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Surface-plasmon dispersion relation from the reflectivity of parallel-polarized light
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We show that a very general method of deriving th surface-plasmon dispersion relation, co = co(Q), for a
semi-infinite metal is to set either r„(q,) = ao or r„(—q, ) = 0, where r„ is the reflected amplitude of
parallel-polarized light and q, = i(Q' —co /c')'". This method is applied to get a new formula for the
dispersion in the retardation region for a surface with a continuously varying electron-density profile, and it
reduces to the Harris-GriAin result in the c ~ oa limit.

I. INTRODUCTION

It was pointed out by Cardona' that if one lets
r~-~, where r& is the Fresnel. expression' for the
reflection amplitude of parallel-polar ized light,
i.e. , light having its electric field in the plane of
incidence, one arrives at the well-known' ' dis-
persion relation of surface plasmons (SP) for a
plane interface between a semi-infinite metal and
vacuum

q
viz. )

0'= (ur'&c') ~(~~)& [~((o)+ 1j,
where ~ and Q are, respectively, the frequency
and wave vector (parallel to the surface) of the
SP and g(~) is the dielectric constant of the metal.
The procedure can be understood physically as
corresponding to a resonance: an electromagnetic
wave can be excited near the surface without any
incident wave, and this wave is precisely the sur-
face plasmon. In the nonretardation approxima-
tion (Q»~/c), Eg. (1) leads to the familiar re-
lationship t(~}= -1. Sauter, ' on the other band,
derived a more general SP dispersion relation
than Eq. (1), including some nonlocal correc-
tions, by equating to zero his expression for z~
which included the possibility of photoexcitation
of bulk plasmons. Thus, while there seems to be
an intimate connection between y& and the SP dis-
persion relation, the issue remains somewhat con-
fusing. In this note we try to clarify the point by
showing that the SP dispersion relation can be ob-
tained either by setting r~(q, ) to infinity, or by
setting r~(-q, ) to zero, where q, = (&u'Ic' —Q')'~'
is the z component of the wave vector on the va-
cuum side of the interface. This result is the con-
sequence of a simple, reciprocal relationship
which exists between r~( q, ) and r-~(q, ), as we shall
prove below. For a surface wave, q, is purely
imaginary so that r~(-q, ) = r~(q~) By using. either
of the criteria mentioned above, one arrives at

different versions of the SP dispersion relation
depending solely on the choice of r~. Thus, for
example, if we use the expression for r~(q, ) de-
rived by Kliewer and Fuchs (KF),' we obtain their
form of the SP dispersion relation. In Sec. II, we
apply the condition r~(-q, }= 0 to the expression for
r~ derived by recent, microscopic theories, '~' and
thereby obtain a new and general SP dispersion
relation which reduces to the result given by
Harris and Griffin" for an arbitrary density pro-
file in the limit of no retardation.

To establish the reciprocal relationship connect-
ing r~(q, ) and r&(-q, ), we note that regardless of
the model chosen to represent the electronic den-
sity distribution near the metal-vacuum interface,
the electric field components must satisfy the fol.-
lowing equation on the vacuum side very far from
the surface (i.e. , for z- -~ where the metal oc-
cupies the half spa. ce z&0):

d E
2+ q,E= 0.

dz

For p-polarized light incident on the metal in the
z-z plane, the asymptotic form of the solution can
be written

E (z q )-e"s' r~(q, )e-'4s'

The reflection amplitude y& depends, in fact, on
the frequency of radiation, the angle of incidence
and the dielectric properties of the metal. For a
given metal, it can be regarded as a function of

~ and q,. If we let q,- —q„E„(z,-q,} must be a
solution of Eq. (2) also, and its Wronskian with

E„(z,q, ) must be independent of z over the entire
region of validity of Ecj. (2). Calling the Wronskian
C(q,), one easily finds that

