
PHYSICAL REVIEW B VOLUME 19, NUMBER 9 1 MAY 1979

Alternative approach to the dynamic renormalization group

Shang-keng Ma
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

and Department of Physics and Institute for Pure and Applied Physical Sciences,
University of California, San Diego, La Jolla, California 92093

(Received 1 I September 1978)

The dynamics (time-dependent) renormalization group is reformulated. Probability distributions for
configurations at a discrete time sequence are parametrized in a manner similar to the parametrization of
static probability distributions. The spirit of this approach is that of phenomenological fitting without making
reference to any differential equations for microscopic dynamics. Simple illustrative calculations using the
new formulation are presented.

I. INTRODUCTION

The purpose of this article is to provide an al-
ternative formulation of the dynamic renormaliza-
tion group (RG). ' Let us briefly review a few con-
cepts. Under a change of length scale by a factor
s and time scale by a factor s',

X» XS,

t» tS

the values of parameters specifying a physical
system are transformed. Such a transformation
is a "scale transformation" or a "dynamic RG
transformation. " When the parameters assume
certain particular values, and the value of z is
appropriately chosen, such that they do not change
under the transformation, then the system is
"scale invariant" or "at a fixed point of the dy-
namic RG." The exponent z is called the "dynamic
exponent. " It measures the asymmetry between
space and time. If z =1, then space and time are
symmetric. Electrodynamics in the absence of
matter is scale invariant with z=1, for example.
The scale invariance of interest here appears in
material systems at their critical points. For a
material medium, there is in general no symme-
try between space and time. The value of z is
therefore generally not 1, and depends on some
gross features (such as conservation laws and

various symmetry properties) of the material.
The dynamic exponent will be of major concern in
this article. Of course, it is not the only thing of
interest in the dynamics of systems at their criti-
cal points. The dynamic RG has applications other
than the determination of z.

Let us mention briefly the various approaches
to carrying out the dynamic RG. The perturbation
theory approach has been successful for models in
special space dimensions d=6 —e, 4 —e, 2+a,
where e is regarded as a small expansion param-
eter." The calculations have been done analy-

tically. The major drawback of this approach is
its limitation on d. The values of interest for d
are 3 and ~.

For d =3 or 2, one has to carry out the dynamic
RG numerically. There is the Monte Carlo ap-
proach, ' which carries out the dynamic RG by di-
rect numerical simulation and measurement. Re-
cently there has been more extensive numerical
work, without Monte Carlo simulation, by cluster-
expansion techniques. " All the numerical ap-
proaches so far have been done on the kinetic
Ising model on a discrete lattice, and limited
mostly to d = 2.

The formulation presented here aims at numeri-
cal calculations. So we shall say no more about
the perturbation-theory approach, but mention
some technical points in the numerical approaches.
The technical difficulties in formulating and carry-
ing out the dynamic RG include those in the static
RG plus many more. The. static RG deals with the
equilibrium probability distribution expressed
through an effective Hamiltonian. The parameters
specifying the effective Hamiltonian are trans-
formed. The main difficulties are the following.
First, to define the RG transformation completely,
one has to write the effective Hamiltonian in the
most general form with an infinite number of pa-
rameters. In practice, parametrization with only

, a few parameters is desired, i.e. , one needs to
truncate the effective Hamiltonian, hopefully in
such a way that important results are. not affected
seriously. Second, to carry out the RG transfor-
mation, further truncations are needed so that the
calculation would involve only a finite number of
spins, preferably not too many spins. Thesetrun-
cations are difficult fitting programs —fitting com-
plicated numerical data with a small number of
parameters. These difficulties have not been re-
solved in a satisfactory way, but there has been
considerable progress and experience gained. For
example, it seems evident through experience that
the nearest-neighbor interaction (imagine an Ising

I
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model) is more important than the next-next-
neighbor interaction, and a small number of pa-
rameters specifying the shortest-range interac-
tions seem to provide at least a good qualitative
representation of the scale-invariant effective
Ham iltonian.

Statics is only a part of dynamics. Parametriza-
tion in dynami. cs must specify the law of time
evolution in addition to statics. Most often in the
literature, differential equations of motion are
used as the basis for defining the dynamic RG.
Differential equations are the most natural starting
point, because almost all dynamic problems in
physics have been formulated in terms of differ-
ential- equations. However, calculations so far
have indicated that relatively simple differential
equations cannot provide even a qualitatively ac-
curate representhtion of the scale-. invariant dy-
namics. In other words, the fixed point of the dy-
namic RG does not appear to be a simple differ-
ential equation of motion.

Therefore, at this stage of development; it
seems that an alternative approach to the dynamic
RG would be valuable. The approach formulated
in this article does not involve differential equa-
tions of motion. It is designed to make the para-
metrization and fitting program straightforward
and mechanical. It is a purely. phenomenologicai
approach. The, numerical calculation involved
would be similar to that in statics. It might make
the dynamics in -d dimension look like the. statics
in d+1 dimension with time as the additional. di-
mension. However, there are important details
which make time very different from spac.e. ,

The applications of the new-formul. ation pre-
sented here are to very simpl. e and crude calcula-
tions. Thy are only to illustrate the basic mech-
anics of. how the new formulation works. More
elaborate ..calculations wiIming at.precise results,
have hot been completed.

The outline of -this article is as follows. Section
II provides the basic formalism defining, quantities
through which various probability distributions of
spin vagigbles at discrete time t are specified.
Section III discusses the.parametrization of these
quantities and the important normalization condi-
tions they must satisfy. Connections to. we11-known
kinetic Ising models and the time-dependent
Ginzburg-Landau mogels - are pointed. .out, Trans;
formations of the parameters under the change of.

time scale are diScussed in Sec. IV, and under the
space scale in Sec. V. They are il.lustrated with
trivial models, The combined time-space scale
transformations give the dynamic RG. In Sec. VI,
applications are made to the dynamics of a one- .

dimensional Ising model and a (I +a)-dimensional
model. The tatter is of i speculative nature.

