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Singular structure in the density of levels of simple metals
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Local pseudopotential components V„" are available in many of the simpler metals, either from
measurement or by direct computation. Given these it is shown that by invoking generally no more than a
three-band model throughout the zone, a straightforward method is available for obtaining the principal
features of the density of levels, Certain of these features, those recognizably due to, the form of the bands
near zone planes, for example, have their counterparts at zone-plane intersections and these are shown to
arise from Van Hove singularities on otherwise nearly-free-electron band stru'ctures. In the case of
aluminum, the example used to illustrate the method, it is shown that significant single-particle band-

structure eA'ects are present in the density of levels at the Fermi energy.

I. INTRODUCTION

Figure 1(a) shows a portion of a calculated den-
sity of levels in aluminum. Some of the rather
noticeable structure displayed there is readily
identified with band extrema associated with the
levels L,', L„and X4, X„which in turn are con-
nected with the centers of the (111}and (200) sets
of planes of the first Brillouin zone [Fig. 1(b}].
The singular features may be referred to as zone-
face structure. Equally apparent, however, is
some sharp structure somewhat reminiscent of
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FIG. 1(a) Singular structure in the calculated density
of levels of g(8) of aluminum arising from ordinary cri-
tical points in the band structure. Small vertical dotted
lines indicate the location of structure arising at ener-
gies g corresponding to higher critical points (see Sec.
IV). The energy $x is the free-electron energy at
k =k&= 2m/a. (4) First Brillouin zone of the fcc structure.

this zone-face structure, located near but not
. quite at the levels belonging to symmetry points
K (or U} and W. The origin and magnitude of this
structure, which may be termed zone-edge struc-
ture, is a major concern of what follows. In addi-
tiori there are other singular features in the den-
sity of levels of a very much weaker character
than those displayed in Fig. 1(a). These occur as
a consequence of the touching of bands. A secon-
dary objective of this paper is to examine the na-
ture of these minor singular features, to locate
them in energy, and to estimate the corrections
they may make to Fig. 1(a) (which omits them).

The overall structure just described is not
specific to aluminum but is generally to be found
in the class of nearly-free-electron-like metals
although riot necessarily in the order presented.
One of the purposes of this paper is to show that
the singular structure in the density of levels can
be accounted for by a straightforward analysis
restricted to certain portions of the 'band struc-
ture. With the exception of the minor band con-
tact features the. major singular points in the den-
sity of levels are rather simply related to the
principal pseudopotential components (V-„) used to
interpolate the band structures. In many cases
the important V~ can be extracted from an analy-
sis of measured Fermi surfaces. ' In others,
particularly the simple polyvalent metals, they
may be obtained quite directly, at least within
the local-pseudopotential approximation, by lo-
cating the positions of the major interband ab-
sorption edges in the optical-response function. '
Nonlocal contributions are not always small, but
for the purposes of illustrating the methods to be
used here, those manifestations of nonlocal effects
that cannotbe subsumed within appropriate effective
masses' will be neglected.

Sections II-IV are devoted to a description of the
methods required to calculate in terms of the V~
the singular contributions of the density of levels.
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Underlying the methods is an application of per-
turbation theory in conjunction with certain gen-
eral results of Van Hove' and Phillips' pertaining
to the nature of critical points i.n the excitation
spectra of periodic systems. ' As will become
evident, it is generally sufficient to consider the
properties of, at most, a three-band model. Re-
sults are given, by way of illustration, for a)umi-
num which is taken a,s a representative nearly-
free-electron system.

It is assumed throughout that the independent-
particle picture or at least a quasiparticle picture
is an acceptable starting point for the analysis.
The polyvalent metals (including equivalent poly-
valent intermetallics) are therefore particularly
suited to this analysis since the important struc-
ture falls near the Fermi energy where the quasi-
particle picture is most likely to be va,lid.

the surface of constant energy 8. From (2) and
(3) we find

G (8) = (3N/2g~)k, ',"'(8)/k~ = G (8X)[k'„'(8)/kx],

(4)

where G'(8XO) is the free-electron density of levels
at 8 =8~, and in turn tx is the free-electron ener-
gy at k = kx =''2v/a. In (4) 8'„ is the free-electron
Ferini energy, and k', ", '(8) is the solution for fixed
8=8 (k) of (2) with k, = 0. If we define,

g.(8) = G.(8)/G'(8'), e.= 8./8',

y =k/(2. /. ),
then

e.(p) =p', + k„(p„) [k.(p„)=H„/8']

II. DENSITY OF LEVELS: ZONE-FACE STRUCTURE

Figure 2 shows sufficient of an aluminum band
structure' to display the regions responsible for
the details in the density, of. levels noted in Fig.
1(a). In the neighborhood of a single zone plane
(and far from the intersections of such planes) it
is customary to consider a standard (2 x 2) secular
equation. For the present purposes however, the
three-band problem'

&0(k) Ua Ua

Ug Tg(k) 0 = 0,

has a useful symmetry which aids in determining
the correction to the 'free-electron density of
levels. pere

T"„(k)= (ff'/2m ~)(k -K )' —8,
where m* is an effective mass, and K a recipro-
cal-lattice vector for the structure under consid-
eration. For low-order secu)ar equations the Ug
are to be regarded as folded Fourier components'
of the pseudopotential as constructed from the V~.