(4)r, q, q,

Furthermore, if the model has a sharp boundary
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separating the vacuum region from the metal, one
can go one step further and show that C(q, ) is
identically zero. Equation (4) implies that the
conditions r~(q, ) -~ and r~(-q, ) = 0 are indeed
equivalent, thus clarifying Sauter's procedure'
and bringing it in agreement with Cardona's argu-
ment. ' For a surface wave, q, is purely imagin-
ary, and the reciprocal relationship of E(L. (4) is
reminiscent of the properties of angular-momen-
tum-resolved 9-matrix elements in quantum scat-
tering theory. "

From a physical point of view, it is clear why
both y~(q, ) -~ and r~(-q, ) = 0 are conditions for the
presence of a surface mode. The first condition
means that there is a reflected wave in the ab-
sence of an incident wave, and the, positive sign
of q, must be chosen so that when it is analytically
continued to the imaginary axis, the field may de-.
cay exponentially away from the surface. The
second condition, on the other hand, means that
only the incident wave is present on the vacuum
side, and q, must now be analytically continued
to the negative imaginary axis in order to produce
a decaying field. We should emphasize that the
condition for a surface mode corresponds to a
complex angl. e of incidence, and we cannot excite
surface plasmons simply by reflecting p-polarized
light. A complex angle of incidence, however, can
be experimentally achieved in attenuated total-re-
flection (ATR) measurements. "' The evanescent
wave in that case does not excite the surface plas-
mon; it jg, from our point of view, the SP wave
on the vacuum side.

Another expression for r~ for a step-density
model, which is of slightly less generality than
the KF expression, is the one given by Melnyk and
Harrison (MH)". Application of our criterion to
their formula leads to the Sp dispersion relation
in the form

-«(+)(q' —(o'/c')"'= [q' —«((g)(0'/c']"' —q'

x [1 —«(~) ]/(q' -A2)'»',

(7)

where K~ is the solution of «,(K~, ~) = 0. It is in-
teresting to note that Eq. (7) follows from E(L. (6)
if we choose «,((L, ~)=1 —~&/~', and further as-
sume that «, ((I, ~) and K~ are given by their hydro-
dynamic expressions. Also the dispersion reQ, -
tion obtained by Sauter' can be derived as a special
case of E(L. (7). Finally, for all cases of reflec-.
tance considered so far, one can define a sharp
surface separating the metal from vacuum, and
we have z&(-q, ) =- 1/r&(q, ).

Of greater interest is to consider the effect of
a continuous electronic density profile on the re-
flectivity of a metal —a problem that has been in-
vestigated only recently. Feibelman' has derived
an expression for z~ from a microscopic theory,
which is exact up to terms linear in q„by cor-
rectly taking into account the changes in the re-
sponse functions due to a smooth profile. Bagchi
and Rajagopal' have derived a similar result"
using a perturbative approach; their expression is
more convenient for our purpose, and may be
written as

II. APPLICATION

As a simple application of our procedure, con-
sider the expression for y& given by Kliewer and

. Fuchs' for the model of a metal with a sharp sur-
face where nonlocal effects are included under the
assumption of specular reflection of electrons at
the boundary. Their formula may be written" where

p 2tqg
(1 )( ' ')

x Qg gg c„„g —E g

+ z'q' f Sz [(z",,(z)) —z'(z)), (S)
~ 00

where
oo 2 12

)) ..„q' «,((I, ~) «,((I, ~) —q'c'/~'

(6a) «= «(~), «(~) = e(-~)+«e(~),

« '(z) = e(-z)+ « 'e(z),

(z„(z))=f z (zz )z(z, '

-i(q' —(g'/c')" '= I . (6)

