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Intermediate-wavelength cyclotron waves in simple metals and Fermi-liquid effects
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In this paper we explore the propagation of cyclotron waves of intermediate wavelength in a simple metal

with a spherical Fermi surface. We show experimentally how thick plates of potassium metal can be used to
study the lowest branch of the multivalued dispersion relation and to find the locations of turning points on
the dispersion curve. The methods employed allow the dispersion curve to be studied at relatively large wave

vectors, a region in which the Fermi-liquid parameter A, can produce observable modifications. Although the
present experiments agree well with a free-electron model, we present numerical calculations showing the
effects of A, and A, on the dispersion curve and note in particular the circumstances under which one should

be able to determine A, experimentally.

I. INTRODUCTION

Under the conditions of low temperature and an
applied magnetic field, a pure metal can support sev-
eral modes of propagating electromagnetic waves. ' '
One example is that of cyclotron waves, ' which
propagate perpendicular to the magnetic field in
the vicinity of the fundamental Azbel-Kaner (AK)
cyclotron resonance and each of its subharmonics.
These waves have generally been referred to as
long wavelength, intermediate wavelength, or
short wavelength, according to whether qA«1,
qA=1, or qR» I, respectively, where q is the
wave vector of the excitation and B = VF/~ is the
cyclotron radius at cyclotron resonance. Although
seen in a variety of metals, ' ' the cyclotron waves
have been studied most extensively in the alkali
metals, ""primarily in the long-wavelength
limit.

In this paper we are concerned with intermediate-
wavelength cyclotron waves in the alkali-metal
potassium. We present experimental data obtained
with a technique' that locates the turning points"
of the dispersion relation, making it possible to
follow the waves to much shorter wavelengths
than before. In the long-wavelength regime the
dispersion characteristics of the wave are affected
by the Landau Fermi-liquid parameters' "P„
A„+,. . . , and experimental studies in this re-
gime have determined approximate numbers for
some of these parameters in the alkali metals. "'
Although neither A, nor g, influence the dispersion
of the waves in the long-wavelength limit, we
show by numerical calculation how A, can have
an influence in the intermediate-wavelength re-
gime. In particular, we show how our present
experimental techniques may be used to deter-

mine the parameter A, with the proper choice of
frequency.

II. PHYSICAL CHARACTERISTICS OF CYCLOTRON

WAVES

Cyclotron wave propagation occurs under the
same experimental conditions as those required
for observation of well-resolved AK cyclotron-
resonance spectra: i.e. , samples of high purity
at low temperature with sufficiently high excita-
tion frequencies that ~T»1, where z is the
average electron scattering time due to lattice
imperfections. The characteristics of the waves
are given by their dispersion relation, for whose
calculation we choose a coordinate system with g
axis parallel to the applied magnetic field H and
x axis parallel to the wave vector of the excitation
q. Maxwell's equations yield two dispersion rela-
tions corresponding to two distinct types of cyclo-
tron waves: the ordinary and the extraordinary
modes. The ordinary mode is a purely transverse
wave in which E,f IIH; the extraordinary mode con-
tains a mixture of transverse and longitudinal
components in which E,f&H. Neglecting the dis-
placement current in comparison to the conduction
current, the dispersion relations can be written
in the following dimensionless forms':

(qa)' =[((u,/(u)vJc]'i( nv„/o,
for the ordinary wave, and

(qft)' = [((u,/(u)vPc]'i(uT/o, (o„+o'„,/o„„)

for the extraordinary mode, where. ~ is the fre-
quency of the wave, (d~ is the plasma frequency,
eF is the Fermi velocity, c is the speed of light,
0, is the dc e&ectrical conductivity in zero mag-
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FIG, 1. Example of the
free-electron cyclotron
wave dispersion relations
for the ordinary and the
extraordinary modes asso-
ciated with the fundamental
AK cyclotron resonance.

10

0
1.0 1.2 1.4 1.6 1.8 2.0

m /w

0 I I I I I I . I I I I I I I I I I I I I

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 5.0

netic field, and o,&
are the components of the

frequency-, wave-vector-, and magnetic-field-
dependent magnetoconductivity tensor. .