From (1) it is evident that the three bands must
have the form

e = (2 v/aK)3(e - p', ),
u =(2v/alf)'(U~/8;),

k3 /K (2 v/a E)Pp

and

$+3'2

(6a)

(6b)

(6c)

Then after a little manipulation E'q. (1) can be cast
in either of two forms. First as

y'- y(4q'+ 2u'+ 3) = --', (4q3-u'-+), (8)

in which the coefficients of this standard cubic
form explicitly depend on reduced wave vector q.
Using (I) the solutions to (8) therefore give the
band structure:

& (q) =q'+ 3 -(2/vS)(4q'+2u + —')'~

g„(e)=p „(e).
We proceed to find for each symmetric-zone-plane
pair the contribution from (5) that is in excess of
g(e}=We, the result for Ult=0. This is most easily
achieved by rewriting the secular Eq. (1) in di-
mensionless variables

h (k)=(K /2m*}k~3+H„(k„), m=1, 2, 3, (2)
~3(4 q' - u' -+}xcos 3 arccos
4 3 2 3 j 3f3 7 (9)j4q +2u + 3)

where H„(k„) is entirely a function of k„, the com-
ponent of k parallel to K (k, being the perpendicular
component). To obtain. the contribution G (8) to
the density of levels from the mth band at energy
8, we start from"

.(s=,".f „.,"'",
—, ( — .( )&. w

3~5& i m

where Q is the total volume (containing N elec-
trons) and S (8) is the branch in the mth band of y'- y(4g+2u'+ —,') = 3(4&+ 5u -+), (10)

with rn 1, 2, or 3 according to the branch of the
arccosine chosen (see Appendix A). For the choice
u=0.05 these bands are plotted in Fig. 3. They
have the expected extrema, the band gap at q = —,

'
being ~2u~+0(u'), for example.

"Zhe density of levels, in which we are primarily
interested, follows from writing (1) in its second
form:



N. %. ASH CROFT 19

2.0- I..O

I.O 0.8

I' X W T' U X

FIG. 2. Energy bands in Al corresponding to the mea-
sured Fermi surface. [Energy is in units of (82/2m )
(2x/a)2. ] The bands along 11. (not shove) are similar in
form to the bands along 1'X. Expanded sections of this
figure appear in Figs. 5 and 7.
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iri which the coefficients of the cubic form now ex-
plicitly depend on the reduced energy. The solu-
tions to (10) are either

ol

y = -(2/~3)(4q+ 2u'+ 3)'"
1 v 3 (4q + 5u' —~g )xcosh 3 arccosh

4q+ 2g'+ —,j3 2
~

y = —(2/v 3 )(4q+ 2u'+ —3)'~'
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FIG. 3. Energy bands (k1=0) arising as solution to Eq.
(9). The second band has been extended beyond q= 2 be-
cause as noted in the text a rotation of the figure by 90'
gives the solution to the 3-band density of levels problem
[relabeling q by g (e)].

v 3 (4q + 5u' —~g )
X COS 3 arCCOS I 2 1 w3/. 2 j(4g+2Q +3)

according to whether

'~3(4e+ 5u' ——', ) )
(4&+ 2u'+-,')'"

(12)

(13b)

q, (e) = [~+ l+ (2/~3)(«+ 2 '+ -')"'
xcos-,' a(q)]'~',

where

W3(4q+ 5u'- ~g)n(q)=arccos
(4q+ 2Q + 3)

(13c)

(14)

is defined in the range 0& n & m. Geometrically,

In all but a small range of negative energies it is
the 3 branches of (12) that are of interest and for
these we have,

q, (g) = [q+ —', —(2/~3)(4q+2u'+ —,')'"
x(—,

' cos —,'a(g)+ (W3/2) sins o(e))P ~',

(13a)

q (&) = [&+ z —(2/W3)(4&+ 2u + 3)

x(-,' cos —,'e(q) —(v 3 /2) sin-,'a(q))]'~',

these solutions can be obtained from Fig. 3 by
rotating it counterclockwise by 90 and reflecting
about the (new) vertical axis. (One of the bands
has been extended into the next zone for this pur-
pose. )

If we now return to (5) [and use the definitions
(6a) and (6c)] we find that

g„(e)= (aK/2v)q (e/y) [y= (aK/2w)']

and the deviations from free-electron behavior are
thus

Ag (e) = (aK/2m)[q (e/y) —(2v/aK) We]. (15)

It follows that in an approximation which neglects
further structure arising from zone-plane interac-
tions (see below) the density of levels can be ob-
tained by augmenting ~e with (15) summed over
zone-plane pairs. "

An example of (15) augmented by the free-elec-
tron result is shown in Fig. 4 where the level den-
sity in aluminum is calculated in this approxima-
tion, the U~ being taken from Fermi-surface
data. '2 Though quite different overall from Fig.
1(a) the principal features of the curve are very
well understood: pairs of Van Hove cusps (square
root singularities associated with band extrema)
are separated by near linear regions in g(e). The
linear region, also expected from the general
results of Van Hove, can be traced to the follow-
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ing: returning to equation (3) we note that the
free-electrondensity of levels can be written

g(e) = [S(e)/S(l)]e ' ',
where S(e) is the area of a (spherical) constant
energy surface at energy and S(1) is the area of a
corresponding surface at e = 1 [i.e., & = (5'/2m*)
&& (2w/a)']. Suppose we now consider Nr pairs of
equivalent Bragg planes (associated with recipro-
cal-lattice vector K) which are cut by a spherical
constant energy surface. The planes form a poly-
hedron inside of which there may be a portion
Sr'(e) of surface, and a portion Sz(e) outside. It
is easy to show that

Sge}/S(1)= e(1-N )rN+„(Ka/2 )ve'~', (17)

so that the contribution to the free-electron level-
density from the portion of surface remaining in-
side the polyhedron is

g„'(e) =Nr(Ka/2w) —(Nr l)e'~'-.