This is precisely the SP dispersion relation de-
rived by Fuchs and Kliewer in a later paper. "

and «,((I, ~) and «,((I, ~) are the longitudinal and
transverse dielectric functions of the metal, re-
spectively, with (L=(g, q,). Either of the criteria
r~(q,)-~ or r~(-q, )=0 now leads to the condition,
for q& (()/c,

with a similar meaning for («,,'(z)). «„„and «,',
are xg and zz diagonal terms of the corresponding
nonlocal dielectric tensors. The metal is assumed
to be on the right-hand side (s &0), e(z) is the
usual step function, and the result is independent
of the choice of origin. Here y~~ is the Fresnel ex-
pression for ref lectivity. Since this result involves
a power-series expansion of the correction term in
powers of q„ it does not appear in the form given
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by Eq. (4), and we can no longer get the SP dis-
persion from r (q,) ~ criterion. However, we
can still get the SP dispersion relation from the
condition r&(-q,)=0, and this will be a very gen-
eral dispersion relation in the sense that it would
include gEE the effects associated mith the surface
diffuseness from a microscopic point of view, ex-
actly up to first order in q, . If we set x~(-q, ) = 0
in Eq. (8), the expression within the large square
brackets vanishes since r&~( q,-) can no longer be
zero because of the nonlocal effects. For the sake
of simplicity, me mill take the origin to be at the
edge of the jellium background and use the RPA in

Then it is easily shown, by taking the RPA
expression" for o„„(z,z') and using the charge-
neutrality condition, that

dz &„„z —& z =0. (9)
~oe

The second integral involving & is more difficult
to evaluate, and in fact, we do not even knom of any
simple expression for the nonlocal. function
e,',(z, z'). In absence of this knowledge, we will
simply write the second integral

lim dz [(c,',(z)) —e"'(z) ]~p

= (1/e —1)b,(q = 0, ~),
where h(Q, ~) is an unknown function. The r (-q, )
= 0 condition then gives the SP dispersion rela-
tion as

2(q' —~'/c')" 'eq'a((~)
0'+ e(q' —(u'/c')

If a = 0, Eq. (11) reduces to Eq. (1) as it should,
and the entire effect of the diffuseness of the sur-
face comes from h. We emphasize that 6 also in-
cludes the longitudinal response, i.e. , Melnyk-
Harrison-type corrections, because e,',(z, g') is
not a purely transverse response function. " To
confirm this point we will derive the Harris-Grif-
fin result ' from Eq. (11). Equation (11) gives in
the c-~ limit, if we use &(w) = I -(&oJ&o)',

~ = 2 &os(l —b Q) + O(Q') . (12)

Now, following Feibelman' and using his notation,

me can represent the charge-density fluctuation in
the system as

Z
&n(z, Q, ~) = — zQ+ z —) A q „(z),

which gives

J ~an(z, q, (g) dg
lcm — —,

i z dz.
q 0 Jgn(& q &)d& 1 —EJ Ck

But it is easy to show" that

)(z "dz=-& J((s.',(z))-a'(z)]dc= —(1 —a)s.

Hence, the right-hand side of Eq. (13) i.s equal to
-b„and Eq. (12) then becomes equivalent to the
Harris-Griffin. result. So our dispersion rela-
tion, Eq. (11), has the correct behavior even in
the nonretardation regime for any arbitrary model
of the surface.

Let us go back to Eq. (11) and point out that this
is a completely new' result and is the first SP
dispersion relation in the retarded region which
takes into account the surface diffuseness in an
exact microscopic way. A numerical evaluation
of the dispersion relation is not possible, hom-
ever, because we do not know the frequency de-
pendence of d((d) and b, is a complex quantity. If
we assume 6 to be real, independent of ~, and of
order 1/k~, Eq. (11) gives a dispersion relation
which is not too different from Eq. (1), and in par-
ticular, it does not yield any additional "higher"
modes which have been predicted in the hydrody-
namic theories. ~v" Also note that since d is, in
general. , complex, Q will have an imaginary part
even if e((d) is real. 'Physically this means that
Eq. (11) allows for the Landau damping through
single-particle excitations.

A realistic calculation of the function b,(Q, ~) is
of prime interest for further investigations in this
area. Since an exact calculation, even within the
RPA, is difficult, an approximate expression
based on the sum rules" may be useful.
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