Figure 1 is a numerical evaluation of Eqs. (1)
and (2) showing far into the intermediate-wave-
length regime the ordinary and extraordinary
modes associated with the fundamental AK cyclo-
tron resonance. The plots are made in terms of
the dimensionless quantities qR and u&, /ur. This
type of plot is most suitable for comparison with
the experimental data, for which the applied fre-
quency u is held constant while the cyclotron fre-
quency v, is continually varied as the magnetic
field is swept. The frequencies chosen lie within
the X-band microwave frequency range, and the
parameters used are those for potassium metal
with the exception of v, which was taken as infinite
in order to suppress the damping of the waves.
Both modes begin at &u, /&u = 1 for zero wave vector,
extend to higher magnetic fields for increasing
wave vector, develop oscillations in the inter-
mediate-wavelength regime, and then return
asymptotically to ~,/&o =1 in the short-wavelength
regime (qR»1). The oscillations associated with
the extraordinary mode are appreciably stronger
than those of the ordinary mode and are the ones
whose turning points show up most clearly in our
data. The set of turning points lying at the higher
magnetic fields will be classified as the outer
turning points, and that set lying at the lower mag-
netic fields will be classified as the inner turning
points. Thus, when the magnetic field (or &o, /&u)

is being increased, the crossing of an inner turning
point "turns on" the propagation of two more cyclo-
tron waves of slightly different wavelength, while
the crossing of an outer turning point "turns off"
the propagation of two cyclotron waves. The turn-
ing points are labeled as first, second, third, . . . ,
etc. , starting at the smallest qA value and pro-
gressing to increasing values of qA.

In the free-electron limit the ordinary mode
occurs as a single mode at the fundamental AK
cyclotron resonance and each of its subharmonics.
The extraordinary mode, however, occurs as a
single mode only at the fundamental resonance and
becomes a double mode at each of the subharmon-
ics." Figure 2 illustrates the two extraordinary
modes associated with the first subharmonic of
AK cyclotron resonance. The two modes are
classified as the ~' and the e modes. Althoughboth
are mixtures of transverse and longitudinal com-
ponents, the co' modes become primarQy trans-
verse waves at la,rge qA while the ~ modes be-
come primarily longitudinal waves in the same .

limit. In the limit of short wavelength (qR» 1),
the ~' modes return asymptotically to the same
values of a&, /&u at which they originated, whereas
the ~ modes asymptotically approach those
values of e, /u& associated with the adjacent sub-
harmonic on the high field side. The turning
points of the co' and ~ modes on the subharmonics
are too close together in magnetic field to be re-
solved individually in our data. However, we show
in Sec. IV how they influence the surface impe-
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FIG. 2. Free-electron dispersion relations for the
two extraordinary modes associated with the first sub-
harmonic of AK cyclotron resonance.

where f(qR, ~,/~) is a function only of qR and cu, /u&

and is made up of the same set of conductivity
components as indicated in Eqs. (1) and (2). At
small wave vector both (qR)' and f(qR, ~,/&u) are
=1, whereas the coefficient (&u~v~/~c)' is =10' at
X-band frequencies. Consequently, - under these
conditions the dispersion relation is quite ac-
curately written f(qR, &u, /u&) =0. For both the
ordinary and the extraordinary modes, however,

f is composed of just the proper combination of

dance of our samples.
An important property of the cyclotron waves is

the manner in which they are influenced by Fermi-
liquid or many-body effects. Azbel" has shown
that in the short-wavelerigth regime many-body
effects have no influence. On the other hand, as
mentioned previously, all the Landau Fermi-
liquid parameters with the exception of A, and A,
appear in the dispersion curves in the long-wave-
length limit. A, and A, are unimportant because
of the very high plasma frequency of the conduction
electrons in a typical metal, +~=10" sec '. From
the Landau-Silin transport equation it is seen that
A, is associated with any net charge density pro-
duced by a disturbance and that A, is associated
with any net current flow that may take place.
Because the experiments are typically performed
at microwave frequencies much below the plasma
frequency, the waves at long wavelength are
characterized by both zero charge fluctuations
and zero current flow, ' consequently A, and A,
do not occur in the dispersion relation in this
limit. The nature of the disappearance of A, at
long-wavelengths can be seen from the dispersion
relation itself, which in its most general form can
be written

(qR)' = [((u,/(u)vPc]'f(qR, u), /(u),

conductivity components, which when set equal to
zero automatically sets the net current equal to
zero also.

In order for A, to become important the two
sides of Eq. (3) must be comparable. This re-
quires relatively large-wavevector and high-
frequency excitations. Since f~1/qR at large wave
vector, Eq. (3) requires

qR a [((u, /co) v~/c]'".