Section VG gives a crude but slightly nontrivial
calculation of the dynamic exponent for a dynamic
two-dimensional Ising model. This calculation is
to serve as a prototype of a more elaborate com-
puting program.

The discussion in this paper is limited to purely
dissipative models. Mode-mode coupl. ings, con-
served energy densities, and other complications
are not discussed. The formalism devel. oped here
is sufficiently general to accommodate these com-
plications, however. lt may also be used as a
basis for the determination of dynamic models
over intermediate space-time scales.

II. BASIC FORMALISM

Consider a system of spine [o'] =[o(x), x are
lattice sites). The configuration at time f will be
denoted by o'&. Let the probabil. ity distribution of
spin configurations be

P[o] = eHi ~l (2.I)

+As[os ~ o2 ~ os] ) ~ (2.3)

which defines A, [o„&„&,]. Similarly one can
write down joint distributions for spins at more
times and define A, [o'„&„&„&,], . . . ,

A m[oi& ~ o~]& ~ ~ ~

%e define the transition probability from 0, to
&, as the conditional probability of finding o', given
0' o

2 .

Ko, I o.] =P[o„o,l/P[o. ]
= exp(Z[o, ]+A[o„o,]) . (2.4)

W[o,
~
o,] must be normalized, i.e. ,

W[o,
~
o,] = P exp(II [o,]+A[o„o,])

al a

(2.5)

This poses a restriction on A. Assuming time re-
versal symmetry, we must have P[o'„o,] =P[o„o,],
ol

which is assumed to be the same for all times,
i.e. , we have s system in equilibrium. P is the
Hamiltonian divided by -kT. An additive constant
is included in P so that P[&] is normalized.

Consider the spin configurations o', at times
t = 1, 2, 3, . . . , measured in units of &, chosen ar-
bitrarily. Let the joint distribution of +, and o, be

P[o„o2]= exp(H[o', ] + H[o, ] +A [o„a,]), (2.2)

which defines A[&„&,]. The joint distribution for
o„o„and &, is

P[e„o„o,] = exp(&[o,]+&[a,]+&[o,]
+A[o„o,] +A[o„o3]
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A[o„o,] =A[o„o,], (2 8) becomes simply

which assures the detailed balance condition

W[o I &.]lw[&. I&,) = exp(ff[&, ] —If[&.1) (2.7)

for the transition probabilities.
If A[o„o,] =0, then spins at different times are

independent. The joint distribution of o'„.. . , &~

N

o~]=
t=z

(2.8)

We expect that when b.t- ~, (2.8) becomes valid.
If A [&„.. . , o ] = 0 for m & 3, then the time

evolution of the system is called "Markovian. "
The joint distribution is

P[o„.. . , o„)= W[o, io,]W[o, lo, ] W[o„, lo„]e"

=exp(a[o, ]+ "+a[o„]+A[o„o,]+ ~ -+A[o„„o~]). (2.9)

H and A. specify completely the statics and dyna-
mics.

The generalization to cases where some of the
A, nz ~ 3 do not vanish is straightforward. Be-
fine

[&, ~o„.. . , &„l= exp(HI o,]+A[o„o,]+A,[o„o„o,]
+ +A [o„o„.. . , o„]),

(2.10)

which is the conditional probability of finding o,
given &„.. . , o . The normalization conditions are

W[o, ~o„.. . , o.]=1.
O~

The time reversal conditions are

(2.11)

A [o„o„.. . , o„]=A [o,o „.. . , o,]. (2.12)

Equations (2.4), (2.5), and (2.8) are just Eqs.
(2.10), (2.11), and (2.12), respectively, for m =2.
Note that so far all the 8"s are just definitions.
There has been no condition imposed on them
(apart for the time reversal symmetry and equilib-
rium). Equations (2.10)—(2.12) must be satisfied
for all m simultaneously. The joint distribution
P[o„.. . , o„]can be expressed in terms of the
5"'s as

P[o„.. . , o„)=W[o, ~o„.. . , o„)P[o„.. . , o„]

(2.13)

Of course, we hope that in cases of interest, A
would be negligible for m larger than some small
integer such as 2 or 3. Then H, A, and A, can
be parametrized in some simple fashion to afford
a simple fitting of the static and dynamic proper-
ties.

III. PARAMETERS AND NORMALIZATION

We now turn to questions regarding the forms of
the A's in (2.13) and the choice of parameters. In
principle, one can start with microscopic equa-
tions of motion for continuous time, usually dif-
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H[oj =~ g o(x)o(y),
(Z, y)

(3.1)

where x, y are restricted to nearest neighbors on

the lattice, and o(x) =+1. Now we want to choose
a form for A. Let us try

ferential equations, and then integrate the equa-
tions over a time period 4 t to find the transition
probability IV[o', (&,], and hence A[o'„&,]. If the
dynamic processes at time scales shorter than
At are Markovian, then they are also Markovian
at the scale At, i.e. , A =0, for ns ~3. However, -

our formulation here is intended as a basis for
phenomenological analysis. We want to choose
some simple forms of A and perhaps A„A4, with
a few parameters. Then we adjust the parameters
to describe phenomena over the time scale of h, t
and longer. Our main interest in the following
sections will be how these parameters and forms
change as At is changed and under the change of
space scale (the renormalization group). .

Let us consider a simple model to illustrate
some basic aspects of parametrization. Take
H[&r] to be that of a conventional Ising model:

@ f[oj =fr~] I ( &-- (3.6)

We can now solve (3.5) easily for V[o'] to first
order in e '":

v[p] H[g]+ -2& Q e ( )h( ) (3.7)

where h(x) is the local field seen by &(x):

e(x)h(x) -=—(1 —Q,) H [oj. (3.8)

It is something like the derivative of H[&] with

respect to &{x). Using the H[o] of (3.1), I(, {x) is
just J times the sum of neighboring spins of &(x).
The transition probability W[&r (o' ] is, by Eqs.
(2.4), (3.3), and (3.7),

IV[&
I
&'] = exp(H [&j —V[&]—V[&']+A.[&, &'1)

=1 —e '"P, no flip,

p(&[ j-v[ l)+ "g pe. (H[ l-v[ ])j

= e"", (3.5)

where Q„changes the sign of the spin at x, but
leaves all other spins unchanged:

A,[o, o']=--,'x g [o(x) —o (x)]' = exp[-2A. + &(x)h(x)], &(x) flips. (3.9)

= X g o(x)o (x) +const . (3.2)

There is only one parameter, A.. Since the transi-
tion probability is proportional to e, Eq. (3.2)
restricts & to near &. If o' is obtained from 0 by
flipping n spins, then e"o= e '" . The larger the
n, the smaller the transition probability.

