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We calculate 2k, and 4k, charge-density wave (CDW) and spin-density wave (SDW) autocorrelation
functions for the one-dimensional Hubbard model using a computer renormalization-group technique
previously developed by us. We describe the method and expected accuracy of the results. The correlation
functions are calculated for Hubbard parameter U/t = 2,10,50 and for two different band fillings. We
obtain, describe, and compare for the first time the magnitudes and temperature dependences of the
correlation functions. We find, inter alia, that the 4k; instability arises at very large U and that the 2k,

SDW and 4k, CDW dominate at large U.

I. INTRODUCTION

In an earlier paper (Ref. 1, hereafter designated
I), we described a computer renormalization-
group technique which we applied to the Hubbard
model.? In this paper we use this technique to
evaluate retarded density-density correlation func-
tions at wave vectors 2kr and 4kp, where ky is

the Fermi wave vector, all within the Hubbard
model. Such calculations are important because

real quasi-one-dimensional conductors, which
have been the subject of feverish activity in recent
years, usually show an instability at 2kz, which
has been associated with the Peierls “transition.””
They occasionally also show an instability at 4k,
which has been demonstrated to occur in one-
dimensional systems when the electron-electron
Coulomb repulsion is large enough.’ The Hub-
bard model is the simplest model of a one-dimen-
sional system which contains important physics,
viz., the on-site electron-electron Coulomb inter-
action U. Therefore, if we are to understand
thoroughly the 2k and 4k instabilities, it is cer-
tainly important to understand them quantitative-
ly in this model.

In Sec. II, we describe our computer renormal-
ization-group technique and discuss the nature and
accuracy of the results which may be expected
from it. In Sec. III, we describe the calculation
of the correlation functions and their expected ac-
curacy. In Sec. IV, we present our results and
discuss our observations and conclusions based on
the relative magnitudes and temperature depen-
dences of the correlation functions.

II. NUMERICAL TECHNIQUE

Our basic numerical technique is also described
in I. The technique calculates the eigenfunctions
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and eigenvalues for chains for finite length Nd,
where N is the number of sites and d is the uni-
form intersite spacing. The Hamiltonian solved for
a chain with N sites is

N N
Hy = ,Z: (tal,aisq,0 +Hocl) + ;Z: Unging
=1 4=1

’ (1)
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Here a}, (a;,) is the creation (destruction) operator
for an electron on site ¢ with spin o, ¢ is the near-
est-neighbor transfer energy, and U is the on-site
Coulomb repulsion. The model has two parame-
ters: the ratio U/¢ and the average number of elec-
trons per site, p.

In our iterative procedure (see I), the chain
length is doubled at each stage of iteration, begin-
ning with N =2. We have carried out this proced-
ure for N=2,4,8,16. To facilitate computation,
we group the eigenstates into manifolds character-
ized by charge, spin, and parity, all of which are
good quantum numbers. We retained the 30 such
charge-spin-parity manifolds which are closest in
energy to the ground state.. We diagonalized L2
states in each manifold: The L1 lowest in energy
(relative to the ground state) we diagonalized by a
standard matrix method and the rest by second-

“order perturbation theory. The L3 lowest-energy

diagonalized states were retained. The rest must
be discarded for N = 6 because there are simply
too many to handle. As a result, controlled errors

appear in the eigeninformation as N increases.

The best way to study these errors is to compare
calculations having different numbers of retained
states with exact results for a known case. This
is done in Table I for the noninteracting half-filled
band. As expected, the more states one retains,
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TABLE 1. Comparison of exact energies E; of the
first four excited states (relative to the ground state)
with our numerical results for model parameters U=0,
p=1, N=16. L2 is the number of states diagonalized in
each charge-spin-parity manifold, and (L2-L1) of these
are diagonalized by second-order perturbation theory.
The L3 lowest-energy states are retained in each mani-
fold after diagonalization. ’

L1 L2 L3  8Ej/t 8E/t 8Ey/t 8E/5

100 400 20 1.65 3.17 4.62 6.13
150 300 20 1.63 3.15 4.67 6.10
150 400 20 1.61 3.13 4.61 6.05
150 400 28 1.64 3.11 4.65 6.08
150 500 20 1.60 3.11 4.61 6.04
150 600 20 3.12 4.56 6.02
200 400 20 1.62 3.12 4.67 6.03

Exact energies? 1.476 2.952 4.378 5.904

2C. A. Coulson, Proc. R. Soc. A 164, 383 (1938); R. P.