For potassium metal at X-band frequencies this
gives qR ~ 50, which is not much greater than the
maximum wave vector resolved in the data we
present. From Eq. (4) it is also clear that there
mist be a frequency below which A, cannot modify
the dispersion relation at any wave 'vector, i.e. ,
that frequency for which Eq. (4) is not satisfied
before entering the short-wavelength regime.
Conversely, as the excitation frequency is raised,
the effects of A, will become apparent, and the
higher the frequencies employed the smaller the
wave vector at which A, can influence the disper-
sion relation. Although the frequencies used in

obtaining our present data are not high enough to
exhibit any appreciable modifications by A„we
present numerical computations showing at what
frequencies such modifications will occur and
what the nature of such modifications will be, and,
most important, we demonstrate the experimental
techniques that will be necessary at these higher
frequencies.

In order to compare the data with theory, we
will use a method previously employed, ' which
avoids solving the complete boundary-value prob-
lem. The exact solution is extremely difficult to
obtain because the coupling to the cyclotron waves
is so strong that the problem must be treated self-
consistently. Although it still remains unsolved, '

a theoretical discussion of the present status of
the boundary-value problem is given by Fredkin
and Wilson. ' Instead we solve for the infinite-
medium dispersion relation and attempt to corre-
late it with features seen in the experimental data
obtained from a finite metal slab. This appears to
be a fairly realistic approach as one is dealing
primarily with wave propagation in the bulk of the
metal as both the wavelength and sample thickness
are orders of magnitude larger than the anomalous
skin depth in which the waves are excited. The
excellent agreement between the data and the infin-
ite-medium dispersion curves attests to the validity
of this approach.

III. EXPERIMENTAL TECHNIQUES

There are two ways in which cyclotron wave pro-
pagation can be studied with a single microwave
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cavity. In one method' the samples are fabricated
into thin plates, which are placed into a microwave
cavity in such a fashion that the rf electric fields
present can induce electrical currents to flow on
b0/k faces of the sample simultaneously. Under
the appropriate conditions of magnetic field strength
these linearly polarized surface currents give rise
to cyclotron waves propagating from the surfaces
into the bulk of the sample. When the samples
are made thin enough that transmission of the
cyclotron waves through. the sample can take place,
oscillations in the surface impedance are observed
as the magnetic field is swept. These oscillations
of the power absorption result from the varying
phase of the transmitted currents relative to the
primary driving currents present at each surface.
In the second method' samples sufficiently thick
to suppress all transmission are used, and one
observes certain anomalies in the surface inpe-
dance at particular magnetic fields. These an-
omalies arise from the turning points of the dis-
persion relation at intermediate wavelengths and
are due to the "turning on" or "turning off" of
certain cyclotron waves at the turning points, as
discussed earlier. These anomalies thus provide
a way for studying the dispersion relation into
the intermediate-wavelength regime, a region in
which the transmission method produces rather-
complex interference spectra'" due to the simul-
taneous propagation of waves of several different
wavelengths.

Most of the samples studied in this investigation
. were fabricated with thickness sufficiently large
(L= 0.6-0.8 mm) so as to attenuate all propagating
excitations. A small number, however, were
made slightly thinner (L = 0.5 mm), which leads to
the complete attenuation of all propagating cyclo-
tron waves with the exception of the longest wave-
length branch. This branch, which is the most
slowly attenuated, can then be studied to appreci-
ably higher values of wave vector and magnetic
field, into regions where interference patterns
are observed, for thinner samples.

The experiments used ultrahigh-purity potassium
obtained by high-vacuum distillation at pressures
=10 ' Torr. Resistivity ratios p(295 K)/p(1. 4 K)'

in the range 15000-18000 for the bulk material
were obtained. The samples were fabricated in
a dry box containing a high-purity argon atmo-
sphere in which-the total amounts of oxygen, nitro-
gen, and water vapor were maintained at less
than 1 ppm by volume. The potassium was first
extruded in the form of a thick polycrystalline
ribbon by a hydraulic press. " For about half of
the samples the ribbon was then permanently pressed
between two thin glass plates, forming samples
that, when placed into a microwave cavity, were

I NC IDENT
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FIG. 3. Simplified view of the microwave cavity and
that type of sample which makes up the end wall of the
cavity. Omitted from the figure are the Dewar system
and the cryogenic liquids surrounding the vacuum can.
Indicated in the figure are: 1. Glass plate or window.
2. Potassium sample. 3. Brass end plate. 4. Helium
exchange gas. 5. Vacuum can. 6. Microwave cavity.
7. Grease seal between vacuum can and the waveguide
Qange. 8. Coupling iris. 9. Waveguide. 10. VVater-
cooled solenoid coaxial with the waveguide for gener-
ating the H„ field perpendicular to the plane of the
sample.

excited on both surfaces by the rf electromagnetic
fields. For the remaining samples the potassium
ribbon was fabricated into the end wall of the
microwave cavity, as indicated in Fig. 3. In this
case, only one glass window was used and only
one surface of the sample was exposed to the in-
cident microwave power. In both eases the use
of glass plates resulted in very smooth and flat
surfaces that had brilliant, mirrorlike appear-
ances.

