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Theory of alloys. I. Embedded-cluster calculations of phonon spectra
for a one-dimensional binary alloy

t

Charles %. Myles~ and John D. Dow
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By treating a small cluster embedded in an effective medium (described here by the coherent-potential
approximation) we can reproduce the "exact" numerical frequency-distribution spectra of the vibrating-linear-
,chain alloy A, B&, with mass disorder. The theory is especially applicable to concentrations 0.05 c + 0.95
throughout the alloy regime, where other theories are quantitatively unreliable. Unlike purely numerical
calculations, the pr'esent method can be practically applied to real three-dimensional alloys. The theory is
valid for all concentrations c and all mass ratios m~/m„; it satisfies the oscillator strength sum rule, and it
reduces to the exactly soluble single-defect theory in the limits c ~0 and c ~ l. Its greatest virtue is that it
is computationally efficient, because it does not require large clusters.

I. INTRODUCTION

As a first step toward predicting the vibrational
properties and luminescence sidebands' of III-V
semiconducting nitrogen-doped ternary alloys
such as GaAsi, P, and Al, Ga, ,As, we consider
here phonons in a mass-disordered random one-
dimensioqal binary alloy A, B, , of atoms coupled
harmonically by nearest-neighbor forces and ex-
ecuting longitudinal vibrations. In this paper we
present a conceptually simple, computationally-
efficient scheme for calculating the vibrational
spectra of this one-dimensional binary alloy mod-
el. The scheme, which we call the embedded-
cluster method, is manifestly applicable to ternary
alloys' and to three-dimensional systems as well. '
We study this linear-chain model because it has
been solved exactly (numerically) by Dean" and
by Payton and Visseher' for chains of 8000 to
100000 atoms; these numerical solutions therefore
afford a convenient touchstone of comparison for
the present less cumbersome but more approxi-
mate scheme for computing binary-alloy spectra.
This one-dimensional model has proven difficult
to simulate, and the prevailing opinion in the liter-
ature is that any method of approximation capable
of rendering an accurate solution in one dimension
should produce accurate predictions for three-
dimensional solids as mell. '

Analytic or perturbative statistical mechanical
theories of one-dimensional binary alloy spectra
are doomed to failure because a correct theory is
necessarily nonanalytic in the concentraction c,
the mass ratio m„/m~, and the frequency &u.

'
This nonanalyticity manifests itself physically by
the sudden appearance of distinct local mode fre-
quencies above the band when the concentration of
light-mass defects is altered from zero to any in-
finitesimal value.

Direct numerical solutions of the equations of
motion for 8000 to 100000-atom linear binary al-
loys have been presented by Dean" and by Payton
and Visscher. These solutions, while providing
the "exact" alloy spectra, are numerically cum-
bersome and would become impractical if applied
to comparably-sized clusters in real three dimen-
sional alloys.

%hat is needed is a hybrid theory which takes
advantage of the assets of both the numerical and
the statistical-analytical approaches; it must nu-
merically treat finite clusters of atoms in order to
properly determine the short-ranged correlations
in atomic motions; and it must be partially an
analytic effective-medium theory in order to cir-
cumvent the computational diff iculties associated
with the enormous clusters required by the purely
numerical solutions. Some such methods, called
multisite coherent potential approximations, have
been proposed, ' "but to date have been numerical-
ly cumbersome because of their requirement that
a spatially varying self-energy be determined self-
consistently for a cluster of atoms. In this paper
we present an alternative to these multisite co-
herent potential approximations, which though
lacking self-consistency and therefore less rigor-
ous theoretically, nevertheless can greatly reduce
the computational labor at little loss of accuracy.
The basic idea of the method is that a small cluster
of atoms embedded in an effective medium should
produce all the correct vibrational spectra of the
alloy, provided the effective medium properly sim-
ulates the reflection and transmission coefficients
for phonons leaving the cluster.

The remainder of the paper is organized as fol-
lows: Section II defines notation. The difficult bi-
nary alloy problem, namely c =0.5, is discussed
in Sec. III, where various theoretical schemes are
reviewed. The requirements which must be satis-

19 1979 The American Physical Society



CHARLES %. MYLES AND .JOHN D. DO% 19

fied by a successful theory are summarized in
Sec. IV, and the present theory is presented in
Sec. V. Section VI contains a comparison of the
present theory with "exact" numerical calculations,
and the results are discussed in Sec. VII. The
Appendix contains a discussion of the average-T-
matrix approximation and why it yields an unsat-
isfactory effective medium for an embedded clus-
ter theory.