Messmer, Phys. Rev. B 15, 1811 To7m).

the smaller the errors. For the calculations pre-
sented in this paper, L1 =100, L2=200, and L3
=24, in the usual 30 manifolds, for atotal of 6000
states retained per iteration. With these parame-
ters, the maximum absolute eigenvalue error is

less than ~0.63N% for N =8 and ~ 0 for N <4, since

all states are retained. These error limits are

obtained by comparison with exact calculations for

U=0.

The reader should note that although the percen-
tage error increases with each iteration, the mag-

nitude of the calculated eigenvalues relative to the
ground-state energy decreases as N! because the
width in energy of the retained states decreases

as N1, Therefore, the increased uncertainty of the

eigenvalues is offset by their smaller values in
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such a way that they converge rather quickly
toward the energy values for the infinite chain.
This renormalization-group property is illustrated
in Table II, where we have compared the calculated
values of the ground-state energy E, for various
finite chains with E; for the infinite chain, which is
known exactly.? Note that the convergence for the
two cases presented (U/t =2,10) is good.

III. CALCULATION OF THE CORRELATION FUNCTIONS

The retarded density autocorrelation function
for a chain with N sites is given by

Dy(k,w)=2" Z (2me™®| (i |n' (k) |5)|?
7]

x{1 - exp[~B(E; = E)]}

X[(l) - (Ei - Ej) +7zn]-i) : (2)

where Z =Tr[exp(-BHy)], n'(k)=n(k) - @ (k)), 7 is
equivalent to the positive infinitesimal, and §=T"1.
For the charge-density calculation

N
nk)= e
1:1

Qjoljo » : . (3)

and for the spin density,

N :
n(k) =Y e*oalyay, . (4)
Y

In Eq. (2), ¢ and j denote eigenstates, with |j) an
eigenfunction and E; an eigenvalue. We take the
Boltzmann constant kg =1.

The matrix elements (i |n(k)|j) are computed

TABLE II. Comparison of the ground-state energy E, calculated by our method for finite
chains with the exact results for the corresponding infinite chain. N, is the number of elec-

trons in a chain with N sites.

—Ey/tN

- =Ey/tN (infinite %

N N, (calculated) chain?) difference
-1 2 2 0.618 26
Ult=2 4 4 0.719 0.84 14
8 8 0.778 for all N 7
16 16 0.805 4
2 1 0.500 0.71 30
p=m 4 1 0.405 0.48 16
U/t=2 8 3 0.614 0.66 7
16 5 0.549 0.57 4
32 10 0.553 0.57 3
2 1 0.500 0.68 26
p=m1 4 1 0.405 0.48 16
U/t=10 8 3 0.571 0.62 8
16 5 0.524 0.55 5

'2H. shiba, Phys.Rev. B 6, 930 (1972).
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iteratively beginning with the eigenfunctions for
the two-atom chain. Computation is facilitated by
dealing exclusively with reduced matrix elements
and their appropriate 6-J symbols and then con-
verting these to full matrix elements before using
them to compute correlation functions. The coeffi-
cients produced by the diagonalization routines are
used to relate the matrix elements for the 2N-site
chain to those for the N-site chain. The value of

k determines the phase between the two N-site
chains which combine to give the 2N chain. We
nor/malize the matrix elements with a factor of
N2,

We have computed both the real (Re) and imag-
inary (Im) parts of Dy as a function of tempera-
ture T at k =2kp, 4kr and w =0. The Re part con-
tains contributions to Eq. (2) when E;# E;. The Im
part contains the contribution when E; =E;, which
is imprecisely defined when w =0. We have chos-
en to calculate the Im part which appears in the
scattering cross section:

=21 Y [2neEi | (@) |)]2). (5)

Ei=E;

Note that we have used » instead of n’ here so that
the Bragg scattering is included. Since E; has the
aforementioned errors for N =8, we have taken
E;=E; whenever the stated error limits of E; and
E; overlap. Note also that only the lowest-energy
level of short chains will contribute to Eq. (5) at

T ~0. In an infinite chain, the energy levels form
a continuum, and the number of contributing states
is N(Er), the density of states at the Fermi surf-.
ace. Renormalization-group calculations suggest
that N(Ez) is not strongly affected by infrared di-
vergences.? We thus expect N(Er) <N. Therefore,
to compare properly numbers presented for the
Im parts in Sec. IV to the infinite chain, one should
multiply them by N(Er). '

As discussed in I, -the correlation functions are
reasonably accurate only up to a certain tempera-
ture for N =8 because of the elimination of the
higher-lying states. The contributions of the high-
er-lying states fall off exponentially (e™Fi) in
thermodynamic functions and the Im parts of the
correlation functions, but the Re part connects the
ground and low-lying states ¢ with high-lying states
j in a way that falls off only as (E; - E;)"!. Conse-
quently, the Im part has an absolute error! of less
than ~1.9N% in the temperature range T <3.2t/N
for N=8 (error ~0 for N<4). This is based on ex-
act calculations for U=0. The error limits of the
Re part cannot be so easily stated because the im-
portance of the connected high-lying states varies

with such factors as the presence of energy gaps.
We found in I that the Re part is not much more
than 50% accurate within the same temperature
restrictions as the Im part, at least if a gap is
present. The reader should note that we are dis-
cussing absolute errors here. Since these errors
affect all the correlation functions similarly, con-
clusions based upon comparisons of several corre-
lation functions should be much more accurate.