Figure 3 illustrates the geometrical arrange-
ment of the sample with respect to the rectangular
microwave cavity and the rf and dc fields present.
The dc magnetic field is composed of two corp-
ponents: H„ lying approximately in the plane of
the sample and produced by a 15-in. Varian elec-
tromagnet (capacity of 25 kG); and H„, situated
approximately perpendicular to the plane of the
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sample and produced by a small mater-cooled
solenoid (capacity of 600 G) wound around the tail
of the Dewar between the poles of the Varian mag-
net. By accurately adjusting the relative strengths
of H„and H„ the field can be very accurately
aligned parallel to the surface of the sample. The
H, field can be rotated in the plane of the sample
for alignment either parallel of perpendicular to
the microwave electric field E,f to couple to the
ordinary or extraordinary modes, respectively.

As shown, the cavity is situated in a vacuum can
with thermal contact to a surrounding liquid-helium
bath provided by a small amount of helium ex-
change gas in the can. The temperature of the
samples was varied over the range 1.4-4.2 K by
pumping on the liquid helium.

The experiments were performed at three dis-
tinct microwave frequencies: 12.2, 17.8, and
34.6 GHz. The changes in the surface impedance
of the sample were monitored in reflection by a
conventional homodyne bridge spectrometer. The
bridge was balanced to detect changes in the real
part of the surface impedance of the sample —the
surface resistance. By employing field-modula-
tion and phase- sensitive detection, the field deriv-
ative of the surface resistance dR/dH was recorded
as a function of the magnetic field.

IV. EXPERIMENTAL RESULTS

dR
dH

I I I I '
I I

0 02 04 06 08 i0 l2 j4 l6 I8 20
mc'W

dR
dH

16
'

1.8 2,0
I I I I I

22 24 26 28 30 32 34
~c t4)

FEG. 4. (a) AK cyclotron-resonance derivative
spectra in the extraordinary-mode polarization; (b)
Same as {a) with the gain increased by 10 to display the
turning point anomalies. The arrows are at the loca-
tions of the turning point singularities of the free-elec-
tron, jtnfinite~ v dispersion relation.

We begin first with the thickest samples, which
display semi-infinite behavior in the sense that
all propagating modes are completely attenuated
before passing through the sample. Figure 4(a)
displays the derivative spectrum of such a sample
for the extraordinary mode geometry at a frequen-
cy of 12.2 GHz and a temperature of 1.5 K. The
spectrum is dominated by a series of AK™cyclo-
tron-resonance single-par ticle resonance peaks
occurring at a, /&u =1/n, n =1, 2, 3. . . , for which
the cyclotron frequency &u, =eH/m*c is determined
by an isotropic effective mass nz*=1.21m, ." The
fundamental resonance and first few subharmonics
show a slight splitting, which may reflect a lack of
perfect sample flatness or possibly the onset of
cyclotron wave propagation. The splitting grows
very rapidly, dominating the spectrum, for ro-
tations of the magnetic field out of the plane of the
sample by less than 2 . Even with the field aligned
absolutely parallel to the surface a residual
amount of splitting (as shown) remains for all the
samples studied.

In Fig. 4(b) an increase in gain by a factor of
10 over the range 1.5 & ~,/~ & 3.5 displays a sharp
dip and a series of seven peaks, the latter lying
on a rising background. These features we at-
tribute td the anomalies in the surface resistance

caused by turning points in the cyclotron ~vave

dispersion curve. The solid arrows in the figure
correspond to the first seven outer turning points
of the infinite-~z free-electron dispersion rela-
tion. Within the experimental accuracy to which
they can be determined (&u,/v =+0.005), the loca-
tions of the seven peaks coincide exactly with the
locations of the theoretical turning points. We
thus empirically identify the peaks in dR/dH with
the outer turning points of the dispersion relation.
This identification proves valid in that increasing
the frequency to 17.8 GHz and then further to 34.6
GHz causes shifts in the observed resistance
anomalies, which are again exactly matched
(within ~,/~ =+0.005) by the appropriate disper-
sion curves. With increasing temperature the
peaks broaden, but do not shift in position, thus
making appropriate our comparison with the in-
finite-~T dispersion curves.