The form (3.2) is not quite right yet for A be-
cause it does not satisfy the normalization condi-
tion (2.5). To fix it; we introduce V[&] so that

Al~, o']=-V[o]- V[o']+A,[o, o']

will satisfy the normalization condition, which is
now

(3.3)

g exp(H[v'j —V[o']+A,[e, a']) = e"('I, (3.4)
a'

which must be solved for V. Thus, even though
one can easily choose an Ao[&, & ], to get an
A[tr, & ] which satisfies the normalization condition
is a nontrivial task. Let us look at a special case,
that with very large A. , just to get some rough idea
about what A might look like.

For very large A. , e ' is small. Let us keep
only the zeroth and first order in e '" in the sum
of (3.4). This means keeping & = & and those &

which differ from & by flipping one spin only.
Then (3.4) becomes

g, of course gives the total number of spins.
Equation (3.9) is a version of the kinetic Ising
model often seen in the literature if we identify

e ' = I ht. (3.10)

V[oj =-.'~'g o(x)~(y)C(x- y) +O(~'),
Z ~3i

where C(x —y) is the static correlation function

(3.11)

e t: ~oxo y. (3.12)

C(x —y) has a range, which is the correlation
length g by definition. Thus V[o'] is an interaction
of range $. If H[o'j describes the system at its
critical point, g becomes infinite. However, this

Here I" is the spin flip rate. This model de-
scribes an Ising model whose spins are flipped at
random (to simulate the action of the thermal
reservoir) at a rate I'. In view of (3.10), the large
A. limit is the short time limit, i.e. , small At.

Now let us consider the model with a small X.
Since A, is now small, we can solve for V from
(3.4) by expanding in powers of L Let us ignore
the additive constant in (3.2) and expand (3.4).
Assuming H[&]=H[-&], there is no O(A) contribu-
tion to V. The leading term of Vis of O(X'). Qne
finds
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does not mean V[&J will have an infinite range. In
fact, one must solve (3.4) self-consistently for
small A. and V[&] under this circumstance. One
finds that V[o] will still have a finite rangepro-
portional to some inverse power of X. %e shall
see this more explicitly when we discuss the
Gaussian model. .

The above discussion gives a rough idea about
the connection between the magnitude of A[&, & ]
and the length of the time interval 4t. Small At

I-
means little change from o' to o, and requires a
large A for tight restriction. Large At means the
system has relaxed to a large extent over this
period, and a smallA is all that is needed for the
memory.

One can certainly introduce more terms to A. o of
(3.2), for example;

A,[o, o']=-—,'X g [o(x) —o (x)]'

+g o'x & (3.13)

A [rr, rr']= ——fd x[rr(x) —x'(x)j' (3.14)

We shall not write out explicitly the additive con-
stant in & which keeps e~ normalized. The spin
variable &(x) is now regarded as a real valued
function of the continuous d-dimensiona1 space
coordinates x. In terms of the Fourier component
o', of &(x), we have

where x, y are restricted to nearest neighbors.
The additional parameter a can be adjusted to af-
ford more flexibility in fitting this model to what-
ever case is of interest.

To gain further insight into the above discussion,
let us consider a Gaussian model, which is exactly
solvable. The model is defined by

X[x]= —Idx[(rrx) xr,x '], '

e = do' exp -~ 6+v 0 —~A, 0'-& (3.17)

We have dropped all subscripts k for simplicity of
notation. It is also understood that d& carries a
factor (2x/4) ' ' so that there is no need to carry
along a constant with V[o]. The integral of (3.17)
is elementary. One obtains-

A.v=
E+ V+A,

= -X- —,'e + (X'+-'e')'~',

which, for special cases gives

(3.18)

v= ——,z

v= —A, .
(3.19)

I et us find the transition probability W[e(o ]
for the case of large A,. Consider a single 0'~ and

again drop the subscript k.

=exp[-,'(eo" —«') ——,'a(o- o )']. (3.20)

Since A. is large, the transition probability is very
small except for 0 very close to o, and

1 sP'[—o' ——o' I =(o- a )2 2 2 &[ 28') (3.21)

This transition probability gives an average dis-
placement away from r

(3.16)

We can calculate each v~ separately. This is the
simplicity of the Gaussian model. Equation (3.4)
now reads, for each k,

I BH(«)=((o- &)) 2Xo ' (3.22)

(3.15)

and fluctuations in the displacement characterized
by

(3.23)

&~=x +k .

To be precise, the independent variables are Re&~
and Imo~ with the restriction Reo~=Reo ~, Imo~
=-Imo' ~. For our purpose here, we can simply
pretend that each o~ is an independerit real vari-
able. Now we have to fix a V to A, to satisfy the
normalization condition [see Eqs. (3.3) and (3.4)].
Write

We can identify the Gaussian distribution of the
displacement with the results of diffusion with a
diffusion constant D:

p[ex'( 2oo'r)'] = exp[- (ox
- &r')'/4Dn. t],

1

2Dat (3.24)

Thus (3.22) becomes the average displacement due
to dissipation with a friction coefficient D:
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(bo) &H

Qt BQ' (3.25)
IV. TRANSFORMATION UNDER A CHANGE OF

TIME SCALE

(3.26)

The last term in the sum, namely A. , contains no
k dependence, so it has no range. For ro- 0 and

very small k, the first term in the sum is

—,'(k'+r, ) + A,

(3.27)

These conclusions concerning W[e ~& ] for large X,
in fact, is not limited to a Gaussian model. One
can use any H (but the same A,). The derivation
will be a little different. %hen one uses the
Ginzburg-Landau form of H[&), i.e. , (3.14) with an
additional u+ term in the integrand, the large-X
limit of the model has the same transition prob-
ability as the time-dependent Ginzburg-Landau
model extensively studied in the literature. If the-
X in Eq. (3.15) is proportional to 1/k', instead of
being independent of k, then we get a model with
conserved total. spin, and D ~k '.