Thus

=-(Nr- 1)
de r Ka

For the (111)planes of the fcc structure this slope
is -W3, and for the (200] set it is -1. These are
very close to the slopes seen in Fig. 4 between I,
and L,', and X, and X4, respectively. The physical
reason for this is that until the energy reaches I,'
(contact with the zone at I beginning at L,) no
Fermi surface lies outside the (111)planes and that
which is inside is predominantly free-electron-
like." A similar argument applies to the (200)
planes except that it is necessary to note that
when e reaches X, the effects of the (111]set have
largely healed. The argument readily generalizes
to other structu. res.

g(e)
I.4-

l.o

0.8

0.6

III. ZONE-EDGE STRUCTURE

Wee shall now see that a very similar structure
emerges when we consider the nature of the ener-
gy bands in the neighborhood of intersecting zone
planes. As a rather specific example, which will
illustrate some quite general points however, we
shall examine the bands in the vicinity of the in-
tersection of two (111)planes in the fcc zone [see
Fig. 1(b)]. Near the point K [i.e., kr= (2m/a)(-'„-,', 0)]
and near the points equivalent- to K by symmetry
the bands follow from the solutions of"

To(k) Ui U,

U, T„,(k) U,

U, U, T„;(k)

—0

where U, = U(111), U, = U(200), and U, w U, . Again
we anticipate second-order corrections to these
solutions from higher bands. We may reduce (20)
as follows: put

k=k„+(2m/a)~.

Then (20) can be written

The form of the cusps bounding the linear region
is well known from the two-band approximation. "
Define a vector 1=(l„,l„l,) by

1=/-K(a/4v) (I,iiK).

Then

e = —,
' + l'+ [u'+ (1.K)']' ',

and for sufficiently small E„

e =-,'+ I', + l', a [u+ (1/2 Iud) l',].
It follows that the singular part of the density of
levels is [setting e„=-,'(aK/2w)']

2N l2ul"'(er-lul- e)"' e«r-lul
2N, l2ul'"(e —e,—lul)"', e & er+ lul,

(19)
again in accordance with Van Hove's general re-
sults. Thus both the singular and linear forms of
the density of levels resulting from zone contact
of the constaiit energy surfaces can be straight-
forwardly accounted for and indeed are familiar
results.

0.4
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FIG. 4. Density of levels according to Eq. (15).
slopes g~ and gx of the linear regions between the
structure are given in the text.

I.8

The
cusp

-2p —X u, =0,

where

q =. ~ (1/~2, I/&2, o),

p =z ~(0 0 1)

(21)

(22a,)

(22b)
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X= e ——', —~'+ (I/&2) Tr ~ (1/v2, I/V2, 0) . (22c)
(As before energies are measured in units of Sx.)
Expanding (21) we now arrive at

(2&2 q —X)(Z' —u,'—4P')+ 2ui(u, + X) = 0. (23)

An equation similar to this will result for a struc-
ture other than fcc providing variables exploiting
the symmetry and corresponding to (22a} and

(22b) are used.
Let us first consider solutions to (23) for the

case p = 0, i.e. , Tc confined to the (mirror) plane
(100). From the three nondegenerate values of X

so obtained, we find

e, = —,'+~' —(I/~2)q —u', (24)

e, = —', + ~'+ (I/~2) q+-,' u, + [(W2q —u, /2)'+2u, 'l'",
(26)

and

extrema may therefore be located on the line of
symmetry but not necessarily at K itself. In fact
it is easy to see that the minimum in e, [e,(min)]
is at

q=q. ..=(1/2~~)u, (I/~s) lu, l;
whereas the maximum in e, [e,(max)] is at

q =q. =(I/2~». +(I/~3) IM. I
~

(27)

The extrema are therefore separated in energy by

&e= e, (min) —e,(max) =~6 lu, l,
plus second-order corrections.

Since (23) is quadratic in p we immediately an-
ticipate singular structure in the density of levels
associated with these extrema. It will be in the
form of a Van Hove pair, with cusps separated by
v 6 ll,, l

(which may be contrasted with the separa-
tions 2luil or 2lu2l for the zone-plane structure).
Again, to within second-order corrections the
cusps are equidistant from a mean energy

e, = —,
' + v'+ (I/~2) q+ —,

'
u, —[(v 2 q —u, /2)'+ 2u,']' i' . P= 8 +~u2.9 (30)

(26)

These bands are plotted in Fig. 5. The important
point to notice in these curves is that e, gives
rise to a band minimum and e, to a band maximum,
but these extrema are not located at the K point
(/&=0), nor are they coincident in the zone (as, for
example, are the extrema considered earlier).
The K point can be considered to lie on the line
of symmetry I'K extended by KX to X, a center
of a square face in a bordering zone. Though this
line lies in a plane of reflection symmetry, there
is no inversion symmetry (about K} along it. Band

