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We discuss the use of high-energy beams (i.e., in the eV range) of heavy noble-gas atoms to study surface

dynamics for relative)y high energy and momentum loss in both the nuclear and electronic channels. We give

a general formulation of this problem for the nuclear channel, which can be generalized to include the

electronic channel. The reflection probability is evaluated using the path-integral notation and applying

semiclassical methods (stationary-phase approximation) on a multiple integral corresponding to a
perturbationlike form of the reflection probability amplitude. The final form is locally similar to that

predicted by the "rippling mirror" model (i.e., the dynamical Kirchhoff approximation), provided that the

impulse approximation for the gas-surface dynamics holds. This similarity becomes global if the amplitude of
the surface corrugation is much larger than the effective range of the gas-solid forces in the vicinity of the

solid termination. The calculational procedure suggested by this formulation is tractable and is general

enough to include anharmonic excitations such as desorption, structural damage, or low-energy sputtering as

well as harmonic exeitations (i.e., multiphonon excitations).

I. INTRODUCTION

The scattering of atomic beams from solid sur-
faces ha, s developed rapidly a,s a method for inves-
tigating surfa, ce properties during the last few
years. However, most of the effort in this field
has been concerned with the low-energy regime far
below the eV range, concentrating on elastic
phenomena, such as diffraction, ' rainbow scatter-
ing, ' and selective adsorption. ' The information
gained from these investigations is therefore
limited to static or time-averaged properties of
the surface.

Recently developed experimental techniques"
provide well-defined monoenergetic beams of
heavy atoms with energies in the eV range as well
as detection systems that are capable of measuring
the energy distribution of the scattered atoms' a,s
well as their angular distribution. This progress
opens the door to investigations of a, variety of
dynamical phenomena, that can sta, rt on the surfa, ce
during the collision, ra, nging from multiphonon
excitations (in the harmonic limit) through desorp-
tion, structural damage or even low-energy sput-
tering (in the anharmonic limit) to electronic ex-
citations on the surface. The domain of accessible
momentum transfer is la, rge and the extent of en-
ergy transfer is up to -10 eV. The initial stages
of the excitation process are confined strictly to
the surface because of the short range of the ga, s-
atom —surface intera. ction at these energies.

In the light of these considerations we discuss
here the use of high-energy beams (i.e., in the eV
range) of heavy noble-gas atoms (e.g., Ar) to study
surfa, ce dynamics for relatively high energy and
momentum loss in both the nuclear and electronic

channels. This scheme has some significant ad-
vantages over the current methods for investigat-
ing the solid surface:

(i) Due to the relatively small polarizability of
the noble-gas atom and the high energy involved,
the penetra, tion of the interaction into the solid is
small compared to the range of the solid inter-
atomic potential.

(ii) The beam is an inert probe of the surface
excitations for relatively high energy because of
the high threshold for exciting its internal degrees
of freedom (e.g. , 11.825 eV for Ar).

(iii) Energy in the eV range is much higher than
the long-range attractive part of the atom-surfa, ce
potential so that the beam is totally reflected from
the short-range repulsive part of that potential
without interference from any kind of adsorption
on the surfa, ce.

There are only a few experimental investigations
a,t this time that are relevant to our problem. "'
Typical angular distributions for the system Ar-
Ag(111) are shown, for example, in Fig. 3 of Ref.
7. Ea,ch distribution is dominated by a single lobe
near the specular direction while the lobe maxi-
mum is systematically shifted toward the surface
tangent. Some measurements of energy distribu-
tions have been reported in Ref. 9.

The relevant theoretical calculations available
at this time are limited either to model calcula-
tions such as the "hard cube" model" or to full-
scale numerical calculations of the classical tra, —

jectories involved. " Oman's numerical calcula, -
tions" exhibit a reasonable agreement with the
current experimental results, ' but the lack of
flexibility as well as of physical insight associated
with such extensive numerical calculations make
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it inadequate for our purposes. The hard cube
model is an extremely simple approximation,
which provides much better physical insight than
Oman's calculations. However, it suffers from a
very serious limitation concerning its flat surface
assumption. This assumption confines the surface
atoms to move only in rigid, independent channels
normal to the surface plane. Thus momentum
transfer to vibrational modes parallel to the sur-
face plane as well as to the solid as a whole via
reciprocal-lattice vectors parallel to the surface
plane is completely impossible in this model.
This is a severe limitation for the high energies
under consideration.

The purpose of this article is to propose a gen-
eral theory for the above problem which could
motivate further experimental and theoretical in-
vestigations. The final form of this theory should
be sufficiently simple such that one can gain in-
sight into the basic structure of the problem.
Methods such as the standard semiclassical
method"' or the corrugated-hard-wall potential
method, "' which are currently used for the elas-
tic channels with a considerable amount of suc-
cess, seem to be, at least Bt first sight, less
promising for the inelastic channels. The stan-
dard semiclassical method requires in its early
stages extensive numerical calculations of clas-
sical trajectories and these become quite intract-
able when excitations of the enormous number of
solid degrees of freedom become important. The
various hard-wall methods, on the other hand,
are much more tractable but their application to
our problem should be carefully justified, espe-
cially because recoil effects of the surface atoms
might be very important for the incident energies
under consideration.