Note that (3.24) is quite different from (3.10) of
the discrete Ising model in spite of the formal
similarity between the way X appears in Ao. [See
Eqs. (3.2) and (3.14).]

Now we turn to the question as'to whether V[&]
has a long range when the system is near its criti-
cal point. In this model, the critical point is given
by r, =0. Let us write V[&] explicitly, using (3.18)
and putting back the subscripts and summing over
k:

04, ""&g y

P(o„o„.. . , o„], (4.1)

if N is odd. If N is even, just sum over o'„, too.
I' gives the joint distribution of spin configura-
tions separated by two units of time. Thus P is
the transformation of I' under the time scale
change 4t- 2ht. As far as properties of the sys-
tem over time scales larger than b t are con-
cerned, I' has the same content as J.'. We can
now easily express (4.1) in terms of transforma-
tions of the A 's. Since

P o„o„e, =P o„o,

The values of the parameters of a dynamic
model formulated above depend on the time inter-
val ht. For a given model, if we change the size
of b, t, the values of parameters change so that
the physical content of the model remains the
same. This is a change of the scale unit of time.
Like a rotation of coordinate axes or other changes
of references, a change of time scale is merely a
change of description, not of content. %e proceed
to investigate how the parameters transform under
a change of time scale.

Consider the joint distribution P[&„&„.. . , &„]
of spin configurations at times t = 1, 2, 3, . . . ,&.
Let us sum over. every other configuration,
&„04,0„.. . to obtain the transformed distribution

flP [o»os& ~ ~ ~o~]

since v~- —,e~ = -2—(r,+k') by (3.19). Thus the
range of V[&) is finite near and at the critical
point, namely (2A) '~'.

On the other hand, if ~,»X, the first term in the
sum of (3.26) becomes simply

-=exp(H[o, ]+H[o,]+A "[o„o,]),

we have A. , the transformed A, given by

p(&"[ „.]) = g p(H[ 1+&[, ]

(4.2)

X'/(k' +r,) (3.28)
+g[o„o,]+A,[o„o„o,]) .

since v~=-A, . This is just A, times the Fourier
transform of the spin-correlation function C(x-y)
and Eq. (3.26) becomes the same as Eq. (3.11)
[apart from the last term of (3.26)]. The range of
C is just $ = (ro)

The above simple examples show roughly how
one constructs model. s within this formalism, and
how the normalization condition can be satisfied.
They also demonstrated qualitatively that no long
range interactions need to appear even when the
system is near its critical point. In order to apply
the formalism to the analysis of dynamics near a
critical point, it is of great importance that no
long range interaction appears.

(4.3)

See Eq. (1.3) for the expression of P[&„&„&,] in
terms of II, A, and A, . Similarly
A [&„o„.. . , &, „]can be defined via

exp(+~s[oi~ os~ os]

=P "[o'„o,o ][exp(H [o,]+H [o,] +H [o,])
x exp(A"[o„o,]+A"[o„o,])]' '.

(4.4)

Note that H[+] does not change under the time
scale change. If A =0 for m ~3, then' =0 for
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m & 3. Otherwise, one cannot say in general which
A must be zero.

Let us use the simple models of the previous
lI

section to illustrate the calculation of A . Con-
sider first the kinetic Ising model defined by Eqs.
(3.1) and (3.2) in the limit of large )). , and keep
terms up to O(e ' ). Under this approximation,
we consider only the cases where 0', =O„and 0,
=Q,&2 [i.e. , &, differs from o2 by the flip of one
spin & only, see (3.6) for the definition of Q ].
For &, = &, = o', we have, using (4.3) with A, = 0,
and keeping in the sum over 0, only the intermedi-
ate configurations +, = 0,

exp(& [o, o]) = exp(&to]+2&[o, ol) (4 5)

V e call 0, the intermediate configurations since
they happen between the initial configuration 0,
and final oy Summing over intermediate config-
urations here means averaging over processes
with fixed initial configuration &, and final 0,. In
(4.5) we included only the process

(4.6)

Any other process would involve two or more
flips. By Eqs. (3.3) and (3.7),

& [o, o'] =&.[o, o'] &[o]—I [o']—

O' X —O' X2.
= e[o].ff[o]..-"~ (. () ()

2

a)(x)»()x)
)

(4.7)

Substituting this in (4.5), we obtain

[o o'] ff [Q'] 2s-2x P ea(x)»(2) (4.8)

Similarly, for &, = Q, o', we take into account the
intermediate configuration o2 = & and &2 = Q,o, i.e. ,
the processes

Q„o Q„(T~ o,

Q„o—o—o. (4.S)

%'e obtain

exp(A [Q,&, &]) = 2 exp[—2)). ——2'(P[o]+H[Q„a])).

(4.10)

To O(e '"), Eqs. (4.8) and (4.10) are consistent
with the identification

-2x"
2 -2xe =2e (4.11)

which is the transformation formul. a for the pa-
rameter A. under the change of time scale At-26t.
The identification of e '" as proportional to 4t
[see (3.10)] in Sec. III is thus justified for large ))..