To complete the description of these singulari-
ties we need to determine the curvature of e,. at
the extrema. This is easily accomplished by ex-
panding (23). The result is that on the high- and
low-energy sides of

~ +-,', +(3/W~)l. , l, (31}

[referred to as A„(+) and A, (-)]we expect a square-
root behavior in g. In the fcc structure the basic
integration over k required for G(8) can be re-
stricted to the 4, th symmetry element of the zone
which contains at two of its corners the (equiva-

'e

l.4—

l,2-

I0-

0.8—

0.2—

FIG. 5. Energy bands
along I'K and KX: Note
that the positions of the
extrema (marked P and Q
at energies A, and Q) do
not coincide with the sym-
metry point levels 8;-. Al-
so note the band contact
near the K point. Bands
e&, e2, and e3 are given by
Eqs. (24), (25), and (26),
respectively.

0..
0.2 0.4 0.6 0.8 IO K 0.2

=ka
X 2'
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lent) points U and K, each of which is shared by
three neighboring zones. Accounting for the mir-
ror planes we therefore arrive at a weight of 16
for each such singularity: this plays the role of
the N~ for the zone-face structure considered
above. Then if &e is measured from the energies
given in (31) we find

5g(ne)=8 i, (lu, llg, + lujll&6l)'i'v'ne, (32)
2v2

8, + 2S, = 4v k' [N r (1 —K, /2k) + N r (1 —K2/2k) ],
(36)

where N~ and N~ are the numbers of zone-plane
1 2

pairs corresponding to reciprocal-lattice vectors
K, ({111/)and K, ({200]). From (35) and (36) we
deduce that when 5= 8 (k =W5/2) we have

S,= 4 vk2[4(1 —&3/2K)+ 3(i i/k) i],
or

for an energy 4e in excess of the band minimum,
and

s, /s = 6(i I/is 2/v is) = 0.2is3, (37)

««e}= 8,7i8 (I~il l~2- l~:I/~~l)"'«e2v2

for an energy Ae below the band maximum. If lm, l

«u~ (as in Al) it is possible to replace these by

an exact determination of the third zone area, for
e= ~ . It then follows that

S,(k = v 5 /2) = 3.429 = C „(5)'i' (5 = -')

or

5g(&e) = S
2' S, = 77.6 V'~', (38)

(35)S(e= —,') =S,+S,=4~k'.

But from a slight extension of (IV) it is easy to
see that

It remains to determine the linear region in g(e}
between these two cusps; By an argument similar
to the one used to determine g(e) between L, and
I.,' (or X, and X4}, we note that when e falls in the
gap near K [see E.q. (29)] the structure of g(e) is
determined largely by the free-electron contribu-
tion elsewhere. For energies confined to this gap
it is the case that first and second zone levels are
occupied, while third zone levels are empty. The
third zone area is missing and the total area is
that of the first and second zones. For a free-
electron surface it is a matter of simple geometry
to calculate the third zone area when e is in ex-
cess of —,

' by a small amount, i.e. ,

e= —,
' +5,

where 5 is small. The result certainly must be of
the form

S,=Cf„5 ~',

since the third zone sections of the free-electron
Fermi surface can be constructed, approximately,
from three planar sections each composed of two
triangular regions whose heights scale as 5' ' and
whose bases as 6. The constant C„, is deter-
mined from a simple argument: observe that when
5 & 8 the total Fermi surface area is divided among
zones 1, 2, and 3 there being none in zone 4, i.e. ,

S =S,+S~+S3.

When e =—', (i.e., 5 = —,) the Fermi surface exactly
passes through the 8'point and then both zone 1 and
zone 4 are empty. Thus

the constant Ci„='I7.60=486~2m(1 —I/v5 —2!~15),
being uniquely r'elated to the zone geometry. "
This result, combined with Eq. (16), enables us
to obtain an estimate for the slope of g(e) either
side of the cusps described by (34). For, if e is
within the gap near E, then

( )
4me- C„,5'i'

f/2 (38)

so that for small values of 5

dg(e) 1 3 C,„5'i'
1/2 2 4 1/2 (40)

In the case of Al this leads to slopes of approxi-
mately -1.1 at the lower cusp, -2.1 at the upper,
and -i.'t at the gap center. This variation across
the gap reflects the nonanalytic growth of the
free-electron third zone area, an effect not en-
countered at lower energies in the first and second
zones. Rounding of the actual Fermi surface, not
accounted for in (39) will ameliorate some of this
variation in slope, and sirice such rounding is less
important the higher is 5, we can expect the value
of dg/de at the upper extent of the gap to be the
more reliable estimate, i.e.,

g =ye/3)[I (3C„./8.)][...(I/~6}l., l] i . (4i)

Referring to Fig. 6(s) we may therefore sum-
marize to this point as follows: the principal
singular structure in 5g(e) can be located by the
energies L,' and L, (8~+ lV», l

to first order), X4
and X, (Bx+

l V», l
to first order) and A, and

A„[8'r+ —,
' V»o+ (3/W2)

l V»ol to first order]. The
magnitude of the singular structures, given these
energies, is determined very nearly by the slopes
g~, g», and g» [Eq. (18) and (41)]. Immediately
below or above each singular point we find that
5g-(4e)'i' with coefficients given according to
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FIG. 6(a) Summary of cusp structure in the normal-
ized density of levels arising from singular points in the
band structure near L„X, and X. Notice that the energy
gape and slopes (g, see text) determine the magnitudes
&g. Notice also the significant departure from free-elec-
tronbehaviorat e&. (b) Structure in &gassociated with the
singular critical. points (see text) near R'and&. Here
e~c(R) andes~(~3) mark the location of minimum and max-
imum energies on the closed loop along which bands one and
two touch. Bands two and three begin to touch at e~&(W), al-
so a minimum. The closed loop (see text) along which
these bands meet wiQ also have a maximum, in this case
at an energy much greater than ez.