In this paper we show, however, that a hard-
wall representation is a reasonable model in our
case if the impulse approximation for the gas-sur-
face dynamics during the collision event holds and
if the effective range of the gas-surface forces is
very small compared to the amplitude of the sur-
face corrugation. This is shown by using a pro-
cedure which applies semiclassical methods to a
time-dependent perturbationlike form for the re-
flection probability amplitude. The introduction
of this form leads to a clear identification of a
definite set of dynamical variables, characterizing
the collision event. The application of the station-
3ry phase method on this form converts these dy-
namical variables into well-defined parameters
characterizing the collision and leads to a natural
application of the impulse approximation. The re-
sult of this procedure is locally similar to the
"rippling mirror" of Berry" and Garibaldi et al."
A global similarity is obtained when the effective

range of the gas-surface forces is very small com-
pared to the amplitude of the surface corrugation.
We restrict ourselves in the present p3per to in-
elastic process'es associated with energy transfer
to the nuclear channel, but the formulation we use
here can be easily generalized to include the elec-
tronic channel. The latter will be done in a sub-
sequent article. In Sec. II we consider the basic
parameters characterizing our problem and dis-
cuss the approximations which can be made. In
Sec. III we represent the general framework of
our theory in terms of the path-integral notation.
The prescription for solving the problem is il-
lustrated in Sec. IVA by means of a relatively
simple example of a static solid. The limitations
of this prescription are discussed in Sec. IVB.
In Sec. V we apply our prescription on the more
general case of a moving solid and in Sec. VI we
discuss the results, and summarize thi. s paper.

II. GENERAL CONSIDERATIONS

The problem under consideration can be char-
acterized by three intrinsic lengths:

(i) The wavelength A of the incident beam

~= 2ve/(2M, E,)'~',

where E,. is the incident energy of the gas atom
and M~ its mass.

(ii) The effective range c of the gas-surface
forces, namely, the size of the region in which
the solid-gas interaction V varies considerably,

c=-
l
~/~viz. z .

(iii) The interatomic distance a in the solid sur-
face.

The length hierarchy in this problem is
A. «c«a

such that two significant approximations can be
made:

(i) The semiclassical approximation for the nu-

clear motion during the collision.
(ii) The impulse approximation for the gas-solid

dynamics during the collision.
The first approximation is readily associated-

with the first inequality A. «c. By the impulse ap-
proximation we mean that the collision time is so
short that the interaction among the solid atoms
can be regarded as constant during the collision,
namely, that

(b.U/b, E„,,) « I,
where ~U is the change in the solid potential ener-
gy and ~„„is the corresponding change in the
solid kinetic energy during the collision. This can
be shown to be associated with the second inequal-
ity, c«a (see Sec. III).
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III. FORMULATION

Vfe describe the combined gas-atom-solid sys-
tem by the Lagrangian

«--', «)«))= «)+&.nq)«))- v( «))

where &„(r)is the gas-atom Lagrangian,
&~gq}«)) is the solid Lagrangianb and V(r, «)) is
the atom-solid interaction. g„consists of a single
term corresponding to the atom translational
kinetic energy. &~ is, however. , a many-body
Lagrangian consisting of the solid nuclear coor-
dinates as well as its electronic coordinates. The
totality of the solid coordinates is described by
the multidimensional vector «).

The probability amplitude for the combined sys-
tem to.go from the event a —= (r„«)„t, ) to the event
5 =—( r„«)„tb) is the path integral"

G(ba) ,=f err f eb(q)
a a

(2a)

8

G*"'(b, ) fqe(q=) *p q .a ((q)(b)) qr)

(2b)

we mBy write G as

t~ t~
xexp — ~„r dt -@ V r, q dt

ta ta

+ ~s 0 9 dt~ .
ta

Defining unperturbed propagators by

G„"'(b, a)= f bbrexp(- f a (r)r)t),
n

ty

G(b, )=Ga(b, e)+ a'qr. qr, fqrfqr f, q(q). fq{q).G"'(b;2)q(b, ))Ga'(), a),
ta ta

where

and the T-matrix above is given by

Z(2, 1)= -- V(r„«),)~(f, -t,)~(r, —r, )

( e 2

x((«), -«),)+(@ v(r„«),)

x G(2, 1)V(r„«),) .
The major difficulty in this problem is that V is

a strong interaction so that a perturbational ex-
pansion in V is very slowly convergent, if at all.
The advantage of writing G in a perturbationlike
form such as Eq. (3), however, is that it separates
explicitly the pre-collision 2nd post-collision
events (i.e., a-1, 2- f)) from the collision event
(i.e., 1-2) so that concepts like "collision propa-
gator" G(2, 1) or "collision-time variable" (t, -f,)
can be identified. As we shall see later, in the
semiclassical approximation the collision-time
variable (f, —t,) becomes a well-defined parameter
characterizing the time duration of the collision,
and this leads to a natural application of the im-
pulse approximation. Note, however, that both
the semiclassical and the impulse approximations
are invalid as far as the electronic motion is con-
cerned. In the adiabatic approximation one is able
to separate the nuclear coordinates from the elec-
tronic ones so that the above two approximations
can be applied to the nuclear motion. Vfe shall
not consider electronic excitations in the present
paper.