An inspection of Fig. 1 shows that the seventh
outer tur'ning point occurs at qR = 37, well into
the region where the orbit diameters of the elec-
trons exceed the wavelength of the wave. It is also
clear why outer turning points of still higher qR
values are not readily seen —they lie much closer
together in magnetic field and also begin to over-
lap the locations of the inner turning points. The
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FIG. 5. Free-'electron dispersion relations for the
extraordinary mode cyclotron wave at 12.2, 17.8, and
34.6 GHz. The arrows locate the experimental peaks
and dipl in dR/dH at each frequency.

inner turning points are also situated very close
together in field apd consequently cannot be indi-
vidually resolved. We note, however, that the
sharp dip in dR/dH preceding the seven outer
turning point anomalies of Fig. 4(b} lies exactly
at the high-field edge of the envelope of inner
turning points (where their density is highest).
Once again this identification proves emperically
valid in that similar sharp dips in dB /dH occur'
at exactly the same high-field edge of the inner
turning point envelope at our two higher frequen-
cies.

We are unable to advance any physical arguments
as to why the Onset of wave propagation at the in-
ner turning points and the cessation of wave pro-
pagation at the outer turning points should result
in dips and peaks i'n dB/dH, respectively. ' Gordon
and Frandsen" have evaluated the surface impe-
dance for a spherical Fermi surfac-e in the approx-
imation of pseudospecular reflection, but the posi-
tion, shape, and intensity of their anomalies do
not agree with our own observations. For present
purposes, therefore, we will use the empirical
identification as a means of mapping the inter-
mediate-wavelength behavior of the cyclotron
waves.

Figure 5 shows the theoretical dispersion curves
for the three frequencies at which our data. were
taken. The curves display an appreciable fre-
quency dependence, especiaQy at the higher wave
vectors. Also indicated by arrows are the experi-
mental turning points as determined empirically
by peaks and dips in dB/dH. Within experimental
uncertainties the correspondence between the
free-electron theory and the data are exact at all
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FIG. 6. Experimental trace taken in the extraordin-
ary wave geometry between the fundamental and first
subharmonic of AK cyclotron resonance, showing anom-
alies associated with the ~+ and the co modes. The
lower portion of the figure indicates the dispersion rela-
tions of the two modes and the correlation between the
observed anomalies and the locations of the theoretical
turning points.

three frequencies and at all wave vectors for
which anomalies have been detected. The high-
fiel. d edge of the envelope of the inner turning
points shows up as a dip at each frequency, and at
both 12.2 and 17.8 GHz all turning points at higher
fields than this dip are detected. At 34.6 GHz we
are not able to sweep the magnetic field into the .

range of the first three outer turning points. We
do, however, detect the fourth and the sixth
outer turning points at this frequency. The fifth
turning point is presumably obscured by its
proximity in field to the third of the inner turning
points.

Figure 6 displays anomalies in the surface resis-
tance due to the turning points of the ~' and the

modes associated with the first subharmonic of
AK cyclotron resonance. For the subharmonic
waves the turning points are too close together to
be individually resolved in our present experi-
ments. The effect of their presence, neverthe-
less, can be seen from the figure. For the co'

mode a rather strong anomaly occurs, beginning
at the high-field limit of the inner turning points
and extending to the high-field limit of the outer
turning points. The co mode produces an appreci-
ably weaker anomaly situated between the first
and third inner turning points, that region in
which the oscillations are strongest. Anomalies
due to the (d' modes are observed down to the
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fourth subharmonic, whereas anomalies due to the
modes have been observed only on the first two

subhar monies.
In Fig. 7 the dc magnetic field has been rotated

90' in the plane of the sample to couple to the or-
dinary mode. The ordinary mode has only a few
turning points and they are very close together,
as indicated in Figs. 1 and V. Again, an anomaly
arising from the oscillations in the dispersion
relation is seen beginning at the first inner turning
point and extending to the third outer turning point,
the high-field limit of the oscillations.

%e next consider samples that are somewhat
thinner (L= 0.5 mm) than those previously dis-
cussed. Figure 8 illustrates the extraordinary
dispersion relation when a finite scattering time 7

is included in Eq. (2). When w is finite and is
treated as a real quantity, the solution for the
wave vector q becomes complex, with the real
part of q describing the propagation characteris-

. tics of the wave and the imaginary part of q des-
cribing the damping or attenuation of the wave. "'"
Parts (a) and (b) of the figure indicate, respective-
ly, the real and imaginary parts of q. ln Fig. 8(a)
we see that for finite values of v the previously
continuous dispersion curve splits up into a series
of discrete branches that no longer join together.
The linear portions of the infinite-er curve (be-
tween the oscillations) are little affected by finite
values of un. . The major modifications come near
the turning points and beyond in the previously for-
bidden region where propagation did not occur for
infinite ~v. Figure 8(b) indicates the damping of .