case by Eqs. (32) and (40). [Notice from Fig. 6(a)
that between I, and A„, there is then very little
freedom in constructing continuous curves between
the singularities. ] The other point worth noticing
immediately here is that residual structure from
A„persists quite noticeably at the free-electron
Fermi energy. " This point gains further promi-
nence when we consider the additional single-par-
ticle structure in g(e) that arises from band contact.

IV. BAND-CONTACT STRUCTURE

%e have not, however, exhausted the possible
singular structures. There are three other minor
features occuring, as indicated earlier, in the
energy range of interest here (6~hoK). They are
associated with the occurrence of contact between
bands, which can be seen happening near. the W

point and also at the K point (Figs. 5 and 7). These
are examples of the behavior expected from the
general arguments of Herring'7 concerning acci-
dental degeneracy. To elucidate the nature of the
energy bands in the neighborhood of such degenera-
cies we consider first a wave vector k in the vi-
cinity of W [k~ = (2 m/a)(1, —,', 0) ] where the secular
equation can be written'

(tot200 2}(tlllt111 2}

0.8—

0.6—

0.4-

If we put

k = k~+ K '(2 K/a),

then we find

t„,=t, —2K' ~ (1,1, 1},
t„;=t, 2K' ~ (1,1,I}, -

and

t2,0:to 2K ~ (2 0 0)

Now as Harrison" has noted, curves of band con-
tact in Al will lie, by symmetry, in (100) planes;
these are planes of reflection. In such a plane

g,'=0, and it follows that along a curve confined
in the plane

Then from (42) either

or
(43)

(t t, —u )(t, , +u ) —2u, (t + t —2u ) = 0. (44)

But in order for the band given by (43) to be simul-
taneously degenerate with one of the bands given
by (44) we must have

0.2— .=I"*„,"'
I

W I'
I

0 O. l 0.2 0.3 0.4 0.5
FIG. 7. Energy bands along 8'X. First and second

bands are degenerate at W, split as K moves towards X,
and the upper member of the pair crosses a band which
at 8' is counted as third, but at X is second. Numbers
in parentheses give band indices (Ref. 19).

with

T;= &;&x.

—ul(to+ t200 —2u2)(till + till 2u2} 1 (42) (45)K~ + Kq [(u2 —u1)/u2] = K„

a result also obtained by Harrison. " It follows
that Eq. (45) (augmented with the condition K,'=0)
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gives the curves (and symmetry determined re-
plicas) along which bands touch. In a more com-
plete treatment involving an infinite-order secular
equation we can expect the curves represented by
(45) to be but portions of closed curves (approxi-
mating the shape of a rounded square} along which
the energy may have extxema.

The hyperbola represented by (45) has two
branches, one of which passes through the point
8'where, as is well known, there is a double de-
generacy (see Fig. 7). For the choice of u, and u,
used in our example, the degeneracy involves
bands one and two. We may easily trace this
branch of the hyperbola to the K point (see Fig. 5)
as follows: near K (and for k, =0) we may write
k = (2w/a) [g+ (—,', —,', 0)] and use (20) to find the line
of band contact. Its equation is

K, = —~„-(u,'—u,')/2u, ,
a'nd accounting for the change in origin (from W

to K) this is simply the asymptote of the branch
of (45) that passes through W. Accordingly bands
1 and 2 touch along this branch: bands 2 and 3
touch along the other branch, as can be seen from
Flg. V.

For the purposes of locating (in energy) the
singular structure in g(e) associated with band
contact, we need to determine the energy at which
bands first touch. Using the solution t», =u, it
follows that

e = k» —g(K„+ Ky)+ (IP„+ K~) —u2,

K =K+IC~p (48)

where K' was previously measured from S'. The
wave vector g is now measured from the location
of initial-band contact and is.taken to be small.
After a little algebra we find

to ~+ Ky+ 2Kc+ 2'

t2OO
= ++ Ky+ 2K~ —2K~ ~

K 2 Kg

t~~~ —& —g +2g

where

& = esc(W) —e+u, + u' +. 2zp, .

(49)

Using transformation (48} the curve: of band con-
tact are given by

K~+ KyKq = K„(Kg= 0) ~

and if z„ is small enough we can write

K) = K~/Kq .

(5l)

Evidently there is no discontinuity in V„e at the
banc)- crossing minimum.