Considering only the nuclear motion in the solid
the Lagrangian ~ is written as

&sHqHq))™2' Q(q")'--' g V(q q"'),
n n ~ n

where M~ is the mass of a solid atom and n, n'
run over the solid sites. Let -us now check under
what conditions we are allowed to use the impulse
approximation. Ta do that we make a classical
estimate of the change in the solid potential

n, n'

during the collision; the relevant part of this
change is due to displacements of Bt most a few
atoms on the surface vthich Bre directly impinged
upon by the gas atom. Roughly speaking, the
change in the solid potential during the collision
can be written to first order as

4U -PUB,
where ~q is a typical displacement for a target
atom, while the corresponding change in the kine-
tic energy is

(b E„(„-'M q (bq/7')-
where ~ is the collision time. For a solid atom
initially at rest the gain of momentum during the
collision is

Mg hq/T -8 k b
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where k is the momentum loss of the gas atom.
Thus together with the relation 8'k-7'~ VV~ we get
that

IvUt~ tvUI tUI ~
eu IvVf I Vl a '

hU

where
t V~ -E,. E, in our problem is in the eV

range so that for the usual case V is of the order
of the solid cohesive energy, namely, V-

~
U~ .

Thus since c«a we finally have

~
hU/~„, „~«1,

which ensures the validity of the impulse approxi-

ma, tion.
The implication of this approximation is that the

solid action integral ean be written as

Ms

tl n tl

—(& —f,) U((qqj, ) ~ (6)

Substituting this expression into the path integral
describing the collision propagator G(2, 1) we get

1

G(2, 1) =e "'"' "2 'i' '""i'g(2, 1)

where

2 2 M ' M
)(2, 1)=f n(q) nrexp —f ' (i)'+ Q (1)") —)'(r, (q)) dtI .

1 1 tl n

We have reduced our problem to a, scattering prob-
lem consisting of a, single particle interacting with
a target of many noninteracting particles.

The next step is to apply the semiclassical ap-
proximation. " g(2, 1) is written

2 jr, r, tj=&(r, rJ=—(r)' —V(r), 7 = t, —f,2

and r, (t) is a classical trajectory between r,
r,(t,) and r, = r, (t,). The corresponding solution

for the continuity equation is given by"
g(2 1)=A(2 1)e "~" '~ (2 "

A', = -det(a' S/a r, a r, )/2)) i h. (11b)
where S(2, 1) is a solution of the Hamilton-Jacobi
equation

n

+—S= 0 (9a)
a

IV. STATIC SOLID

A. Formal solution

To gain more insight into the structure of the
Hamilton-Jacobi equation we consider here the
relatively simple ease of a sta.tic solid. For this
case the momenta of the solid atoms (V.,„S)vanish
and V(r, {q)) is independent of fq). The cor-
responding Hamilton-Ja. cobi equa, tion is

1 ~ 2 ~ 8—(Vp S) + V(r, ) +—S=O.
2M

A solution of this equa. tion is given by"
t2

S,( r„r„r)= Z I r,(t), r,(f), t)Idt,
t,

where

(10)

and A(2, 1) is the corresponding solution of the con-
tinuity equation

A2gp S) A V n$-
div ~+ g dl.v n + —A =0 ~

Mg j '2 s gt2
l

(9b)

Thus the general solution for the propagator g is
a, sum

(]/g )s ~ g e (t/0 )s~
C

over the tota, lity of the cia,ssical trajectories be-
tween r, and r, . When ~ approaches zero, S ap-
proaches the limiting form"

(14)

where the renormalized potential V( r,r„r) is a
regular analytic function of r obeying

lim V( r,r„v) = V( r) + O(v'),
y~p

(14 ')

and the first term in the sum in. Eq. (12), corre-
sponding to the so-called "direct trajectory, ""
becomes more and more important and finally
dominates the sum. In the limiting form of S
given by Eq. (13) there is a clear distinction be-
tween the contribution of the kinetic energy and
that of the potential energy. For a finite ~ the
identification of these two contributions in S be-
come less clear. Formally we can regard the
two terms in the right-hand side of Eq. (13) as the-
starting terms in a, I aurent expansion of S in po-
wers of ~; by assimilating higher order terrris in
w into the "bare" potential' V we can write
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where"

r=-'(r, +r,).
By substituting Eq. (14) into the Hamilton-Jacobi
equation one gets an equation for the renormalized
potential V, which can be solved by successive
iterations in an analytic expansion in powers of v

and p-= r, —r, . This may be a useful prescription
if V(r) is a polynomial since the spatial part of
the iterative process terminates in this case after
a finite number of iterations. For example, if
V( r) is a linear function we get for V

v(r, r„~)-=v(rp, ~}
72

= V(r) +
4

[ir V(r)]'.