I.40-

I.05-

"3
~ 0.70

0.35

I I I i I I y I I I l I I I

m—=2
mA

II. NOTATION: THE ONE-DIMENSIONAL

VIBRATING LATTICE

A, Equations of motion for the alloy

The equations of motion for the linear chain are
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m„u„=-p(-u„„-u„,+2u„) .
This equation can also be written in matrix form
with u„(t) = (n ~u&e

' '

-Mu&'iu& = —C iu& .
Here the matrices are (njM jn'&=m„5„„, and

&u)C (n &=-y(5„, „„,+5„,„,-25„, „) .
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The lattice constant is a and the longitudinal dis-
placement of the atorh at na is u„. The nearest-
neighbor forces are taken to be identical (with force
constants P), periodic boundary conditions are as-
surned (u„,„=u„), and the alloy disorder is limited
to the masses m„which may be either nz„or nz~
in the alloy A.,B, , Here we employ the conven-
tion that m„ is the lighter mass, and define the
frequencies
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B. Solutions for an ordered monatomic lattice
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If the two masses are equal, m~ =m„=m, then
the "alloy" is ordered, and the phonon dispersion
relation becomes that for the perfect crystal

~'(C) = ~.l»n(eu/2) I,
where
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and the wave vectors are q = vw/Na with v = 0,
f1

p
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The Green's function is defined as

G(~') =(M&' —C+i0) ' (4)

(5a)(n n+'JG'(&u') ~n'& = (exp' [n (y )/2 i@sing,

where vze have y = 2 arcsin(&u/ur ), with 0 & y & w.

where iO is a positive imaginary infinitesimal. For
the perfect monatomic linear chain, the in-band
Green's function is,"for ~ ~ &,

FIG. 1. Vibrational density of states (a) for the per-
fect linear chain, shown for two different masses with
mass ratio m~/m~ =2; (b) for the one dimensional alloy
A, B& ~ in the virtual crystal approximation and in the
coherent-potentiaL approximation (CPA), shown for
mass ratio m~/m~ =2 and for concentration c =0.5;
(c) for the aQoyA, B&,, the histogram is the exact
vibrational density of states for the disordered Linear
chainA~B& ~ obtained by Payton and Visscher (Ref. 6)
for 100 000 atoms; the dark curve is the result obtained
by the present embedded cluster method using a cluster
of 10 atoms and a CPA effective medium. These are
shown for mass ratio m~/m z =2 and concentration
c =0.5.
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When we have»(d, this function becomes

(n+n' IG'(aP) In') =(-I)"[f—(f' —1)'/ ] I "I

&& ~44f(f'- »' '] ' (5b)

with f=&o/&u .
The density of states, or spectrum of squared

frequencies, is

III. THE DIFFICULT ALLOY PROBLEM: THE NECESSITY
OF A NEW THEORY

One of the most difficult alloy problems is to
obtain the vibrational density of states in the 50%
concentration limit, c=0.5. As a measure of the
success of a theory, we take its ability to repro-
duce the "exact" numerical density of states for
c=0.5 and mass ratio ms/m„=+„'/+~ =2. The fre-
quency spectrum for this case has been evaluated
employing numerous analytical and numerical
schemes~ ' for the linear chain model, Eq. (1),
thereby permitting comparison of the various
methods.

A. Numerical solution

The "exact" solution of this problem has been
obtained by Payton and Visscher' for a chain of
100000 atoms using a numerical technique origi-
nally developed by Dean." That solution is dis-
played in Fig. 1(c) and is inexact by an amount
comparable to the structure of the boxes in the
figure. For comparison we have also previewed
the results of the present work in Fig. 1(c) to
show that this new but simple scheme does ac-
curately reproduce the "exact" result. The Dean
method obtains the vibrational density of states by
employing the negative eigenvalue theorem" and
by using numerical simplifications which result
from the tridiagonality of 'the dynamical matrix
M '~'4M '~' for the one-dimensional nearest-
neighbor-spring model. The tridiagonality does
not carry over to zeal three-dimensional alloys,
and so the Dean numerical method is, in practice,

D(uP) -=—Z &(&o' —(u'(q)}
N

= (-1/Nv)im Tr[MG(+ )]

where the sum on q runs over the first Brillouin
zone. For the monatomic linear chain, this be-
comes"

D'(aP) = [w(u((u' —(u')'~'] '8((o'„—uP), (7)

where 8 is a unit step function. This result is dis-
played in Fig. 1(a) for two homogeneous chains
whose masses differ by a factor of. 2 =&@„'/&us =m~/
52 g

limited to such small clusters in three dimensions
that its claim to exactness becoines doubtful.

B. Virtual crystal approximation

The vibrational density of states in the difficult
alloy limit, c = 0.5, ms/m„= ar„'/&us = 2, is not sim-
ply. related to the densities of states of the pure
solids A and 3. For example, the simplest esti-
mate of the alloy density of states is given by the
virtual crystal approximation: the density of
states of a crystal with the average mass m*
=cm„+(1 —c) m~. ' The resulting frequency dis-
tribution

I
Fig. 1(b)] completely misrepresents the

"exact" result because this approximation merely
replaces the alloy by a perfect homogeneous crys-
tal with a mass m* on each site. Thus, the virtual
crystal approximation omits the clustering and
heterogeneous local fluctuations of alloy configu-
rations which are responsible for characteristic
peaks in the state density.