As a more detailed illustration, let us look at
the Gaussian model defined by (3.14) or (3.15),
and see how the parameter A. changes under the
time scale transformation. The formula (4.3) be-
comes

exp{A"{rr, rr')) = f ee" exp{)i{e"I+A{rr,e"I+e{{e",e'))

We have used (3.15) and (3.16) for the expressions
for H and A. The integrals can be performed se-
parately for each k. After a little algebra, one
obtains

&"[&,o'']=-2 Q [))» I&» —&» I'

+ ~»'(I o» I'+ I&» I')],

One immediately notices that A has a more com-
plicated form than A as given by (3.15). Now ))»

depends on k, whereas in (3.15) A. is one constant.
One may thus conclude that, in general, A will be
transformed into a different form. A may be
more complicated than A.

For the special case A. »e~, we can ignore e~ in
(4.13) and obtain the simple formula

(4.13) Z"=))./2. (4.14)



l9 ALTERNATIVE APPROACH TO THE D YNAMIC. . . 4831

r t=(~t),2' (4.15)

and A», =A~(At) as the parameters at this time
scale. Equation (4.13) provides a recursion rela-
tion

~»i. i =~»s(4~»i+&») ", (4.16)

which allows us to work out A»(h, t) as a function of
At. For large A~, i.e. , short time scale, we have
already seen that

X, (Z t) ~1/af. (4.1'I)

When b, t is increased, A»(At) eventually becomes
small compared to e» (assuming e»40). Then it
wil. l decrease exponentially:

(~f) e-kt/t» (4.18)

where &~ is some characteristic time scale such
that A»(r») is already small compared to e».

The above illustrations show roughly how pa-
rameters might change when the time scale is
increased. They also show that the form of A in

This indicates that 1 reduces to A/2 as b, t doubles,
and thus justifies the identification (3.24) of A. as
proportional to 1/6t for large X. The transforma-
tion can be repeated l times. Now let us denote
the transformed time scale as

general changes too. To define a time scale trans-
formation completely one would need in general. to
introduce infinite numbers of parameters (e.g. ,
one X» for each k in the Gaussian model). ln prac-
tice, one needs some truncations to dispose of pa-
rameters which are of no interest. For example,
if we happen to be interested in a range of h, t
where A~»e~, in the Gaussian model, then we
might take A. as just one parameter.

V. TRANSFORMATION UNDER THE COMBINED fIME-

SPACE SCALE CHANGE

The transformation of parameters under a
change of length scale in space, with the modern
name "renormalization group (RG),"has been ex-
tensively studied. When combined with a time
scale change, it is called "the dynamic RG." In
this section, we illustrate how the dynamic RG
works in the present formulation. We start with
the Gaussian model.

The Gaussian model ls defined by (3.14) or (3.15).
We now introduce a cutoff A so that the wavevec-
tors are l.imited to k &A. Denote the Fourier com-
ponents of &t by o',~. Given the joint distribution
P[&„.. . , &„], the transformed distribution P
under RG (space only) is defined by

N

&'l~„.. . , ~ )=. I fl'l. ,..]' „..'.;, d;, ).„-.& —nl2
t=l y'& h/st

(5.1)

ff'[o]= ——Q (ra+a's ") (rr» (',
@&A

2- yjo=s ~o (5.2)

For the special value &o=ro*=0, and by choosing
@=0, we get a "fixed point" H*[o], which does not

This transformation involves two operations. We
first eliminate by integration short wave (k & A/s)
variations of the spins. The labels k of the re-
maining spin variables are then replaced by ks
and the spin variables are multiplied by s' " '.
Here 1 &s & is the factor of scale change. Thus
the transformation effectively is x- x/s with the
cutoff A unchanged. For the Gaussian model. , all
the o»'s are independent. The integrations of
(5.1) simply mean dropping e,» with k & A/s. The
second step is also trivial. The transformed B is

change under RG.
The transformation of A. is easily read off from

Eq. (3.15) since the transformation of A is just
the change of variabl. es &, o' to so', s&. We have

A. =s'A. . (5.3)

X = 2S'X. (5 4)

The terms dropped are of O(k'/A, '), assuming ro
=0. Thus, if we choose s =W2, we get X =X, i.e. ,

invariance under the dynamic RG. . By definition,
the time scale is changed by s'. Thus, we have

Now we combine this transformation with the time
scale transformation (4.13), i.e. , given A. , we first
apply (4.13) and then apply (5.3) to the result. We

get, for small k, the transformati. on under the
dynamic RG:
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z=2 (5.5)

for the dynamic exponent for the Gaussian model.
What we have learned is that, while a time scale

change decreases A. , and a space scale change in-
creases it, a proper combination can keep A, the
same, provided that A. is fairly large. If A, is not
large, this cannot be done in this. model. . We ex-
pect the following generalization of this conclusion
to other models: Over a certain range of values of
parameters, invariance under the dynamic RG can
be possible with a proper choice of s.

Having discussed the most basic aspects of the
dynamic RG within the Gaussian model, we proceed
to remark on more general models. The definition
of RG transformation (5.1) is not limited to the
Gaussian model. To facilitate discussion, let us
rewrite (5.1) as follows. Let p, , denote the re-
maining and rescaled spin variables after the
transformation, and write

5(&to o~~)—
A&A s

I.=II f"'~
at

(5.7)

Equation (5.6) also allows other forms of R. In
general we can regard R[p, (&] as the conditional
probability of finding p, given o'. It must satisfy
the normalization condition

P R[[ (o]=1. (5.8)

From the definitions of H, 4, A„.. . , one can ob-
tain the transformed quantities H, A, A3, . . . -

from (5.6). (For the moment, let us forget about
the time scale change. ) To obtain &, we need
only K To obtain A, we need H and A, but not A, :

ea'[P] Q R[~ (o]eH[a]
0

exp(& [[,]+&[u.]+& [[ „[.])
= Q R[[,Io,]R[[.I&.]

ag 02

x exp(a[a, ]+ff [g,]+~[o„g,]),
etc.