It should be noted, however, that the repulsive
part of the surface potential is very different from
a polynomial. Despite this disadvantage the form
suggested by Eq. (14) is very useful from the
formal point of view, as we shall see later.

Using the phase function S from Eq. (14) for the
propagator g and substituting g into Eq. (3) we
have, after Fourier transforming from the external
coordinates r„r, to the momenta p, = p, p~ =p',

&G( p', t); p, t, ) -=G( p', t, ; p, t, ) —G "'(p, t, - t, ) —G "'(p', t, ; p, t, )

dt, dt, G "'(p', t(, —t,)G "'(p, t, —t, )
ta ta

x dre' ' d pe ' ' A r p, v' V r+ -' p V r —-' p

pm~ p' g
x exp ———vV(rp, 7)

28
(15)

where G "' is the first order term in the perturba-
tion expansion" (Eq. 4), k -=p -p

' and p =——,
' ( p + p ') .

At this stage we introduce the crucial approxi-
mations of this section, namely, the stationary
phase approximation for the integrations over the
space-time collision variables p, 7 and v= t, -t,.
The validity of this approximation can be justified
by the following consistency argument: The col-
lision-time parameter 7'„which will be deter-
mined by the stationary phase method later in this
section, is of the order hk/l'))'Vl whence the ex-
ponent -,

' M(; p'/7'-M~ p'
l
Vvl/28k. The amplitude

of the integrand in Eq. (15) includes the factor
V(1'+ —,

'
p) V('1' ——,

' p), which varies considerably
where P is in the close vicinity of the surface and

p Sc. Thus the range of the variation of —,
' M(; p'/r

is of the order kc, which is very large compared
to unity, provided that the situation of grazing
incidence and emergence is excluded. This deter-

mines the scale of the total exponent in Eq. (15) to
be very large compared to one and so justifies the
validity of the stationary phase approximation.
There are, however, some special situations for
which this approximation fails, and we shall dis-
cuss them in Sec. IVB.

%e first perform the integration over p. The
value of p which makes the phase stationary is
given by

p 7' +T' —V p~ M

and the value of the phase at p = p, is given by

1 1,(B-—S(r p„v') —p pa= — 7'l —V M~

—rV v8 P'/2M—~, (15')

ep(p', r;p, r, ) =e(eee,)fdr fere "'' B(r, r)exp( —(ee —e- —p)re — ' '/ r)ppM (17)

where

v= t), —t, . (17a)-
gV ' A Ppog

0
(17b)
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and ~, = )t'p'/2M~.
The next integration is performed over z —the

component of r normal to the "surface plane"; we

again use the stationary phase method and the re-
sult is

&G(p p, T) =&(e~e~, ) d'Re' '
d7 C(R, ~) exp~ —(e~ —e~)r+ik, f(R, v) ~, (18a)

where R is the projection of r on the surface plane,
K is the projection of k on this plane,

at.(8, 7) = z,(R, ~}— W —W
z=g0

2'

W(r, r) = V(rp„v) —
22M' Pp

. Bw a'w '"
C(R, )=iB(zR, v) ,-2tri / KP,

(18b)

(18c)

(18d)

and z,(R, 7') is the solution of the equation

k-k =~ —W(rR ~).
az

(18e)

x exp[ik, f(R) +iK R],

where

(19a)

g(R) = z,(R, ~,)+ [(~,- «-, ) —W(R, ~,)]/ —W(R, ~,),

(19b)

d2 I/2
D(R) = C(R, ro) 2))i/Sk2 2 f(R, 7 = TR), (19c)

and 70 is the solution of-

&q —&P = —[7W(FR, r)].=a (19d)

Equation (18e) expresses the conservation of mo-
mentum normal to the surface plane during the col, -
lision in terms of the renormalized potential 8'.
Equation (18c) shows that this potential has limit-
ing behavior similar to that expressed in Eq. (14')
for V. Finally we integrate over time v' with the
result:

PB(p p, Ti =B(iia~.}fd'RB(R)

the incident momentum P. This means that the
exponential in Eq. (19a) is a rapidly oscillating
function of R while the amplitude D(R) varies
smoothly. Thus Eq. (19a) is similar to the reflec-
tion coefficient obtained from a smoothly cor-
rugated hard-mall. surface potential. " The cor-
responding "effective mirror, " specified by the
"shape function", g(R), is, however, a local con-
cept and depends on a specific classical trajectory
such that both t(R) and the trajectory are deter-
mined self consistently from the set of equations
(18e), (19b), and (19d).