C. Statistical theories

1. The coherent potential approximation

In a more rigorous treatment of the alloy prob-
lem, one might seek the best guasinormal modes
of a statistically averaged alloy. Therefore, in-
stead of prescribing an average mass, as in the
virtual crystal approximation, one specifies an
average propagator or Green's function, in what
is termed the cohered&t-potential approximation
(CPA). ' ' This average-medium Green's func-
tion g is fixed by the requirements (i) that the ef-
fective-medium quasiparticles scatter from each
atomic site the minimum amount, that is, the
single-site effective-medium transition matrix,
when averaged over all possible alloy configura-
tions, is zero (it is not practical to require that the
multisite T matrix vanish); and (ii) that its self-
energy Z assume the mathematically simplp form

I:= g In) c(~)(n I

=- g ~„(~}, (8}
n n

thereby giving a single frequency-dependent life-
time and level shift to all the quasinormal modes
of the statistically averaged alloy. Requirement
(ii) gives the simple result for the effective me-
dium Green's function

g (uP) = G'((o' —m~'o(cu) }, . (9)

where here, and throughout the rest of the paper,
we take the reference lattice Green's function
6'(uP} to be the perfect lattice Green's function for
a lattice with all masses equal to m~. (In the CPA,
the choice of reference lattice is irrelevant, be-
cause the self-consistent CPA Green's function is
invariant under a change of reference lattice. '"")
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G=G +G VG, (10)

The exact Green's function for a specific alloy
configuration satisfies the Dyson equation

where the double brackets denote an ensemble
average over all alloy configurations. In the CPA,
the statistically averaged Green's function is as-
sumed to satisfy

where we have g=G +G Zg, (14)
V= C —4, —(M -Mo}uP;

for the mass-disorder model, V is diagonal and is
nonzero only at A-atom sites:

(12a)

which results in the simple expression Eq. (9},
where Z is the (as yet unknown) self-energy. Elim-
inating G from Eqs. (10) and (14), one obtains

with
G=g+g (V-~)G=g+g g (v„—(r„)G. (15)

'g„= 0 PPl g —m„cO (12b)

The effective medium Green's function is defined
as the configuration average of the alloy Green's
function G,

g= «G}),

The single-site effective-medium transition ma-
trix is

T„-=(v„- (r )[1-g (v„-o„)]-'.

In the CPA, the configuration average of g „must
vanish, thus we have

~ )( (

(1-c)(-(r) c[(m~ —m„)(o' —(r]

r)+rr(nllglln) 1 —(nlgtn)I(m —m„)nr' —rr7)'

which results in the equation for (r((d)

c(ma —m ~) (g)

1 —(n (G ((()' —ms'(r((()))~n)[(ms —m„)(() —(r((())]

(1%a)

(17b)

a,5'+a,0'+a, 0 +a, = 0,
where we have

a, = 2X'[1 —e(1 —c)] -1

a, =X'[s'(1 —c') —(4ce +1)]+2ce +1,
a, = ce[2X'(1+ca) —(2+ ca)],

and

a, = c'e'(1 -X') .
The CPA density of states takes the form'

(18a)

(18b)

(18c)

(18d)

(18e)

Dcv„((d') = (1/Nr() lm[Tr((MG—))]
= -(1/)r) 1m[ms(1 —0'}(n~G'((()'(1 —5')}[n)] .

(19)

This result is displayed in Fig. 1(b) for m~/m„
=2 and c =0.5. Clearly, the CPA fails to repro-

When combined with the known expression for G',
Eq. (1Vb) can be solved for the self-consistent
self-energy c((g)). For the one-dimensional linear-
chain problem, using Eq. (5) for G', and defining

(r(&u) =m()(d'tt((v), X=&u/2(vB, and e. =1-m„/m)),
one finds the cubic equation for tr(X),"

duce the "exact" spectrum. (The CPA was not
designed to reproduce the spectrum, but was con-
structed to properly mimic the long-wavelength
properties of the lattice vibrations in the alloy. )

To order c or 1 —c in the concentration, the
CPA reproduces the exact theoretical spectrum.
But if pairs or larger clusters of defects contrib-
ute significantly to the density of states, the CPA
breaks down. For example, for a mass ratio m~/
m„= (v'„/(vg) & 1, C PA predicts a local-mode fre-
quency distribution which broadens from a 5 func-
tion at c -0 into a nearly elliptical spectrum for
any appreciable c. This is illustrated in Fig. 2
for the case m~/m„=100. The exact result agrees
with the CPA 5 function at c -0, but gives rise to
a single-defect spike plus a distribution of paired-
defect sidebands as c increases from zero.