(5.9)

The calculation of A„ is not affected by A with
m &n. This is an important advantage of the pres-
ent formulation. It allows the calculation of H,

P '[ii,„.. . , p,„]= '[; Q R [ y, , (o,]P[cr„.. . , o ],
at

(5.6)

where the sum over o, with the restriction R re-
places the integrals in (5.1). For (5.1), we have

S(X) = Q o'(x), (5.10)

where y labels a block containing several lattice
cells, and P is an adjustable parameter. This
choice j.s often used in static RG calculations for
the Ising model, where p, =+1, o'= +1. This choice
is expected to be bad for dynamic calculations be-
cause it generates fast variations in p. which are
ficticious in the following sense. Even if all o(x)
in a bl, ock y =+1, R[p, (&] for p(y) = -1 does not
vanish. Namely, the block spin can fluctuate even
if no spin ever flips. Obviously, this choice of &
masks the dynamic content of the original model,
not to mention that it violates the spin conservation
law in certain models.

We now proceed to illustrative calculations.

VI. DYNAMICS IN ONE DIMENSION AND IN

1+e DIMENSION
I

We now apply the dynamic RG to a one-dimen-
sional Ising model and look for a fixed point, and
its associated dynamic exponent s.

First, we note that the critical point for the one-

A Q3 A4, ~ ~ ~ sequential ly. There is no need to
deal with &, A, A„.. . all at once.

It should be pointed out, however, that even if
A =0 for.all m ~3, A for m ~3 in general do not
vanish (Gaussian model excepted). This situation
is different from the case of the time scale trans-
formation, where A for all m &3 would vanish if
A =0 for all m ~3. In other words, the RG trans-
formation would generate a non-Markovian form
of the joint probability distribution, even though
the time scale transformation would not. The ex-
tent to which A with pn ~ 3 are important depends
on the choice of R[p (o']. For example, if we
choose an R different from Eq. (5.7) for the Gaus-
sian model, A with m & 3 would no longer vanish.
One can design a program to optimize the choice
of R[g (o'] in a calculation, so as to minimize 8
with m ~3.

There are also other considerations in the choice
of R[p, (&]. For the Gaussian model it is clear
from a physical viewpoint that the choice (5.7) is a
sound one, because, in this choice, the slowly
varying variables (&,j, with small k) and the fast
varying ones (with large k) are neatly separated.
For a non-Gaussian model, such separation is dif-
ficult. Even though a good choice of & is not obvi-
ous, one can easily tell that some choices are bad.
For example, one should avoid those which gener-
ate fast variations which should not be there. An
example is the choice

R[~ (o] ~ ]
I

ePP(w) s(w)
J k
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dimensional Ising model is at zero temperature,
or J'= ~ [Jas defined by H [&] of (3.1}]. Therefore,
let us consider only the case of very large J. In
this case the system. is characterized, by large
domains of parallel spins. . The border. point of
two domains is often referred to as a "kink" or a
'-'domain wall. " The size of a domain is on the
average (= O(e' }. The system is thus essentially
an ideal gas of kinks for very large J. The dy-
namics is fully characterized by the motion of a
single kink.

Let us look at a portion of the system smaLL

compared to $ but much larger than the lattice
spacing. If there is no kink in this portion, there
is no change under the dynamic RG. Now consider
the case where there is one- kink in this portion,
loc)ated at the position x,. at time t. Let us try the
dynamic model defined by

A{x,x') = --,'a(xe- x )'. (6.1}

%'e need not consider the normaLization condition,
since & and hence Vare all independent of x', and

Eq. (6.1) is correct up to an additive constant.
The time scale transformation of A is easily
worked out:

exp[A (x;x)] fdx e=xp[A(xx" )+A(,x,x)],

A (x, x }= -g][. (x —x )',
(6.2)

This is a trivial version of (4.12). We have as-
sumed that the portion of the system under con-
sideration is large compared to. l/~A. , even though
smaller than $ e', so that the limits of the x
integral in (6,2) can be regarded as +~. If we
change the scale of x by s, then evidently X is
multipLied by s' in view of (6.1), Thus, together
with the time scale change (6.2}, the dynamic RG
changes A. into)

are added to (6.1), how would A transform, under
the dynamic RG& %'ould the additional terms
grow (then they are "relevant" ) or would they di-
minish ("irrelevant" ) y To answer this, let us
define

o.(x-x)~A(x, x),8: dx exp -2Kx+ cl g (6.4)

Under the time scale transformation (6.2), which
is just a convolution integral. , we get simpl. y

o. (x) =2n(x). (6.5)

Since n(x) is an even function, so is [](, and we
can introduce quite generall. y the parameters
a„a„.. . , so that

a(x) =-x'/2A. —a,)['-a,]('- ~ ~ ~ . (6.6)

In view of Eq. (6.5) and the fact that ]( has the unit
of an inverse length, the transformation of these
parameters under the dynamic RG, is thus

I
a, =2s a, ,

a, = 2s 'a, , etc. (6.7)

Upon choosing s = )/2, we see that a„a„.i. all
diminish under the dynamic RG transformation,
i.e. , these parameters are all "irrelevent" and

(6.1) is a "stable" fixed point.
There have been few precise results gn the

static and dynamic exponents in 1+& dimensions,
with smalL &. The foll.owing cal.cul. ation of z in 1
+e dimensions is only speculative. It is based on
the simple picture in one dimension plus extrapo-
lation.

First, - l.et us review the simpl. e argument which
leads to the conclusion that J*, the critical value
of J', is of 0(1/e) [i.e. , a critical. temperature of
O(e)]. Suppose that all. spine are pointing up. The
probability for later finding a domain of size L
with spins down wiLL be proportional. to

A. =&s'X. {6.3)
exp(- JL'+ ln L) (6.8)

When we chooses =])2, @=2, A, would be invariant.
We thus have a fixed point of the dynamic RG.

The reader may wonder why the special form
{6.1) is chosen. The main reason is that this
special form gives the transition probability
expA(x, x ) of. a diffusion process. Since we ex-
pect the kink motion to be that of a random walk,
and for the time interval At Large compared to the
time for making one spin flip, and (x —x

~
large

compared to one lattice spacing, Eq. {6.1) is a
reasonable choice to start with. Note that the ~ of
{6.1) is not that of {3.2), but the connection is easy
to determine.