Thus both t(R) and D(R) depend on e~, e-, and k,
so that in addition to the explicit dependence of
&G on k„appearing in Eq. (19a), there is an im-
plicit dependence on the above parameters through
f(R) and D(R). It can be shown, however, that if
the surface under consideration is not too flat the
implicit dependence through t;(R) is much weaker
than the explicit one. The reason for that is the
following: The relevant part of the bare potential
V is very steep, namely c=

~
V/VV~ ~ s. «a (see

Sec. II). This property should also characterize
the renormalized potential S' as a function of r.
On the other hand, as a function of &, 8' is a rela-
tively smooth function, provided that we are not
dealing with a classical trajectory which passes
through a caustic (see Sec. IV 8). Thus the solu-
tion z,(R, ~, k, ) of Eq. (18e) is a very weak func-
tion of 0, and v'. Furthermore, the second term
in the right-hand side of Eq. (19b) is, according
to the above argument, of the oirder c. Hoiwever,
if the surface under consideration is not too flat
the variation 2k of f(R) as a function of R is some
fraction of a, which is much larger than c in our
problem. Thus, to a first approximation, f(R) is
independent of the initial and final momenta and
the explicit dependence of &G on these parameters
is much stronger than the implicit one through-
~(R).

Equation (19d) expresses the conservation of en-
ergy during the collision in terms of the renor-
malized potential W.

Except for very special situations (i.e., grazing
incidence and emergence), the momentum transfer
normal to the surface plane 0, is of the order of

8. Limitations

Two basic assumptions are inherent to the for-
mulation given in Sec. IVA: The first is that the
renormalized potential V(r p, 7') is a regular analy-
tic function of 7. and the second assumption, 'which

will be seen to be related to the first one, is that
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the stationary phase method is a good approxima-
tion for the integrztions over the dynamical var-
iables characterizing the collision event.

We consider here a very simple example of a
troublesome situation in which both of these as-
sumptions do not hold: A reflection from a one-
dimensional potential given by

V(z}= —,
' MG(d2z2e(z),

and

l/2
A(T) =

2 xi 2 sin(tc c) ) (20c)

S(Y&, T)=
4

f'cot((dT/2) —M~ez'tan(~T/2),

(2ob)
z =- (z, + z,)/2, t' =- z, —z, ,

= —,
' M(,,(dzo[sin(2wf, ) —sin(2(2)t, )],

which after some algebra can be converted into"

S(z,z„T)= . , [(z', + z,') cos((oT) -2z,z,].2 Sill (dT)

Thus the collision propagator for z„z, & 0 and
&v'&m is given by

g(Zg T) g(T)e((/2 )S (d(l, s)

where

(20a)

where e(z) is the standard step function. Consider
two arbitrary points z„z, within the scattering re-
gion (i.e., z„z, &0): There is no classical trajec-
tory between these points which is not fully con-
fined to the scattering region. If t, —t, = T(z/c-o,
such a trajectory always exists. For the initial
condition, z=0 at t=0, the solution of the cia,s-
sical equation of motion in the scattering region is
given by z =z, sin~t and the corresponding classi-
cal action between z, and z, is

t2
S(z,z„f2f, ) =

2
(z' —(2)'z') Ck

tj

If &7 &. m there is no classical trajectory connecting
z„z, if both of them are in the scattering region.
Thus the semiclassical approximation for g(z), T)
in the scattering region z & 0, —z & g &z is given
by

g( z L, T) = e(z —~T)A(T)e " ""'" ". (21)

For +T « I Eq. (20b) approaches the limiting form
'M(.,r„'/-T —,' TM~—(()'z' in agreement with (13),

while the amplitude A(T) diverges like T '/'. This
singularity and the divergence of the kinetic ener-
gy part of S reflect the dominant role of the
"direct trajectory" for a vanishingly small propa-
gation time v'. '4

Another kind of singularity appears when uv'= 7T.

In this case the singular term is the renormalized
potential V. This singula, rity reflects the. dominant
role of an "indirect trajectory, " namely, a trajec-
tory which passes through the classical turning
point.

We now apply the procedure of Sec. IVA to cal-
culate the reflection probability for the particular
example mentioned above: The integration over
f [similar to p in E(I. (15)] can be calculated ex-
actly and the result is

oG(-P, P) dc[con(tsc/2)] '
[dv(x)]*ee xPcsc — cen(ec/2)2 +(22)'i sMc (22a}

The integration over z can also be performed ex-
actly with the result

~G(-p, p) "dT[sin((dT)] '"cot'{(dT/2)

x exp i cos(tss/2) S —cssI,
, 2c@

(22b)
which is also the result given by the. stationary
phase method. The integration over v is not as
simple as the former integrations. An application
of the stationary phase method to this integral is
troublesome; the phase is stationary at To= z/~
so that, the reflection probability is zero while a
total reflection is expected. This result agrees,
however, with the mell-known fault of the simple
WEB approximation to predict any reflection in a
one-dimensional system. "" The trouble is due