Now if t is confined to the line XW (which im-
plies to= t2„, and f», = t»,-) then (42) reduces to

(t, +u,)[i,+u, —2(~, —~,)]=4u,',

We consider the latter; the arguments for esc(K)
and esc(W3) are almost identical. We proceed from
(42), first writing

so that along the line of band contact the minimum
value is

esc (K) = 0'„-u, + (u,' —u', )/4u, + —,'[(u', —u', )/2u, ]'.
(46)

or

++ Ky+ 2K' = (Ky —Kq) + [(K~ —Kq) +4ug]

4+ Ky+ 2K~= (K~ —K ) —[(K~ —K~) + 4ug —up]

This indicates the onset of band contact near K,
and is marked as such on Fig. 6(b}. The corre-
sponding band-contact maximum on this branch is
at W. We refer to it as esc(W, ) [Fig. 6(b)j. There
is also a band-contact minimum near W associated
with the remaining branch of (45). It is easily seen
to be located at

Tc,
'= (0, v„0),

where

K~ = —(u2 —ug)/u2

(52)

It is this last band that crosses the band corre-
sponding to to= u„ the degeneracy occuring at
g, =0 (see also, Fig. 7). If standard band order-
ing is now imposed" it follows that a discontinuity
in V„e occurs at g, = 0.

Ky

Next, consider w'ave vectors y confined to the
(200) face passing through the point W under con-
sideration. Then I(.„=0, g„g,@0, and one solution
of (42) is t, =u, . For the energy range of interest,
the others are given by

(measured from W). From (43) the corresponding
energy is found to be

26u2(u2K~ Kg) 4 2 up+ u2Kq 0
2 2

u+u u+Q1 2 2
(54)

ceo(W) = egr+ [(u2 —u~)/u2] CPS/u2 ) (47) where

and is also marked in Fig. 6(b).
It remains to investigate the nature of the singular

structure in g(e) associated with esc(K) and esc(W).

5=+ —Ky —u2 o

I

This is sufficient to establish that when z, =0 there
are two solutions for 6 (and hence for e) that are
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g(e}

I.O

0.8

0.6

FIG. 8. One-. electron
density of levels in Al for
e & ez. The curve shows
the major cusp structure
and minor features {ar-
rows) reflecting critical
points on band-contact
curves. Each of these con-
tributes 6g- (6e)3~2 (see
text) and the one closest to
ez is partially responsible
for the steeply rising be-
havior of the density of le-
vels at the Fermi energy.
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0
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linear in v,. Accordingly at e~(W), V„e is also
discontinuous. We may now conclude that the 0-
space point corresponding to ea (W) is one at which
there are two discontinuous components of V'-„e, but
is also a point lying on a curve of contact between
two bands. Et is an example of a singular critical
point, as discussed by Phillips, ' for which

og —(e —e )"'.
This behavior is indicated schematically in Fig.
6(b). Because of the relatively small phase space
involved with these singular points we may expect
their overall contribution to 6g to be somewhat
smaller than that expected from the cusp struc-
tures, but to determine their overall magnitude
it may be necessary to defer to numerical com-
putation. Figure 8 (which shows the density of
levels with all important singular features repre-
sented) includes a. crude estimate of the contribu-
tions from eac(K) and e~ (W) by considering the
0-space volumes involved in the small conical
parts of the corresponding constant energy sur-
faces surrounding the points. Note however that
the location in energy of the band-contact critical
points is readily determined.

This completes the analysis of those singular
contributions to g(e) at energies less than e~. Ar
guments of a similar kind can be advanced to re-
veal the nature of singular structure at energies

in excess of ez (e.g. , at W,' and W, ) and also, as
noted earlier, for different crystal structures.

V. DISCUSSION

We have shown by example that for a nearly-
free-electron metal whose energy bands can be
described by a pseudopotential interpolation, the
principal structure of the one-electron density of
levels can be located in terms of the major pseudo-
potential components. Though it is possible to
estimate the contribution of the dominant singular
regions, it would be useful to have confirmationi
of the estimates by numerical means' that now-
adays are of an accuracy sufficient to determine
even the weak features associated with the band
contacts. " Such a feature can be seen near the
Fermi energy in the calculation of Smrcka. but
is not identified as such. The same calculation
clearly shows a zone-edge cusp pair near the K
point (though there seem to be no extrema along
KX in the published bands): Smrcka attributes
this structure to band crossing, which appears
to be a misinterpretation. Both zone-edge and
band-contact features are clearly apparent in the
density of levels calculation of Koyama and Smith"
a determination based on the band structure com-
patible with the known Fermi surface of Al. Other
calculations"" of the valence-level density for Al
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in the energy range of interest here show similar
structure to varying degrees depending largely on
the accuracy of the method used.

Zone-edge structure in g(e) might well be ap-
parent in certain experimental probes, notably
soft-x-ray emission. The L» emission data, of
Neddermeyer" shows features that may be readily
identified with A„and A, and is more clearly re-
solved than the L „L,' structure. The same is
true of the data of Fuggle et al. ,"and the point
may be made that the zone-edge pair of singulari-
ties can be used to determine V», with far more
precision [see Eq. (29)] than the lower energy
structure. The other point worth making is that
the density of levels at e~, while close in magnitude
to free-electron value, is nevertheless' highly
peaked there, and this is entirely due to single-
particle effects, namely, those associated with
A„and e~(W). Figure 8 makes this apparent by
showing the termination of g(e) by a zero temper-
ature Fermi-Dirac function. In an experiment,
thermal broadening and instrumental resolution
will pare the high-energy side of this peak further.
Evidently the extraction of information pertaining
to x-ray absorption or emission-edge many-body
structure" will require that the single-particle
structure near e„be properly determined, es-
pecially that arising from a neighboring band con-
tact 5g- (6e)'~2 region.