Another question is, when terms of other forms

where JL' is, up to a constant factor, the energy
of the domain wall, and 1nL is the entropy of the
fluctuation of the domain wall, again up to a factor
probably independent of L. We see that the size
of the domain is limited if JL'&LnL, i.e. , if

J & J*-1/e . (6.9)

This completes the argument.
Near the critical point, we expect large domains

of parallel spins of size e' '. Since the domains
are very large, the motion of one part of the do-'
main wall is expected to be quite independent of
other parts. Therefore, let us choose an arbitrary
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direction as the x axis. Let y denote the coordi-
nate perpendicular to the x axis. The space of y
is an e-dimensional space. Consider a domain
wall and describe its shape by x(y), which is a
"surface" in the (1+@)-dimensional space. The
simp1. est dynamic model in our formulation is
given by a Gaussian model:

"decimation, "which eliminates a half of the spins
of a square lattice, as shown in Fig. 1. This cor-
responds to a scale change of s = ~2. For our cal-
culation, we consider only four spins, &] 02 p3,
o', (note that the subscripts now denote positions,
not times, see Fig. 1) and ignore the rest. This
is a truncation. We write

A, («, «) ——
2 f d «l«('«) —«'(y) j' (6.10)

e [o]= J(o,o, + o,o, '+ o,o, + o,o,)

= J(o, + o,) (a, + o,) . (7.1)
This is, of course, a direct generalization of Eq.
(6.1). Instead of a single kink, we have here a
wall. Since this is a Gaussian model, the analysis
of Sec. V applies, and, since x is a length, the
transformation of A. under scale change is evident.
Under the dynamic RG, A. goes to

exp(J'&, o', +const. ) = p e"l'~.
02 ~ 04

The transformed interaction J is then given by

(7.2)

The decimation is then carried out by summing
over 0, and 04'.

A. = &s'"A. (6.11) e'~ = —,'(1+cosh4J) . (7.3)
in view of (6.10). Thus

z = 2+6.
This result is an extrapolation from the one-
dimensional analysis, and seems natural in the
present formulation. ' It still lacks firm mathe-
matical or physical grounds, however.

VII. DYNAMIC RENORMALIZATION GROUP ON

A DISCRETE LATTICE
I

The extension of the above analysis to models
more general and realistic than Gaussian is
straightforward in principle, although not quite
so in practice. One can use perturbation theory
in the present framework to obtain the e expan-
sions of the dynamic exponent. One can also work
with approximate recursion formulas like that of
Wilson. We shall not go into these approaches
here. Instead, let us consider the dynamic RG on
a discrete lattice, in a way similar to the static
RG studied extensively in the literature.

The following is an oversimplified calculation,
working out the dynamic RG transformation on a
two-dimensional Ising model lattice. The purpose
is to illustrate the basic mechanics of calculation
and the necessary truncations. A more serious
calculation would follow the same steps but would
be more e&aborate. It would involve programmed
computing, which is not described in this paper.

The model we shall use is the Ising model with
a simple form of A defined by Eqs. (3.1) and (3.2).
There are two parameters J, the static nearest
neighbor interaction, and X, containing the dynamic
information.

Before going into dynamics, we first determine
J*, the fixed point value of Junder RG. This is a
static problem. The RG transformation of J is ob-
tained as follows. We use the RG defined by

The fixed point value of J and dJ /d J are given by

e' = 3.38,

(7.4).

X 0 X 0 X

0 X 0
2

X Q X

0 X 0

0

X 0

FIG. 1. Decimation
eliminates spin variables
located at x positions.

X 0 X Q X

The resulting value of the exponent v= in~2/Inl. 67
=0.68 is quite far from the exact value 1. This
indicates that this truncated RG is very crude.

To find the fixed point under the dynamic RG,
we do the following. First, we determine A, as a
function of At, i.e. , the transformation of A, under
time scale change. This function is plotted as the
lower curve in Fig. 2. Second, we determine how

A. transforms under RG in space. This transfor-
mation maps the lower curve of Fig. 2 into the
upper curve. The change in space scale is v 2.
Over the range of X where the two curves are ap-
proximately parallel, it is possible to return to
the same value of X after changing the time scale
by (~2)' followed by a change in space scale by
~2. This is shown by the arrows in Fig. 2. The
dynamic exponent z is determined by measuring
6, the length of the horizontal line in- Fig. 2. We
now proceed to describe these steps in some de-
tail.
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2-

following the form (7.5}. Now Eq. (7.10) implies
a truncation. Namely, if we carry out (7.9), we
shall have not only terms proportional to +y+y

+O2O, in A but also those proportional to +go'2

+o,o', . Thus, (7.10) is really incomplete, and is
therefore a truncated version. We now define X

by a fitting procedure as follows: We compute '

e for o, =&, =o', =0', =1, and then compute it for
&, =o, =-o, =-o, =1. Then we take the ratio of the
two results, which, according to (7.10), is e'
Note that V[&]= V[-o]. So the V's drop out when
we take the ratio. We obtain

4

lo h, t / ln 2

4y cosh4A. +
-2d'

J =—J-2v. (7.11)

Step (i): Determination of ), as a function of Dt

Let us now be extremely crude. We take only
two spins (not even four) and write

A, [a, o') = X(o,o,'+ o,o,'),

A[«)=Ao[«) —V[&]- V[& ] ~ (7.5)

We need to find V[o] to satisfy the normalization
condition (2.5). V[o] is defined by (3.3) and (3.4),
and is obtained from the equation

FIG. 2. Lower curve is X vs &t, and the upper curve
is the mapping of the lower curve by the RG transforma-
tion (see Sec. VH).

This result, together with (7.8), gives X . Start-
ing with any value of X, we can perform the above
transformation, and then repeat it. The sequence
of values we get give us A(ht) as a function of 4t
for a discrete sequence of values of At. We can
plot the results on a graph paper and join the
points with a smooth curve to get A, (Et) as a func-
tion of continuous At. The lower curve of Fig. 2

follows. 4t is on a logarithmic scale in Fig. 2.
For large X, Eqs. (7.8) and (7.11) give approxi-
mately

(7.12)

e ~ ~= expel —Vo +g 0 0

Since there are only two spins, we write

V[o] = vo, o, ,

H[o] =go, cr, .