the wave with each curve corresponding to one of
the -branches of the real part of the dispersion re-
lations. Higher damping is associated with an in-
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WAVE . lC 2OF
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FIG. 8. Extraordinary-wave free-electron dispersion
relations for finite values of ~7. (a) The real part of
the dispersion relation describing the propagation of the
wave for three values of v. (b) The imaginary part of
the dispersion relation describing the attenuation and
damping of the wave. Each,curve corresponds to one of
the branches indicated in (a) with the larger values of
Im(qR) associated with the larger values of H,e(qR).

crease in the imaginary part of q with signal in-
tensity =exp[-lm(q)L], where I. is the sample
thickness. It is seen that the damping becomes
very large in the vicinity of the turning points.
Even though a wave can actually propagate beyond
a turning point of the infinite-(dv dispersion rela-
tion, it becomes very strongly damped in this re-
gion. Minimum damping occurs between the turn-
ing points in the linear portion of the real part of
the curve. Although the turning points actually
disappear for finite values of ~w, we'note experi-
mentally that the anomalies in the surface resis-
tance still exist and that decreasing cov only broad-
ens and weakens the anomalies but does not shift
their location in magnetic field from their infinite-
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FIG. 9. Derivative spectra for a somewhat thinner
sample {L=0.51 mm) showing the transmission of the
first branch of the dispersion curve superimposed on
the surface resistance anomalies. The lower part of
the figure compares the transmission spectra with the
infinite-cov dispersion curve for A2 =-0.03.

~7. positipns. Frandsen and Gordon o'. ' have re-
cently stressed the important modifications that
finite-err can introduce into the dispersion curve.
Although this is true in general, our observations
indicate that the l,ocations of the turning point
anomalies are independent of ~ and that only
their widths and strengths are affected.

An important feature of Fig. 8 is that as the
real part of q increases so does the imaginary
part. This means that the higher qB branches of
the dispersion relation are more strongly attenua-
ted than tQe smaller qA branches. In previous
studies of the extraordinary mode' relatively thin
samples were used, and as a consequence once the
magnetic field was increased beyong the first inner
turning point, a rather-complicated interference
pattern between several propagating waves resul-
ted. Figure 8 suggests that by choosing the proper
thickness of the sample carefully, one should be
abl, e to attenuate all branches of the dispersion
curve below experimental detectability except for
the first or lowest qA branch. By so doing one
would be able to observe the first branch to ap-
preciably higher values of. ~,/&u and qR than pos-
sible in thin plates.

In the top part of Fig. 9 are plotted experimental
data in the vicinity of the outer turning points for .

a potassium sample whose thickness was carefully

chosen in the manner just described (I.=0.'51 mm).
In addition to the turning-point anomalies, we see
superimposed a rather-high-frequency oscillation
that results from the transmission of the first-
branch cyclotron wave through the sample. As
described previously this oscillation is due to the
varying phase of the transmitted current beating
with the primary driving currents present at each
surface of the sample. Each oscillation corres-
ponds to an increase of 1 in the total number of
wavelengths contained within the sample. From the
position in field and the total number of oscillations
present one can plot out an experimental disper-
sion curve to be compared with theory. ' Such a
comparison is made in the lower part of Fig. 9.
The infinite-cov. dispersion relation is plotted for
&, = -0.03. In the central portion of the curve only
every fifth oscillation is plotted. As can be seen,
we obtain an excellent agreement between experi-
ment and theory. Although using &, =-0.03 in the
theory gives an improved fit over the free electron
theory, this comparison is not a sensitive test
for determining A, as P, only weakly affects this
particular mode for small wave vector. ' With the
use of thick samples we are able to follow the first
branch of the dispersion curve up to &u, /&o =2.6 and

qR = 10 in comparison to the limits of &u, /&u = 1.4
and qA' =4 obtained with thin samples. For the
particular sample shown in Fig. 9 the largest wave-
vector transmission signal that can be detected
corresponds to a total number of QS (I) wavelengths
included within the sample.

Figure 10 illustrates the temperature dependence
of these signals for the sample of Fig. 9. Note the
increase in gain by a factor of 2.5 at the two high-
est temperatures. As can be seen both the trans-
mission signals and the surface resistance anom-
alies depend strongly on the temperature. The
transmission oscillations are strongest at 1.4 K
and have essentially disappeared by 4.2 K. The
surface resistance anomalies also decrease
rapidly in amplitude with increasing temperature.
Although the overall baseline and the widths of the
anomalies change with temperature, note that the
locations of the peaks is temperature independent.