We have chosen to perform our main calculations
at p=7" because this is far from the half-filled
band (p=1) and is obviously incommensurate. Sucha
choice does introduce some extra details into the
calculation. The finite chains computed at each
stage must have a finite integer number of elec-
trons. Therefore p=7"! must be approximated for
each N by the most appropriate electron number
N,. These values are

N N,
2 1
4 1 (6)
8 3
16 5

For N =16, the actual site occupation (N,/N) dif-
fers from 77! by only 2%. Since N,=1 for N =2, 4,
the electron-electron correlation functions are not
useful and are not presented for these N values in
Sec. IV. The final detail is that 2k was computed
with the formula 2k =7p/d; i.e., the desired (lim-
iting) electron site occupation was used. Calcula-
tions have also been performed with the definition
2kp =7(N,/N)/d, and the results differ quantitative-
ly somewhat but not qualitatively from those pre-
sented in Sec. IV.

IV. RESULTS AND DISCUSSIONS

Table III gives values of the charge-density
(CDW) and spin-density (SDW) autocorrelation
functions for bk =2k, 4kr and w = 0. The values of
the model parameters for which computations were
made are p=7"" and U/t=2,10,50. Since the table
is for comparative purposes, it contains one datum
point taken at T =0.05¢ to represent the low-tem-
perature behavior of the Re and Im parts of each
correlation function. Correlation functions for the
half-filled band (p=1) have also been computed at
U/t=0, 2 and were reported in I. However the
half-filled band can be solved by much simpler
means and is less interesting than partial band
filling, which is the situation in the interesting
real systems.

Among the new information gained through this
study is the strength of the 2k and 4k instabilities
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TABLE III. Values of real (Re) and imaginary (Im) parts of charge-density (CDW) and
spin-density (SDW) autocorrelation functions Dy (¢, w=0) at k= 2k, 4k, and at temperature
T=0.05¢t. The site occupation number p=7-1, The number of sites is N.

DN(ZkF,O) Dy 4k, 0)
CDW SDW CDW SDW
. Re Im Re Im Re Im Re Im
U/t=2 N=8 0.41 0.020 1.0 0.18 0.17 0.004 0.38 ~0
B N=16 0.21 0.030 1.1 0.12 0,027 0.0002 0.019 0.0006
U/t=10 N=8 0.24 0.080 2.5 0.30 0.16 0.053 0.54 0.004
N=16 0.035 0.069 1.8 0.16 .0.11 0.012 0.047 0.002
_ 3.1 0.22
U/t=50 N=8 0.20 0.11 10.12 0.352 0.22 0.088 0.59 0.024
N=16 0.016 0.079 1.9 0.089 0.14 0.020 0.062 0.003
: 3.62 0.182 .

2Second number taken at T=0.01#, indicating rapid increase as T—0.

for various values of U/¢t. The excitation spectrum
of the Hubbard model for arbitrary U and p has
been calculated approximately by Coll.!® However,
the spectral weights, i.e., the strength of the vari-
ous excitations, was not known before this work.
Comparison of the numbers in Table III gives the
information on relative strengths at low tempera-
ture. A number of observations and conclusions
may be drawn. .

(i) As noted before, the Im part of the correla-
tion functions measures almost totally the ground-
state character at low temperature because of the
¢ /7T factors. The Re part, on the other hand,
connects the ground and excited states in a much
less damped manner, and therefore it expresses
excited-state character as well at low temperature.
The Re part consequently has less absolute accur-
acy. The Im part also expresses the scattering
factor, whereas the Re part is connected to coupl-
ing constants such as electron-phonon coupling.
The point here is that the trends of the Re and Im
parts may not always agree.

(ii) In basic agreement with other calculations,?"?
we find that the 4kr instability arises as a result of
strong Coulomb repulsion (U/t>0). At U/t=2,
the instability is still much weaker than all others
showed. As U increases, it grows steadily strong-
er.