The failure of the CPA is due to the single site
approximation, Eq. (8), for the self-energy. The
CPA, similar to the virtual crystal approximation
and all other single site theories, thus replaces the
alloy by a perfect effective medium with the same
(complex) mass on each site and totally neglects
the local environment effects which are responsible
for the peaked structures in the density of
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FIG. 2. Illustration of the change in the one dimen-
sional coherent-potential approximation isolated loca1-
mode 6 function as the concentration is incre'ased.
Shown for m&/m& = 100 to bring out the local mode be-
havior most clearly.

consistent self-energy Z$, ur). When applied to
the current one dimensional phonon problem, the
cluster CPA theories of Best and Lloyd, "
Tsukad& "Takahashi and Shimizu "and%u" "all
achieve r'esults which are in qualitative agreement
with the exact numerical calculations of Dean" and
Payton and Visscher, ' and which are thus com-
parable with the results obtained by using the
embedded cluster method outlined in Sec. V. How-
ever, because the multisite CPA methods deter-
mine a self-consistent wave-vector-dependent
self-energy Z(k, a&) for the cluster, the cluster
equations must be iterated to a self-consistent so-
lution, not just once (as in the ordinary CPA) but
several times, once for each wave vector in the
Brillouin-zone mesh. Moreover, the multisite
CPA is plagued by nonanalyticities and occasional-
ly-negative state densities'; therefore, the multi-
site CPA methods are judged to be computationally
and aesthetically inferior to the present method.

states. ' ' Although the CPA fails to give the cor-
rect density of states in the local mode region of
of the alloy spectrum, we have found it very use-
ful as an effective medium for use with our embed-
ded cluster method, as discussed in Sec. V. This
is no doubt because the CPA gives the best quasi-
particles and does simulate the average long-wave-
length properties of the random medium reasonably
weH. .

2. The average-t-matrix approximation

The average-t-matrix approximation (ATA), ' like
the CPA, is a single-site approximation. It differs
from the CPA in that the self-energy v is not de-
termined self-consistently, but is evaluated ising
Hayleigh-Schrodinger rather than Brillouin-signer
perturbation theory. Thus (nag In) in Eq. (1&a) is
replaced by(nlG'ln). The ATA is easier to execute
than the CPA, but is of more limited theoretical
validity. Like the CPA, it only reproduces the
c -0 and c -1 limits corxectly, and these limits,
in the general case of a real alloy, are more eas-
ily evaluated using single-defect theory. More-
over, ATA does not meet our needs for an effective
medium for use with our embedded cluster theory,
as discussed in the Appendix, and so will be ig-
nored throughout the remainder of this paper.

IV. REQUIREMENTS ON A SUCCESSFUL APPROXIMATE
THEORY OF ALLOYS

A. Concentration

The concentration scale can be roughly divided
into three regimes (i) c s 0.001 or c ~ 0.999, the
isolated point-defect regime in which interactions
between minority atoms are negligible, (ii) 0.001
~ c&0.05 or 0.95& c&0.999, the pair defect re-
gime in which minority atoms are so few that they
are unlikely to contribute significantly to the spec-
tra except as isolated atoms or as pairs of atoms,
and (iii} 0.05 ' c 6 0.95, the alloy regime (see Fig.
3).

(or I-c)

0.005 0.05 0.5

To be successful, a theory of phonons in alloy
must be able to reproduce the "exact" numerical
one-dimensional phonon densities of states (i) for
the entire range of alloy concentrations c, (ii) for
the entire range of persistence-amalgamation cou-
pling constants [(m~ m„)&o'/-&f&], and (iii} with suf-
ficient computational speed to be practical not only
for one-dimensional systems but for real three di-
mensional alloys as well.

3. Multiple-site coherent-potential approximation

Several generalizations of the CPA have been
proposed which account for the multisite scatter-
ing neglected in the ordinary CPA. ' " In prin-
ciple, these generalizations should produce ac-
curate alloy theories, provided a sufficient number
of sites are included in the determination of a self-

Isolated
defects

Pairs

CPA Embedded cluster

FIG. 3. Schematic diagram of the regions of concen-
tration where various theories are valid and computa-
tionally tractable.
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A theory of alloys is required only for the last,
alloy, regime. Successful theories of isolated and
paired defects are well known' """and one need
only evaluate these theories and average the re-
sults over all possible alloy configurations. These
point- and paired-defect theories are valid for all .

mass ratios.