I

to the divergence of the renormalized potential
V at '1 = 7'0 which pushes the stationary point
zo= (I'p/M~(d) cot(mT/2) out of the scattering re-
gion. This is always the case in a one-dimension-
al potential problem since the classical trajectory
associated with the reflected wave always touches
a classical turning point if the potential is one-
dimensional. Thus our procedure breaks down for
a completely flat surface. In the general case,
however, where the surface is corrugated, there
are. only restricted domains on the surface plane
for which the important scattering region is ef-
fectively one-dimensional, namely where the self-
consistent surface specified by f(R) is locally flat.
The location of such a troublesome area, is deter-
mined by the equation

( 8'f
detj = = =O,

(gRPR
(23a)
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which in the Kirchhoff method is known as the
equation determining the location of a caustic. "
In the close vicinity of such a caustic the station-
ary phase approximation for the integral over R in
Eq. (19) breaks down, a result which is consistent
with the breakdown of this approximation for the
integrations leading to Eq. (19). The size b R of
such a troublesome area, can be estimated from
the condition for the breakdown of the stationary
phase approximation, i.e.,

(28b)

only once. " In these situations there is pnly a sin-
gle solution (Z„r,) of Eqs. (18e), (19d) for given
initial and final momrenta. If the surfa, ce is suf=
ficiently corrugated" and the angle of incidence is
sufficiently large" "an alternative classical tra-
jectory which hits the surface several times could
have the same initial and final momenta. This
situation corresponds to an appearance of an al-
ternative solution of Eqs. (18e), (19d) for the same
initial and final momenta, but with a much longer
collision time T,. The ana. lysis of such a multiple-
hit situation is beyond the scope of this paper.

For a one-dimensional sinusoidal surface g(x)
=Ii sin(2))x/o. ) condition (23b) means that

(28c)

showing that the troublesome areas reduce to tiny
islands if the amplitude h of the surface corruga, -
tion is sufficiently large on the scale of A..

Since a, caustic is responsible for rainbow scat-
tering" we may conclude that our scheme is, in
principle, capable of determining the approximate
location of the corresponding rainbow pattern but
is incapable of determining its -intensity. It should
be noted, however, that this limitation weakens
when the solid dynamics becomes important, a,

situation which is our main interest in this paper.
We finally mention another limitation of our

procedure, namely, that it is restricted to dealing
with classical trajectories which hit the surface

V. INELASTIC SCATTERING

Returning to the more general situation where
the solid atoms can move, w write a solution of
Eq. (9a) in the form

M p' M ( q,"—q",)'
2 T 2 T

7'U(r p, fqj,(q)„~) . (24)

lim U( r p, (q),(qJ„~)= U( i, (q)) + 0(v') .
0

I

Thus in a manner similar to that of Sec. III we
write

We recall that U(r p, (qf, (q)„7') is the renormalized
interaction potential related to the original poten-
tial U(r, (q)) by equations similar to (11a), (12),
(14) and by the limiting equation

ty t2
tG(b)= tdqt, dt, f , fddrb fd{q)fd{q) G„' '(,r, , t, ; r/rtttq)

ta fa

xG"'(fq) f; {qh, f )&( p, 444)„)

x exP —S 21 ——TU q, G&
' C»~1', g a~~a Gg ry&~1& a&ta

where

&(&pi 4)24')iq 'r) =- - 2 U(&+ p/ i (q)2) U(r —p/2i 4)i)&(&pi(qj2(q}li 'r) ~

Transforming the external coordinates to momentum space and performing the integral over p we get
Sb

bG()t', {q)„t,; , ))t.{,q) =tf dt, f dt, fdr f d{q), d{qi,r"
ta t

x a(%, (q),(q)„~)G,"'({q)„f, ; (q)„t,)
/ ~

xexp —Te —e- —W r, q, g»T

)M, g (q,"- )* tt){) )2K „7 ji (26)
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where B and W are defined in a similar manner to
the quantities defined by Eqs. (17b) and (18c)
respectively. The solid propagator Gs"' can be
written"

G,"'((q4, i.;(qt„i,) = P ~ "'""-" ' '~ ((q))

x y.*((q},)e(i, —i,), (27)

where (t)„((q})is an eigenfunction of the solid Hamil-
tonian corresponding to the energy eigenvalue ~

and e(t, —i,) is the standard step function. Using
the spectral representation (27) in Eq. (26) we

get

+G(p p(q)&pi& pp(q)&pi~) = Q +(~) p ~p )4*((q) )'0 ((q)()
m, m'

d+e d7 dig g dc] g

x p(p;(q)(q)„e) exp(i Q qq' (e)", -e(",)'
n

-'q eq(e, (ql.(q), -))

x exp '-
e(e, —ee+ e, ee((q),)l), (26)

where &~=—&~+ & .
Let us consider now the multiple integral over

(q )„namely,

q,'' dq2B &, q, q „7,q,

xexp~ i+ Ms

x (q," q",)'
@

W(1', (qh(ql„T)

