into the "supercell"
ionic potential. Aside from the oscillatory differ-
ences due to this low cutoff, the two calculated de-
fect potentials agree closely.

I

Ro

-10

-50

-60

FIG. 9. Spherical average of components of the self-
consistent vacancy potential and the total potential of
the "supercell" calculation (Ref. 10, dashed line). An-
gular anisotropy of the potentials is generally smaller
than +10%.
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VI. CONCLUSION

In this paper, we have tried to do three things.
First, we have described a new method for per-
forming quantum-mechanical calculations of the
self-consistent potential, charge density, elec-
tronic wave functions, and energies associated
with an isolated point defect. Second„we have
tried to indicate how it is related to and differs
from the work of Bernholc, Lipari, and Pantel-
ides" which was being pursued independently at
the same time as our method was being developed.
Third, we have illustrated our method by applying
it to a well-studied problem, the ideal netural va-
cancy in silicon. This application shows that this
Green's-function technique yields self -consistent
densities and potentials which agree with those
calculated self-consistently via a bulk-band-struc-
ture calculation of a periodic vacancy array. Its

real strength, however, is that it produces bound-
state energies, resonance energies, and widths
that are more reliable than, or inaccessible to,
the periodic-array technique. and at less cost. The
type of information and the degree of accuracy
made available by this new technique will be
needed to study the effects of lattice distortions
and their coupling to the electronic system.
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