For example, in the case of a linear chain with a
single isolated impurity, one may solve exactly for
the vibrational density of states. " For the case of
a single light A atom in an otherwise perfect heavy
B host, one obtains a change in the density of states
from its perfect lattice value of the form"

C4

3

&l~

Al ~3
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-O.I—
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-0.4
0,0

0.3

x lO

x l0

I

I.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 IO.O
2/~2

I I I I I

i

2e tu2s e(tu) e(2(us —(u)

, dc m&u [4(us —(1 —e')(u'](4(us —tu')'~'

——,
' b(tu' —4tus) + 5(tu' —4(us(1 —e') '}, (20)

where e =1 -m„/ms. Likewise, for an isolated
heavy-mass defect B in an otherwise perfect linear
chain of lights atoms, the change in the density of
states has the form"

d 2
11111

(1 )
D(tu )

e(~)e(2~„-~)
I1(u [4(u„' —(1 —~ ")tu'](4(u~ —tu')'~'

- 2~(tu' -4tu5

where c'=1 —ms/m„. These point-mass defect-
induced changes in the vibrational densities of
states for light and heavy defects are shown in
Fig. 4 for the mass ratio ms/m„=2.

The effect of a pair of defects on the phonon
spectra of a linear-chain host can likewise be
evaluated, although a closed-form solution does
not exist. By taking an ensemble average over all
possible configurations of pairs, one can adequate-
ly cover the alloy concentration regime cs 0.05 or
c ~ 0.95."

The extension of the point- end pair-defect the-
ories to three dimensions is straightforward; the
additional computational labor is not prohibitive.
Hence, the theory of alloys need only be concerned
seith the regime of concentrations for tchich clus-
ters of three or more minority atoms occupy a
significant fraction of configuration sPace: 0.05
s c& 0.95.

The most widely used theories of alloy spectra,
the virtual crystal approximation, ATA and the
CPA, do not reproduce the pair-defect calcula-
tions" ""for D(tu2) to order c' or (1 —c)' in the
concentration and are drastically in error when
higher-order cluster effects are important. There-
fore, these theories are not generally useful. in the
alloy regime 0.05% cs0.95. (See Fig. 3.) Indeed
the virtual crystal model does not correctly give

0.2

Ok

3
Cl

I

E
O

Al g3

O. l

0.0

-O. I—

—0.2—
—x 10

the single impurity modifications to D(tu') of order
c or j. —c, while the CPA and ATA fail at orders
c' and (1-c)'. Hence, in the alloy regime, only
two types of theory have proved capable predicting
the phonon spectra of one-dimensional binary al-
loys; the multisite CPA theories' ' and the "ex-
act" theories of tens of thousands of atoms' ';
both types of theories become almost forbiddingly
cumbersome in three dimensions.

B. The persistence-amalgamation coupling constant

(m~ - m~ )~ /Q or mass ratio

In the present linear-chain model, the force con-
stant P is the same for any two nearest-neighbors
and tu' is of order P/m where m is the lighter
mass. Hence the persistence-amalgamation cou--
pling constant is effectively the fractional mass
ratio 1 —m„/ms, and we shall discuss the mass
1'atlo ms/mg = co~/Cus.

For nearly equal masses, the phonon spectra of
the perfect A. and B crystals will be similar, and
so the alloy spectra will be "amalgamations" or
hybrids of the 4 and B spectra. ' In this amalga-
mation limit (m„=ms), the virtual crystal approx-
imation forms a satisfactory conceptual framework

-04 I I I I I I I . I I

0.0 I.O 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0 IO.O

4Q /4V
A

FIG. 4. Change in the one dimensional vibrational
density of states for m~/m~=2 induced by (a) the pres-
ence of an isolatedA atom in a pure B host and (b) an
isolated B atom in a pure A host. The 6 functions in
the spectra are represented as boxes whose areas are
1/10 the strength of the 6 functions.
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but a poor starting point for perturbation theory in
powers of the mass difference. ' Such perturbation
theory is an analytic expansion and so cannot con-
verge to the nonanalytic defect perturbed spectrum
with, for example, its singular local modes.

For grossly unequal masses, m„»rn~ or m~
» m„, we have ~(me —m„)uP/p

~

» 1 and a lattice
vibration at, say, an A site is incapable of propa-
gating to a B site because of the poor impedance
mismatch. That is, the force per unit length Q is
insufficiently great to overcome the barrier (m„
—m~)uP. In this regime, the light atoms will tend
to vibrate in the cages provided by the heavy
atoms, and the spectra will tend to divide into two
pieces, each pf which manifests "persistent" char-
acteristics of its parent atom, either A or B." The
low-energy density of states will be dominated by
the heavy-atom frequency distribution, whereas the
high-energy spectra mill exhibit local modes corre-
sponding to "islands" of one, two, or more light
atoms in a heavy-atom sea.

A successful theory of lattice vibrations in alloys
must produce the above amalgamation- and per-
sistence-type spectra for the appropriate mass
ratios.