V. THEORY AND NUMERICAL COMPUTATIONS

We have seen how surface resistance anomalies
in pick samples give a method of studying portions
of the dispersion relation {the turning points) to
fairly large values of qB where the Fermi-liquid
parameter A, can have an influence, Our present
experiments, although demonstrating the necess-
ary experimental techniques, have so far shown
excellent agreement with the free-electron theory.
In order to determine when A., will produce an
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FIG. 10. Temperature dependence of the cyclotron
wave transmission and surface resistance anomalies.
The gain at the two highest temperatures has been in-
creased by a factor of 2.5.

The number of conduction electrons per unit
volume & = 1.398 x 10' cm ' is obtained by the
lattice spacing at 1.5 K: a=5.2295 A,"assuming
one conduction electron per atom. The effective
mass m*=1.21m, is obtained from AK cyclotron-
resonance data. " Using these numbers in Eq. (5)
we obtain co~ =6.065x 10-' sec '. To obtain the
Fermi velocity we use

m vF -SkF -SkF, (6)

where 4F is the Fermi wave vector calculated in

observable effect and what influence it wi11. have,
we now begin a numerical computation of the theo-
retical dispersion relation.

The dispersion curves shown in the previous
figures, plus the ones to follow, were all calcula-
ted from Eqs. (1) and (2). These equations are
exact except for the omission of the displacement
current, which is completely negligible at micro-
wave frequencies. The presence of Fermi-liquid
effects modifies the components of the conductivity
tensor that go into the two equations. For numeri-
cal evaluation of the equations we use the algo-
rithms of Fredkin and Wilson" as formulated in
the Appendix.

The two numerical quantities needed to des-
cribe the potassium samples are ~~ and vF. To
obtain the plasma frequency we use

1.0 1,4 1,8 22
(dg /4)

2.6 3.0

the free-electron limit from the density of the
conduction electrons. Equation (6) follows from
the known sphericity of the Fermi surface" and
the invariance of the volume of the Fermi surface
in the presence of Fermi-liquid interactions. "
Making use of

g =(3~'1q)"'=0 7450x 10' c.m ' (7)

we obtain. vF =0.7128 x 10' cm/sec. This gives us
at 12.2 GHz, for example, (~,vF/~c)' =3.539 x 10'.

Figure 11 displays the frequency dependence of
the free-electron extraordinary .mode dispersion
relation for that cyclotron wave associated with
the fundamental AK cyclotron resonance. With
increasing frequency the curves are pushed to
smaller values of magnetic field (~,/~). This fre-
quency dependence is a direct result of finite elec-
trical current flow. As long as the (qR)' term in
Eq. (2) remains negligible in comparison to the
right-hand side of the equation, there is no ap-
preciable current flow and the dispersion relation
is a universal function of qR and (o,/~, showing no

frequency dependence. As (qR)' becomes compar-
able with the other term, an electrical current
begins and the dispersion relation becomes fre-
quency dependent. The fact that the dispersion
curves in Fig. 5 show an appreciable dependence

FIG. 11. Frequency dependence of the free-electron
extraordinary-mode dispersion relation for the cyclotron
wave associated with the fundamental AK cyclotron res-
onance.
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FIG. 13. Cyclotron wave dispersion curve displaying
the effects of A~ on the extraordinary mode at frequen-
cies of 116 and 250 GHz.
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FIG. 12. Frequency dependence of the free-electron
cq+ mode dispersion relation for the cyclotron wave.
associated with the first subharmonic of AK cyclotron
resonance.

outer turning point. Therefore, as expected, the
modifications introduced by A, are larger and oc-
cur at smaller wavevectors with increasing fre-
quency.

ln Fig. 14 we show how the parameter A,, affects
the same dispersion relation. Again the value of
A, used in.the plot is several times larger than

on the frequency of the cyclotron wave indicates
that even at those frequencies and wave vectors
we are entering'the regime in which current flow
takes place and A, can modify the dispersion of the
wave.

Figure 12 shows the frequency dependence of the
co' mode associated with the first subharmonic of
AK cyclotron resonance. Once again the curves
are pushed to lower values of magnetic field with
increasing ~, although the frequency dependence
is not. as strong as it was for the fundamental wave.
The ~ modes turn out to be completely indepen-
dent of the applied frequency. The ~ mode for
the first subharmonic displayed in Fig. 2 is thus
valid for all frequencies (much less than the
plasma frequency).