(7 6)

(7.7)

These results are consistent with the short time
limit discussed earlier [see (4.11)], and account
for the straight portion of the curve in Fig. 2.
The value of 8 used in Fig. 2 is J* [see (7.4)].

Step (ii): Transformation of X under RG (space only)

Additive constants are ignored. Substituting (7.7)
and (7.5) in (7.6), we find, after a little algebra,

1+sech2Xe ' o
I1+sech2Ae' 0 j

The generalization of (7.2) to include A is

P'[o, o']= Q I [o, o'],
02 a4 02'a4

(7.13)

Jo=J- v. (7.8)
This is a fairly complicated equation for v, but
its numerical. solution needs only a desk calcula-
tor.

Let us proceed to obtain an equation for A. , the
transformed A. when b, t is enlarged by 2. The
transformation is defined by (4.3), i.e. ,

exp(A"[o, o']) = g exp(H[o "]+A[o,o"]
al I

where o', 0 on the left-hand side refer to only &„0,
and &„o;, i.e. , only two spins (at two different
times) are left after &„&„&„and&, are summed
over on the right-hand side. Let us write

P'[o, o']

= exp(H [o ] + H [o ] +A [o, o ]), o = (o„a,),
A'[o, o']

+A[o", o']) .
Since we consider only two spins, we write

A [o, o ]= A, (o,o, + o,o, ) —V' [o] —V [a ]

(7.9)

(7.10}

= & (ox ox + os os} —V [o]- V [o ]

P[o, (r']

(7.14)

= exp(H [o]+ H[o' ] +A[o, o ]), (7 = (0', o, o, o ) .
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All the V's drop out when we have taken the ratio.
This formula defines A, . This gives the transfor-
mation of X under a space scale change of s = ~2.
After some algebra, one obtains from Eq. (7.15)

= X+-,' in[f (X)/f (—A.)],
f (&) = e'" cosh8 8', +4 cosh48, + 2 cosh2A, + 8 ' ",
Jo=J v (7.16)

where v has to be solved from (7.8). This trans-
formation takes the lower curve A(Et) of Pig. 2 to
the upper curve A. (Ef).

Step (iii): Determination of the exponent g

The two curves in Fig. 2 tell us how A, changes
under changes of time or space scales. The dy-
namic RG combines the change of space scale s
and the change in time scale s'. If z is chosen ap-
propriately, A. could remain unchanged. Such a
value of a can be obtained graphically using Fig. 2.
The interval 4 is simply

h =in(v 2)' (7.17)

fro&. i which we find z=1.85+0.15 for the portion of
curves where they are approximately straight.
The error indicated is numerical.

Having described how this crude calculation is
done, we shall now examine its implications and

questions involved.
The above 'calculation shows clearly the role of

truncations or fitting. We kept only two parame-
ters. We used four spins to determine the RG and

two spins to determine the time scale transforma-
tion. %'e still needed further truncations to avoid
the generation of more parameters. In general,
one needs infinitely many parameters to define the
transformations compl. etely. In practice, the cal-
culation would always be a fitting procedure in-
volving a small number of parameters.

The truncations and fitting procedures used in
the above calculation are quite arbitrary. Vfe have
given some ideas on how they can be improved.

Again, when we carry out (7.13), we shall find A
I

having=not only terms proportional to o', o'g+ +3o3,
but also o,o, +0', o', . Using only one parameter A.

implies truncation. We shall define A. by fitting
as we did for A. . We calculate I' for oy

+3 1 and call it P„. Then we calculate P for
+3 +g +3 1 and call it P, . According to

Eq. (7.14), the ratio gives

(7.15)

R[p Io]= 6p a 5p a (7.18)

for the four spins o'y ~2 +3 and &4. In view of
the remarks at the end of Sec. V, decimation is
not well suited for dynamic RG, although not as
bad as the example (5.10). It chooses one of the
two spins in each bl.ock to be the new spin variable
p, . Therefore the variation of p, does not quite re-
flect that of the total spin in the block. If the mod-
el is one which requires the conservation of total
spin, this R[p, ~o'] would be a wrong one to use.
Although the total spin is not conserved in the
above model, the sl.owly varying variables are ex-
pected to be the long wavelength spin fluctuations,
and an R[p (&] whose p, for a block represents the
net spin more faithfully would be better. In prin-
ciple, the results of the calculation should be in-
dependent of R provided that the choice is not too
far off and the truncations are very few and mild.
We expect, in practice, that a physically more
reasonable choice of ~ would allow faster numeri-
cal convergence and the right answers to survive
more truncations.

In a more elaborate calculation, there will be
many features which the above simple calculation
fails to illustrate, for example, the role of A, and
irrelevant parameters. These will be discussed
in future publications.

In fact, the most important general questions are
how to optimize the parametrization and fitting
programs, and what are the criteria for optimiza-
tion. Satisfactory answers to these questions are
not available. We certainly will get more ideas
when a more elaborate calculation is performed.

In the above calculation, we found that A. is in-
variant under the dynamic RG of a fixed s only
over a certain range. (The approximately straight
portion of the curves in Fig. 2.) This feature of
limitation is expected to be general and to appear
in various forms and contexts. . In general. , we ex-
pect that a given parametrizatiori and fitting pro-
gram can be adequate only in a certain range of
values of the parameters. This also implies a
limited' rangy of time scale and. space scale over
which the parametrization and fitting are good.
Such limitation is not surprising since any phenom-
enological model is limited in its validity to a cer-
tain range of values of its parameters. The pa-
rameters such as J and A. are really phenomeno-
logical in nature, not microscopic specifications
in the exact solutions in the Onsager tradition.

For the sake of simplicity, the RG transforma-
tion used in the above calculation is vis decima-
tion. In terms of R[p (+] [see Eqs. (5.6), (5.9)],
we have
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