T (t (~ ( )( ) )
&&P; @AS(1')

-p; n=n(r).
(30)

Thus consider the integral

~qa B» ~aQ'i~7

Within the important scattering region there is one
or a few atomic'sites which dominate the value of
the "dressed" potential W(1', (qj,( )„qr); we denote
such a site by the discrete function n(1'). It is
clear that

&qaB r~ 9' 2 0 ).) ~

x exp (q," —q",)'+ —(q," q",).p"

peq(e, &ql(q)„e—)), (qq)

a.nd we calculate it by using the stationary pha, se
method. The stationary point q,",is determined
from

(q," —q",)+ 5", —— „W=O, (34)

transfer to an atom n=n(r) is of the order p such
that within the scattering region we expect a semi-
classical behavior from the relevant atom. Thus
we can treat P", as a classical quantity, namely
we neglect any commutation associated with it.
For n q-'n(1') the momentum transfer during the
collision is very small compared to p, and so the
error introduced by neglecting nonvanishing com-
mutators in the exponentia, l is sma. ll. Thus our
integra. l is

(31) whence

The eigenfunction (t), ((q),) can be written

e. ((q4)=expt-'- g (q."-q",) I'", y ((q),)

(32)

where P,"is the momentum operator (5/i) (&/Sq,")for
the site n. As suggested by (30) the momentum

3+ „lV25Ms j)q" (35)

and the value of the phase at the stationary point is

7 I'(P",)'
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where where

W. =W- ' '-. . 36

Thus, the result of the integration over (q), is

B(r, (q)„7)exp
I

-—7 Q ' + u/(r, (q)„7) Wo:—W, W=- Wg,

l+1 l 2M P~ql+I t t P P ~ ~ ~ P

(37)

(38)

We now have

&G(p', (q), ;p, Eq). ; ~) =g «~,.&g. )e- (4)~)e-*Hq). )
15 ~ tS

x d7e'"' d~ dq, & q aB r q

xexp —"[e,—~, +c K(i, ]qi„r)])

g. 7' 8 P ] U.

2M' (39)

and can treat P', as an operator again. H&

=P, I'(PI)'/2M~ + U((q), ) is simply the full solid
Hamiltonian. The last two factors in Eq. (39) can
be written

&- (t /]( ]HSrye (fq) ) &- (i/h )TEm y4 (fql )

and, the total time dependent exponential takes the
form

exp '-v((~, -~,+ ~. —~„.) -W(~, 4]„~]]).

The 6 function in Eq. (38) is responsible for the
conservation of the total energy during the colli-
sion, i.e.,

h

+6 =Bi+6
whence

r8 Q7' cEq ). ~ q5) (f)~ q g P r) q ~)7 exp 7 &~
—&g —W r) (4o)

The great benefit of the last few steps is that
the time-dependent exponential in Eq. (40) be-
comes independent of the solid quantum numbers
m, m' so that we can follow the procedure used in

Sec. IVA in performing the integrations over the
rest of the gas-atom variables and over time -7.
Thus

nG(p', (q)~;p, 4)., ~) =g ««)0 (I.q)n)e.*Hq). )
m, m'

dq &
d R ~ q &DR~ q &

expik'gfR~ q & +&K'R p+. q &
(41a)

where

g(R, {q),) = ~0+ [(e,—e~) —W(YO, ro) ]/ —W(ro, ro)

(41b)

Yo and 7, are deter'mined from the equations

a-
Sk =7'—Wg (41c)
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(41d)

&G(pm, p'm') = &(e,„,e,,„,)

a
e& - e&

— —(7 w),a7'

and D(R, {q},) is a smoothly varying function of R
and {q},similar to D(R) of Sec. IVA.

The transition amplitude from the initial state
p, m to the final one p', m' is given by

Squaring the transition amplitude, averaging over
m and summing over m' we have for the reflection
probability

a(z z')= fz'z fz'% 8'"''""'

dR dq, q, DR, q,
x exp[ik, g(R, {q},) +iK 'R) y+({q,},) .

(42)

where

X g(6p —E~, , k RR') (43)

X(e~ —F~, k„,RR') = —g e ~t'&(e —e, , )
tNg 1%/

dq dq' DR, q D*R'&q
m q @m' q m' q $m

x exp{ik,[g(R, {q})—f(R', {q'})]}

- «/& ) «p- &pz )i
2n

I

"Q f z(z) z ((z)) ~ ". , "'"'""z ((z)). z()(&q)),
m m'

1
~W

xe'""'" '" d{q'}[y„*({q'})e"'"'""y,({q'})]D*(R',{q'})e '"""' '

where p=-1/kJ&T, T is the temperature and Z = Tre ~"z. Defining quantum operators by

D(R)e.({q})=D(R, {q})e„({q}),

K(R)g({q})= K(R, {q})e„({q}),
we can write Kq. (44) as

(44)

(45)

00

X(e —e, k RR') =— dte " " '"~ '&""

-«/g )Hst ~a~t (5 D 8 (z/h )Hst -&&~4'(B' ) Df Ri

S xdie Il)) & (~p ~p' && (e)&)z( (R t) D(R f) e tzz(: (&&,0) Dt(RI
2w

(46)

where ( )e denotes an ensemble average over the
solid states.