Of the previously available theories, only the num-
merically cumbersome "exact~ " and multisite
CPA theories' "produce accurate spectra for all
amalgamation-persistence coupling constants (m~
—m„)&o'/P. The CPA itself, although explicitly
constructed to reproduce the zero and infinite cou-
pling-constant limits for all concentrations, "does
not yield accurate spectra for any finite coupling
constant: zero coupling constant is not an alloy;
infinite coupling constant corresponds to light
masses vibrating in massive cages; and the CPA,
which does not yield the spectra of defect pairs,
cannot simulate the exaot theory, which does.

the cluster,

(23)V*(v) —= (M0 —M)aP —(4, —4 +2) —= V Z.
The alloy Green's function G is related to the ef-
fective medium Green's function g by the Dyson
equation

G =g+LV*G, (24)

(26)

where (MG) is the operator for the o,th cluster. "
From «MG)) one calculatesthe cluster density of
states

D(&', N, ) = -(I/N, ~) im(Tr, &&MG))) (27)

and takes this to be an approximation to the alloy
state density D(uP). Here Tr, means a. trace over
cluster sites only.

One can also calculate the configuration averaged
local density of states at the nth atomic site

l„(~';N, ) = -(I/w) im&n ~&&MG)) ~n),

which should be the same at all sites n if the clus-
ter size is sufficiently large; in practice one se-
lects a central site to minimize the boundary ef-
fects. Similarly, a configuration averaged local
A or B atomic density of states can be defined in
terms of the operator S~ „which vanishes unless
site n is occupied by an A. atom

I„"(~',N, ) =-(I/w) Im&n ~&&MGS„„))~n). (29)

which need only be solved for atoms within the
cluster (G =g outside). This gives

G =(1 -gV*)-'g. (25)

In order to obtain the vibrational density of states,
one first calculates the average of MG over all v

configurations of N, -atom cluster,

V. EMBEDDED-CLUSTER THEORY

The present theory treats a reference effective
medium with the Green's function

Likewise, one can calculate the total density of
states of a specific cluster configuration

d(uP; N, ) = -(1/N, w) Im[Tr, (MG)], (30)

g((g) =[M,~' -@,—Z((g)+iO] ',
where MD, 40, and Z arethemass, forceconstant
and self-energy matrices which characterize the
effective medium. Embedded in the effective me-
dium is a cluster of N, atoms, giving the Green's
function for the alloy with this specific configura-
tion of atoms in the cluster:

G((o) =(MuP —4 +f0) ' . (22)

(A general treatment of clusters in effective media
has been given by Gonis and Garland, ' and is sim-
ilar to the present formalism. ) We then define the
scattering potential V*(&u), which vanishes outside

and the local density of states at the nth atomic
site within a given configuration

d„(~',N, ) =-(I/~)lm&~~MG~~).

Hence, in the embedded cluster method, the pro-
cedure for obtaining the vibrational spectrum of the
alloy A, B, , is: (i). select an alloy composition c
as near as possible to the actual composition; this
partially specifies the cluster size, because cN,
must be an integer; (ii) enumerate all possible
configurations of A. and B atoms in a cluster of N,
atoms; (iii) select an effective medium Green's
function [here we use the CPA Green's function,
Eqs. (9)-(17), because it is self-consistent and. in-
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dependent of the initial choice of reference lattice
and because it produces better results than the
principal alternatives: ATA or virtual crystal
(See Appendix)]; (iv) construct the defect ma-
trix V for each cluster (for our case of mass dis-
order only, C =C„V is diagonal); (v) solve the
matrix equation, Eq. (25), for G; (vi) evaluate the
density of states; and (vii) average over all con-
figurations in the cluster.

VI. COMPARISON %PITH "EXACT"NUMERICAL RESULTS

A. Density of states

1. Dependence on c form /m = cu /cu =2B A A B

The concentration dependence of the spectra in
comparison with Dean's 8000-atom numerical cal-
culations, "are displayed in Fig. 5 for a mass ra-
tio of two and for concentrations c =-' —' —' and ~
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Corresponding results for c = —,
' and mass ratio 2

are compared with 100000-atom calculation of
Payton and Visscher' in Fig. 1(c). Our calcula-
tions for c =,'- and 6~ were performed on 12-atom
clusters; those for c=3 and —', were obtained for
nine atom clusters; and, for the c=-,' results, a
ten-atom cluster was used. The calculations pro-
duce all the principle features of the "exact" spec-
tra. The sole unsatisfactory feature is the fact
that the theory produces no states at frequencies
where the CPA has no states; For reference the
CPA results are displayed in Fig. 5(e).

It is roughly as easily computationally to eval-
uate the spectra for c =,'- and a 12-atom cluster as
for c =-,' and a 9-atom cluster. Also the Dean cal-
culations displayed here are for small 8000-atom
chains, and not all of the discrepancy between the
present theory and Dean's results are ascribable
to the present work.