Figure 13 indicates the effect that a finite value
of A, has on the fundamental cyclotron wave at the
relatively high frequencies of 116 and 250 GHz.
The values Q, =+0.2 have approximately 2-4 times
the magnitude expected for potassium metal from
detailed many-body- calcul. ations. ""As seen, a
negative value of g, pushes the turning points to
higher values of u&, /&u while a positive value of A,
pushes them to lower &e,/&u. At 116 GHz the maxi-
mum shift is 1.3/0 in field and occurs at the third
outer turning point. , At 250 QHz the maximum
shift is 2.4/o in field and occurs at the. second
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FIG. 14. Cyclotron wave dispersion curve displaying
the effects of A2 on the extraordinary mode at frequencies
of 12.2 andi 116 GHz.
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in the calculations of the dispersion relations, the
deviations from the free electron turning points
are less than the uncertainties of our experimental
measurements —in agreement with our excellent
fit to the free electron theory. We have shown by
numerical computation, however, that the same
type of experimental observations carried out at
frequencies ~ 200 GHz should allow a determina-
tion of the Fermi-liquid parameter A, .

10

0 I
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0.91 0,93 0.95
I I

0.97

FIG. 15. Cyclotron wave dispersion curie displaying
the effects of A2 on the co mode associated with the first
subharmonic of AK cyclotron resonance.

the value measured experimentally (A, = -0.03).
The effects of A, are quite different. Although a
negative value of g, again pushes the turning
points out to higher magnetic field, the shifts con-
tinuously decrease with the increasing wavevector
and become smaller as the frequency is increased.
This means the effects of A, can be easily separa-
ted from those of A, In fact, at the frequencies
necessary to determine A, the effects of the known

value of A, will'be completely negligible in com-
parison.

The effects of the Fermi-liquid parameters Qy

and A, on the subharmonics has been studied only
on the first subharmonic waves because of the
large amount of computer time required to do the
calculations. For the ~' mode A, has the same
type of effect as it did on the fundamental wave
except the shifts are about ten times smaller in

field and occur at appreciably larger wave vectors.
The shifts caused by A, are again similar to those
on the fundamental wave but once more several
times smaller in size. The co mode is completely
unaffected by the parameter A, . The effect of A,
on this mode is shown in Fig. 15.

VI. CONCLUSION

We have seen how the dispersion relation of the
extraordinary mode cyclotron waves can be studied
at intermediate wavelengths by observing surface
impedance anomalies associated with the turning
points of the dispersion curves. If the expected
values of A, and A, for potassium metal are used
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APPENDIX

The algorithms of Fredkin and Wilson, ' used
for calculating the dispersion relations in the
presence of Fermi-liquid effects, have been set
up a,s follows. For the ordinary wave Eq. (1) can
be written

((fIt) = —[((dp/(d)vF/c] Gyo, (A1)

whe're G» is to be obtained from the simultaneous
solution of the ,L (L +1)—equations

»
G) ~ =&)~ ~

t'm' i +g)
(A2)

x c,.(8)c,.„,(8), (A3)

where y =(++i/r)/(d„x=(qA)(u'/u, ) sin8; m,
=algebraically smaller of m and m; m, =algebra-
ically larger of m and m'; J,(x) =ordinary Bessel
function of the first kind; C, „(8)=e '"~Y, (8, P);
F, are the spherical harmonics of Condon and

I

is the highest order g, parameter to be re-
tained; l and l' range from 1 to L; for each I
value m ranges from -/ to +l; and for each E

value m' ranges from -l' to +I'. In Eq. (A2) only
those terms are retained for which both /- m and
l' —m' are odd:

K'~™=2m' —— (-I)"&
C

sln8 d J„,(x)Z (.. .)(x)
sin(7(y)
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Shortley~', 8 =integration variable. For the ex-
traordinary mode Eq. (2) can be written in the
form

( g)2 2 ~ F 11 1-1 I-i~11 (A4)
~11 Gll ~1-1 ~1-1

where G~„,(p, =+1) is to be obtained from the ', (2-
+1)(L „+2) equations

(A5)
rm' +I, l, l, m, and m' are defined as before and

vary over the same ranges, except in Eq. (A5)
only those terms are retained in which both / —m
and l'-m are even. K,' is again defined as in
Eq. (A3).

The integration over 8 in Eq. (A3) is done nu;
merically to an accuracy of 1 part in 104 using
Simpson's rule, and the syst' em of equations listed
in Eqs. (A2) or (A5) is soived in matrix form on a
computer. For finite (dv the solutions for q become
complex with the imaginary part of q resulting in
the damping of the wave as discussed previously.
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