The amplitude D(R, i) is a slowly varying func-
tion of {q}in contrast to the exponential. We
therefore neglect its {q}dependence and, conse-
quently, its t dependence and set it equal to an ap-
propriate mean value D(R) so that

X(E —E. , k, RR')=f zte "'""""' " (Rz) z(R')

x (e zz( (% )&) z ((Rz'(, 0)) -(47)

This correlation function is quite similar to %hat

appearing in the theory of neutron scattering" or
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of the Mossbauer effect. " There is, however, a
significant difference between our problem and
neutron scattering because the momentum transfer
k, in our problem is so large that it is impossible
to expand the exponentials involved. This means
that for. a harmonic solid, multiphonon processes
dominate the correlation function rather than a
single phonon. "" To handle such a rapidly oscil-
lating integrand a method such as steepest des-
cents" (saddle point integration) is useful.

VI. DISCUSSION AND SUMMARY

The theory presented in this article shows that
the scattering process can be effectively repre-
sented in terms of a reflection from a rigid "rip-
pling mirror. ""'" This is true despite the smooth
character of the gas-surface potential on the scale
of the incident wavelength A. and despite the large
amount of momentum transfer to at most a few
atoms on the surface during the collision. The
corresponding "rippling mirror, " represented by
the shape function f(R, t), is, in general, not a
global quantity but is determined self consistently
with a specific classical trajectory with a given
incident and final momenta. It becomes, however,
a global quantity that is independent of initial and
final momenta if the effective range of the gas-
surface forces is very small compared to the am-
plitude of the surface corrugation. Thus, instead
of applying a model for the gas-surface interac-
tion potential in the early stages of the calcula-
tions, which in any case leads to a cumbersome
procedure, we are allowed in such a situation to
model the shape function f(R, t). This yields a
tractable procedure which could meet the chal-
lenge given by the complicated problem under con-
sideration.

The conditions for the validity of this simple
procedure are: (i) The impulse approximation
should be valid. (See Sec. III). (ii) The semiclas-
sical approximation should hold for almost every
trajectory involved. In other words the stationary
phase approximation for the integral over R should
hold almost everywhere on the surface plane. The
fulfillment of this condition requires a very large
amplitude of the surface corrugation on the scale
of A.. (iii) The total variation 2k of the surface
corrugation should be much larger than e. This
condition is compatible with condition (II) above.
(iv) Contributions from multiple-hit trajectories
should be small. A rough criterion for the oc-
curence of multiple-hit trajectories is given in
Ref. 31 for a static solid, namely h ~ 0. 13a.
Thus, in contrast with conditions (II, III) this condi-
tion requires a smooth surface. To avoid any con-
flict between the single-hit requirement and condi-
tions (ii) and (iii) one has to require that c «0.26a.

For Ag with a =2. 88 A, this becomes c «0. 75 A.
For the dynamical case under consideration the

situation of multiple-hits is much more subtle than
for the static case. Formally speaking, the main
difficulty which arises in such a situation is the
breakdown of the impulse approximation for the
overall collision events. Physically, the distance
traveled by the gas atom between two successive
hits is of the order a, which is much longer than
c. The corresponding traveling time is much
longer than the period of a single hit so that the
surface atoms, which are directly impinged upon

by the gas atom in the first hit, could displace
considerably from their initial positions, leading
to a huge distortion of the surface periodicity.
Furthermore, the big perturbation in momentum
space created by the first hit, which remains
local during the first hit, could radiate to neigh-
boring sites during the traveling period to the
second hit. Both the direct displacement Bnd the
indirect radiation effect should be very important
in the second hit.

The available experimental data on the system
Ar-Ag(111) indicate, ' however, that multiple-hit
contributions are not important. The reason for
that is the following: multiple-hit contributions
are known to. enhance when the angle of incidence
increases. However, the experimental width of
the lobe in the angular distribution decreases with
increasing angle of incidence, while enhancements
in multiple-hit contributions are known to broaden
the lobe's width. " This does not mean that the
role of the surface corrugation is unimportant in
the present case. A comparison of the flat hard
cube model" with experimental data for incident
energy of' 3.44 eV indicates the importance of
the surface corrugation. This comparison shows
that the hard cube prediction for the lobe's width
is too narrow while the predicted location of the
lobe's maximum is too much shifted from the
specular direction towards the surface tangent.
The wrong location of the lobe's maximum is, at
least partly, due to the lack of momentum transfer
parallel to the surface plane in this model while
the introduction of umklapp processes parallel to
the surface plane could broaden the lobe. It is
thus impossible to ignore corrugation.

Finally, we should note that arguments like those
appearing above might be meaningless without con-
sidering the possibility of electronic excitations
on the surface.
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