(iii) At 4kr, the CDW instability is much larger
than the SDW as judged by the Im part at U/t
=10,50. The Re part of the CDW is also larger at
N =16, They are more comparable at U/t =2,
Note that the Re SDW values drop very sharply
from N =8 to 16. This indicates that finite-chain-
size effects are present at N =8 and that the SDW
is truly very small in the long chains. Therefore,
we expect the 4kr instability to be dominated by the
CDW at large U.

(iv) At 2kp, the most obvious fact is the complete
dominance of the SDW over both the CDW and all

4kp instabilities for all calculated values of U/%.
This dominance increases as U increases. The
reader should note that the SDW and CDW are iden-
tical for U=0. Therefore, this dominance arises
quickly as U increases. The SDW steadily increas-
es as U increases and increases very rapidly as

T —0 at large U. The T =0.01{ values of the SDW
are included at U/t =50 to show this strong diverg-
ence, .

(v) The 2k CDW, while much smaller than the
SDW, is present for the U/ t values calculated. As
U increases, the Re part of the CDW decreases,
and it decreases sharply from N =8 to 16 at U/t
=10, 50, indicating it is very small in long chains.
However, the imaginary part increases slightly
with U and furthermore usually increases some-
what with temperature. Therefore, the Coll'?
picture that the 2kx charge excitations disappear
for large U does not appear to be completely cor-
rect except perhaps at much larger U than we con-
sider. They are comparatively very weak,:but
present. Analytic calculations like those in Ref. 6
support this conclusion.

(vi) The 2kr and 42 CDW make an interesting
comparison., At U/t =2, the 2k CDW completely
dominates. At U/t=10, the 2k CDW is still larg-
er (except for the Re part, N =16), but compar-
able. At U/t=50, the Re part of the 4%, CDW is
larger but its Im part is still somewhat smaller.
Therefore, it appears that these two instabilities
are comparable for U/t >10 at least up to ~50.

Valuable information may also be obtained from
the temperature dependence of the correlation
functions. Figs. 1 and 2 present a group of corre-
lation functions versus temperature up to the maxi-
mum temperature at which they are valid (T < 0.4¢
and 0.2¢ for N =8 and 16, respectively, as pre-
viously discussed). We chose to present the 4kp
CDW and 2k SDW because these are the stronger
instabilities at each k2 value, and in tetrathiaful-
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FIG. 1. (a)—(f) Spin-density (SDW) autocorrelation functions Dy(k =2k, 0) for chains with number of sites N =8, 16.

The left-hand-side axis is the real (Re) part, depicted by the solid curve. The dashed curve is the imaginary (Im) part,
scaled on the right-hand-side axis.
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FIG. 2. (a)—(f) Charge-density (CDW) autocorrelation functions D y(k=4F; ,0) for chains with number of sites N =8,

16. The left-hand-side axis is the real (Re) part, depicted by the solid curve. The dashed curve is the imaginary (Im)
part, scaled on the right-hand-side axis.
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valenium-tetracyanoquinodimethanide (TTF-
TCNQ) the 4%z and 2kp instabilities have markedly
different T' dependences.!! In this material, 4kp
dominates at room temperatures while 2k domin-
ates a few tens of degrees above the transition at
54 K. Although the 4k CDW never dominates in
the temperature range to which we are restricted,
it does increase markedly relative to the 2k SDW.
For instance, the ratios of SDW to CDW magni-
tudes decrease in the range depicted by a factor of
2-3 at U/t =2, by a factor of 3—6 at U/t =10, and
by a factor of 2—3 (Im part) and 4-19 (Re part) at
U/t=50.

Other observations of temperature dependences
are limited only by what one is looking for. It is
interesting to note that the 22z SDW decreases
much more rapidly as a function of 7' at the large
U values. Therefore, the 2k SDW increases much
less drastically with U at T > 0. The existence of
a peak at finite temperature in many of the 4kr
CDW functions indicates that it is the low-lying
excited states which are strongest in 42, charac-
ter, not the ground state.

We close with a few more general comments. .

Although we have not yet computed solutions for

p other than 77! or 1, we believe these p=7"! re-
sults are representative of all incommensurate
band fillings. We have also not yet computed re-
sults for the next chain length, N =32. Attempts
to do so indicate that when only 6000 states per
iteration are retained, the accumulated errors are
too great to allow reliable results to be obtained
at this stage of iteration. Finally, this study as a
whole suggests that the Hubbard model with only
on-site repulsion is inadequate. If U must be as
large as our calculation indicates to generate a
significant 4k instability, then for band fillings
near half-filled, as is the case for N-methylphena-
zinium-tetracyanoquinodimethanide (NMP-TCNQ),
the large U should cause the 4k phase to be com-
mensurate® and therefore unobservable. Thus the
nearest-neighbor Coulomb repulsion (at least) may
need to be included also. This we are now doing.
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