2. Dependence on ~„/~~ = rn~ /yg~ for c = I/2

The frequency spectra change dramatically as
the mass ratio is varied (5:4, 2:2, 10:1), as il-

lustrated in Fig. 6 in comparison with Payton and
Visscher's 8000-atom calculations. Figure 1(c)
gives comparable results for a 2:1 mass ratio in
comparison with a 100000-atom calculation by
Payton and Visscher. Thd CPA results are in-
cluded in Fig. 6(d) for reference. Observe that the
clusters all contain ten atoms, and that the theory
is in excellent agreement with the "exact" results.

3'. Dependence on-c1uster size: c =1/2; m~/m„= ~ ~/w~

Calculations for cluster sizes. of N, =2, 4, 6, 8,
and 10 are given in Fig. 7, and illustrate how the
various peaks originate from. the various-size
clusters; the embedded cluster theory simulates
the "exact" spectrum quite well for N, =6 and mod-
erately well for N, =4.

B. Local densities of states

The local densities of states are as easily com-
puted as the total densities of states. Configura-
tion-averaged local state densities at A and B sites
are displayed in Fig. 8.
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C. Single configurations and nonrandom alloys

The local and global densities of states for any
single configuration within the cluster can be eas-
ily calculated. Figure 9 shows the results for a
typical cluster: three light atoms surrounded by
heavy ones.

Such individual cluster calculations permit one
to identify spectral signatures characteristic of
specific atomic configurations, and therefore
should facilitate analyses of nonrandom alloys. To
illustrate this point, Fig. 10 gives a total and lo-
cal central site random-alloy spectra for the same
case as shown in Figs. 8 and 9, but labels the
peaks associated with one, two, and three light
atoms vibrating within heavy atom cages. If the
alloy were not random and if A atoms tended to
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cluster, then the BAB and BAAB lines would be
weaker. and the BAAAB line would be stronger.
Hence alloy measurements which are sensitive
probes of the state density can be used in conjunc-.
tion with such calculations to determine the exist-
ence and nature of clustering and nonrandom dis-
order.

VII. DISCUSSION

The-present embedded cluster method success-
fully reproduces the "exact" numerical vibrational
densities of states in one dimension for all con-
centrations and all mass ratios (or persistence-
amalgamation coupling constants). It does so with
a small cluster size, and still satisfies the oscil-
lator strength sum rule. The theory produces the
correct spectra in the exactly soluble limits c -0
and c-1. The grea, test a&sets of the theory are
that it converges for small cluster size, that it
can be generalized to apply to ternary' and quater-
nary alloys, that it appears eminently applicable
to calculations of vibrational spectra in real three
dimensional alloys, and that it is particularly
well adapted to the alloy regime 0.05' c ~ 0.95
which is inaccessible to virtually all of the widely-
used theories of alloys.

A feature of the present theory is that it permits
identification of various'peaks in the density of
states with specific alloy configurations. There--
fore, one can imagine employing the theory to
study nonrandom alloys in which atoms of one
species cluster together. For example, if mea-
surements should prove inconsistent with a ran-
dom alloy theory, one could determine the types
of nonrandom alloying consistent with the obser-
vations by using this theory.

The embedded cluster theory, when combined
with pair-defect calculations for low alloy concen-

trations (c 6 0.05), provides the most efficient way
to compute alloy spectra.

A comparison of the numerical efficiency of the
various theoretical schemes illustrates the ad-
vantages of the present method. A numerical cal-
culation such as that of Dean" or Payton and
Visscher' for a three-dimensional cube with as
many, atoms on an edge as contained in their one-
dimensional chains would require manipulation of
matrices of. size (3x10"}x (Sx10") instead of 10'
x10' in one dimension. Even with the unrealistic
simplifying assumption that the disorder is dia-.
gonal (solely mass disorder), the numerical prob-
lem is feasible only for very small atomic clusters
(10x10x 10).

Extensions of the CPA to self-consistent multi-
site approximations offer comparable computa-
tional obstacles' ": for a 10x10x10 atom-cluster
self-consistent solution, one must manipulate
(Sx10'}x(Sx10')matrices which depend on four
variables, wave vector R and frequency +. These
matrix equations must be iterated to convergence
for every k and &o. By contrast, the embedded
cluster theory does not iterate the cluster to self-
consistency and the reference medium self-energy
is independent of K (in one dimension it can be
evaluated easily by solving a cubic equation}. The
resulting calculation is simpler than multisite
CPA by a factor -N', I-10', where I is the number
of iterations- required for self-consistency.