As rema, rked earlier, the square root singu-
larities associated with zone-edge structure are
separated as far as their k-space locations are
concerned. In the case of fcc Al, we see from
(27) and (28) that the two corresponding extreme
be along the XW line of the zone (a [100]direc-
tion) and are separated by

(56)

It will be recalled that the energy separation of the
critical points is flu, l. Restoring the appropriate
dimensional factors, the change in wave vector
corresponding to (56} is

ill
a vS

or about 0.05 A ' in Al. Evidently the points A„
and A, may jointly be scanned by a probe (elec-
tron energy loss, for example) capable of resolv-
ing an excitation of 0.58 eV at a momentum trans-
fer of 0.05 A.

It is of interest to enquire whether the upper cusp
of the zone-edge structure (at A„) may be brought
by an application of pressure to the Fermi energy,
and thereby possibly make its influence felt more
prominently in both equilibrium and transport
properties, or even perhaps in ordered states
such as superconductivity. A first-order analysis

shows that for this to happen we must have

(57)

where in computational units ez=1.269 (plus
second-order corrections). If we determine the
u's from a screened empty-core pseudopotential
whose core radius y, is taken as an invariant pro-
perty of the aluminum ion,"then setting x='q/2k~
we have

)
2 &~ X cossx

x +X f(x)
where s=2k~r„X'=0.166r, (recall that kza, r,
= 1.92), and f(x) is an exchange and correlation
correction to the dielectric function of the electron
gas, whose exact form is not at al1. important for
the present estimate. An increase in pressure de-
creases the value of electron spacing parameter
r, and hence alters the values of u(x», ) and u(x», ).
Since the argument of the cosine is close to w/2 we
can deduce that

du(x)/dr, = [u(x)/r', ](1+s,x tans, x),
where x', is the appropriate zero-pressure value.
Thus

u(x, r,)

=u(x, r,')+ [u(x, r', )/r', ](1+s,xtans, x)hr, .
Condition (5'I) then determines lhr, l/r, to be
approximately 0.035 (thus b, V/V-0. 1) which
translates with the known bulk modules of Al to
a pressure less than 100 kbar. This assumes that
Al remains in the fcc structure, which according
to the calculations of Friedli and Ashcroft" is
likely to be the case. If the singular point is
ma, nifested in a physical property of the metal at
an accurately determined pressure, such a mea-
surement will aid not only in the verification of the
band structure, but also will serve to determine
the volume dependence of the pseudopotential. This
principle should apply in other polyvalent metals,
and also in intermetallics with sufficiently high
nominal valence.
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APPENDIX

The branches of the arccosine in (9) are easily
ordered by considering the solutions at a zone
plane (q =-,'). Then
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y = (2/vY) 4/W3

~3(—', —u')+2u'cos 3 arccos 4 2 2 3/'2

and when u -0 the solutions corresponding to
cos '(-1}=w, -w, and 3n, and q =-,', —,', and —,', as
required. If u0, the solutions may be written

y =(2/W3)4/W3+2u' cos[—, m ——,o. (—'), +—
2m]

s =q'+ —,
' —(2/W3)(4q'+ 2u'+-')'"

x [-,
' cos-,'c.(q)+-,'csin-,'a(q)],

g, = q'+ -', —(2/W3) (4q'+ 2u'+ —,')' ~ '

[a cos 3 n(q) —-', ~3 sin —,
'
n(q) ],

e, = q'+ —,
' + (2/~3)(4q'+ 2u'+ —,') cos-,' c.(q),

where

where

(m =1,2, 3), (A2) ~3x
cosn(q) =, „„,x= 4q'- u' ——', ,(x+ Q)

l 4u l (1+ —"u'+ -' u')' ~'
sinn( —', ) =

(—+2Q )
(A3)

and

Q =2@ + g ~
2 4

The first-order energies are therefore

4 + p ~2 4 + P ~3 4 t (A4)

again, as required. Corrections to (A4} higher
order in ~u~ can be readily obtained by further ex-
pansion of (A3). Away from the zone plane (q & —,')
the energies are
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~For a review of these methods, see M. L. Cohen and
V. Heine, Solid State Phys. 24, 38 {1970).

W. A. Harrison, Phys. Rev. 147, 467 (1966); A. I. Go-
lovashkin, A. I. Kopeliovieh, and G. P. Motulevich,
Sov. Phys. JETP 26, 1161 (1968); N. W. Ashcroft and
K. Sturm, Phys. Rev. B 3, 1898 (1971).

3K. Sturm and N. W. Ashcroft, Phys. Rev. B 10, 1343
(1974).

4L. Van Hove, Phys. Rev. 89, 1189 (1953).
~J. C. Phillips, Phys. Rev. 104, 1263 (1956).
Real simple metals are never strictly periodic: even if both
pure and without defects they suffer distortions from
the presence of phonons which means, for example,
that the actual Fourier components of pseudopotentials
extracted from experimental measurement may contain
Debye-Wailer type correction factors.

YN. W. Ashcroft, Philos. Mag. 8, 2055 (1963). The band
structure taken from this reference corresponds close-
ly to the measured Fermi surface. (Note, however,
that two of the bands along I'U have been reversed in
connecting the discrete solutions of the secular equa-
tion used there. This is corrected in Fig. 2.) Slightly
refined parameterization was proposed by Anderson
and Lane fPhys. Rev. B 2, 298 (1970)] which may yet
be further refined by more recent high-precision mea-
surements of the Fermi surface of Al fColeridge and
Holtham, J. Phys. F. 7, 1891 {1977)].