The principal drawbacks of the method are not
serious: (i) the c-0 and c-1 regimes are more
easily treated by performing single- and paired-
defect calculations; (ii) the concentration must be
a rational number, cN, =i tenger; and (iii) the ef-
fective medium Green's function, as presently ob-
tained using the CPA, is not fully satisfactory, it
causes the local-mode bandwidth to be too narrow
[Figs. 1(c),5, 6, ].

Future work should examine the possibility of
obtaining a more easily calculated effective-me-
dium Green's function, which describes more sat-
isfactorily the high-frequency limits of the spectra.
The present work, however, does seem to be lead-
ing us to the point where realistic alloy calcula-
tions will be feasible in three dimensions as well
as in one.

Finally, we note that the methods presented here
can be easily applied to electronic and magnetic
excitations of alloys, as well as to vibrational
spectra.
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APPENDIX: USE OF THE AVERAGE-T-MATRIX EFFECTIVE
MEDIUM WITH THE EMBEDDED-CLUSTER METHOD

The calculations presented in the text were per-
formed using a cluster embedded in the CPA ef-
fective medium. Io general, however, the calcu-
lations outlined in Eqs. (22)-(25) could be per-
formed using any effective medium. One obvious
medium is that given by the average-T-matrix ap-
proximation (ATA). ' The ATA has the potential
advantage that, since it is not a self-consistent ap-
proximation it is easier to compute than the CPA„
this is particularly true for the case of real three
dimensional alloys. We have therefore tested our
method using the ATA effective medium at the
cluster boundary.

Since the ATA is a non-self-consistent theory,
its precise form depends on the choice of refer-
ence lattice. It has been found" that the best ATA
is obtained using the virtual crystal Green's func-
tion

I.40—

I.05—

N
3
o 0.70i-

N'g
3

0.35

0.00
00

I.40—

I.O5—

Al

3
o 0.70:-

CV g3

0.35

I I I

ATA+ Embedded Cluster

c=0.25

Nc=8

I.O 30

I I I

CPA+ Embedded Cluster

c=0.25

me

A

N =8,

{a}

40

C (~)=&&~&&~' e+i0) ',
where we have

(A1)
0.00

00 1.0
wJ & . .. M.

2.0 3.0 4Q

„+(1- ), .
The ATA self-energy then becomes'

Z~ = tl O'~ CO iZ

(A2)

(AS)

I.40—

c=0.25 {c)

where

(m+/m, )(m, —m„)'c(1 —c)~'(nlG" (~') In&

1 -(1 —2c)(ms- m„)(o'(nG "((u') ~n&

(A4)

I.05—

bl
3
~ 0.70-

t4 ~3

0.35

me 3
ma

—CPA

--ATA

By the use of Eqs. (AS) and (A4), one can obtain
the ATA effective medium Green's function,

g "((g)= [((~&&~' 4 —Z„((o)+f0]-'. (A5)

Once g"(u&) is known, one may proceed with the
steps outlined in Eqs. (22)-(27) to obtain the alloy
density of states in the embedded-cluster method.
We have done this for several values of the con-
centration c and for several values of the mass
ratio ms/m„. Typical results are shown in Fig.
11(a) which illustrates the case c =0.25 and ms/m„
=3 with a cluster size jV, =8. Also shown in that
figure are the exact results obtained by Dean" for
an 8000-atom linear chain. As may be seen from
the figure, although some of the peaks in the exact
spectrum are approximately reproduced by this
calculation, a large, almost structureless, bump
is predicted in a region of the spectrum where the
exact calculation shows no peaking.
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FIG. 11. Comparison of ATA, CPA, and Dean's nu-
merical calculations for v=0.25 and m~/m~=3. The
dark lines in (a) and (b) correspond to N~ =8 atom clus-
ters embedded in ATA and CPA effective media, re-
spectively. Dean's calculations are for c=0.26. The
ATA and CPA without clusters are shown in (c).

By contrast, Fig. 11(b) illustrates the results
obtained for this case using the embedded cluster
method with N, .=8 and a CPA effective medium.
Clearly, the cluster embedded in the CPA medium
gives the better results, yielding a spectrum which
reproduces all of the major features of the exact

.spectrum.



THEORY OF ALLOYS. I. EMBEDDED-CLUSTER. . .

It is thus clear that the embedded cluster meth-
od, when used with an ATA effective medium,
fails to adequately reproduce the exact results for
the same cluster size for which the use of a CPA
medium yields excellent results. Physically, this
means that the CPA effective medium more ac-
curately mimics the vibrational response of the
true alloy at the cluster surface than does the ATA.

This is an illustration of the fact that the CPA is
the best single-site effective medium possible.
Some of the difficulties with the ATA medium
could conceivably by partially diminished by using
very much larger cluster sizes, but then the vir-
tues of a simpler effective medium wouM be offset
by the necessity to carry out matrix manipulation
with very large matrices.
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