Blt is assumed that
~ Uzm ~

&
~ Ug ~, as is usually the case.

Effects of U&g begin at second order and can be ac-
counted for by a further application of perturbation
theory,

SSee, for example, Solid State Physics by N. W. Ash-
croft and N. D. Mermin (Holt, New York, 1976) p. 156.

~~See Ref. 9, p. 143.
~'To second order in UK it is sufficient to assume the,

effects of zone planes, taken in symmetric pairs, to be

additive. This is a consequence of perturbation theory
and also of (3) written in its equivalent form G~(g)
= &p,sz gg-h (ki) which shows that any structure be-
yorid the free-electron result that arises from a given
region of k space will be summed over symmetrically.
related equivalent regions in the BriQouin zone (BZ).
These are given in Ref. 7. Note, however, that they
are "folded" in the sense discussed above (Ref. 9),
since Fermi-surface dimensions were used in an anal--
ysis using a 4 && 4 secular equation.

3H. Jones, Proc. Phys. Soc. 49, 250 (1937); M. A. E.
Nutkins, Proc. Phys. Soc. B 69, 619 {1956).

~4Though the sign of u& is unimportant in what follows,
the sign of u2 does have an influence on the ordering of
levels. Again since we are illustrating a method with
an example, we will choose u2 & 0 (as in aluminum).
The case for u2 & 0 requires only minor modifications
throughout.

~5By geometrical arguments of equal simplicity we can
calculate the first and fourth zone areas for free-elec-
tron energies slightly below or slightly in excess of e

Since (dS3/de), 5~4 can also be obtained we can
determine with useful precision St, S& and SB at the
actual free-electron Fermi energy.

~6Note that since the Fermi surface is largely free-elec-
tron-like away from these si.ngular points, and the
character of these points is identical to the points as-
sociated with I. and X (they are all ordinary critical
points), then with reasonable accuracy we may use the
fo~m of (15) as a basis for extending 6g(e) away from
the cusp itself.

~~C. Herring, Phys. Rev. 52, 365 (1937).
~ W. A. Harrison, Phys. Rev. 118, 1182 (1960).
~Asid|: from ensuring an ordering of bands that correct-
ly leads to periodicity in reciprocal space, the assign-
ment of the band index is conventionaQy effected in



SINGULAR STRIJCTURE I'5 THE DENSITY OF I KVKI S OF. . .

such a way that8„(k ) &5~(k) imp), ies n~ m. This then
guarantees that the surfaces of constant energy (branch
m of which is defined by the solutions for k (if they
exist) of 8 (ki=g will be continuous. Simple but crude
estimates of the corresponding singular contributions to
g(e) can be obtained using the methods of Ref. 5, but
their overall scale is best determined numerically.

. G. Gilat and L. P. Raubenheimer, Phys. Rev. 144, 390
(1966).

2~An accurate application of the Gilat-Raubenheimer
technique to pseudopotential interpolated bands as cal-
culated by Snow IPhys. Rev. 158, 683 (1967)]has been
given by J. F. Janak and A. R. WiQiams IIBM Report
RC 2411 (No. 11718), 1969 (unpublished)j. The results
show most of the representative features of Fig. 8 al-
though they are not identified in the manner described
here.
L. Smrcka, Czeck. J. Phys. B 20, 291 (1970).

~SR. Y. Koyama and N. V. Smith, Phys. Rev. B 2, 3049
(1970). Notice that spurious fine structure can be in-
troduced into g(e) by numerical. procedures whi. ch do
not accurately distinguish between band extrema
{which lead to Van Hove cusps) and band crossing
(which lead to weak structure).

246. A. Rooke, J.Phys. C. 1, 767 (1968).
V. Hoffstein and D. S. Boudreaux, Phys. Rev. B 2,
3013 (1970).

~J. %. D. Connolly, Int. J.Quantum Chem. IIIS, 807
(1970).

'-~R. A. Tawil and S. P. Singhal, Phys. Rev. B 11, 699
(1975).
S. P. Singhal. and J.Callaway, Phys. Rev. B 16, 1744
(1977).
P. Leonard, J. Phys. F 8, 467 (1978).

3oH. Bross, J. Phys. & 8, 263& (1978).
H. Neddermeyer, Z. Phys. 271, 329 (1974).

32J. C. Fuggle, E. Kallne, L. M. Watson, and D. J.
Fabian, Phys. Rev. B 16, 750 (1977). The data re-
ported here (and in Re7. 31) contain, of course, tran-
sition matrix elements which possess an energy depen-
dence of their own which must be separated out before
a direct comparison with Fig. 8 can be made.

33See, for example, 'G. D. Mahan, in Vacuum Ultraviolet
Radation. Physics edited by E. E. Koch, R. Haensel,
and C. Kunz (Pergamon/Vieweg, Braunschweig, 1976),
p. 635 (and references contained therein), and also
J. D. Dow, ibid. , p. 649 (and, for reasons of equity,
references contained therein as well). It should be
noted that the point being made here concerning the
possible importance of single-particle structure is en-
tirely independent of ones stance towards the many-
body corrections.

34In other wor ds, any further energy dependence of the
pseudopotential, not contained in m „ is being ne-
glected.
. Friedli and N. W. Ashcroft, Phys. Rev. B 12, 5552

(1975).


