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A theory of spin-glass condensation in a disordered itinerant-electron system without well-developed local
moments is presented. The theory applies to finite-concentration impurity systems at temperatures well below
their Kondo temperatures; such as RhCo. Tne local spin fluctuations at impurity sites are coupled to each
other via the magnetic response of the host-metal electrons, and since this interaction is effectively random,
a phase transition to a frozen state characterized by an Edwards-Anderson spin-glass order parameter can
occur. A mean-field description of this transition and state is given here, paying particular attention to the
requirement of mutually consistent approximations for the susceptibility, order parameter, and order-
parameter susceptibility. An interesting formal aspect of the theory is the fact that fluctuation corrections to
the susceptibility, of the sort which occurs in the Moriya-Kawabata and Hertz-Klenin theory of itinerant
ferromagnets, are necessary for a consistent description of the spin-glass case..

i. INTRODUCTION

Theoretical descriptions of ferromagnetism in
solids span a range between two extreme pictures-
one based on Heisenberg-Ising localized-spin mod-
els and the other on the Slater-Stoner-%'ohlfarth
itinerant-electron theory. Some materials conform
better to one picture and others to the other one.
Thus one also expects that among the many sys-
tems exhibiting spin-glass behavior, some should
be reasonably good realizations of localized-spin
models and others should fit more easily into an
itinerant-electron description. While there has
been extensive study of Heisenberg or Ising spin-
glass models, ' no itinerant models have been dis-
cussed in the literature. This paper therefore pre-
sents a theoretical framework for itinerant-elec-
tron spin-glasses, mhich one can eall "Stoner
glasses. " %'e begin with a discussion of the sorts
of systems likely to fit such a theory and mrite
down the simplest model likely to contain the rele-
vant physics. After a few approximations made for
mathematical convenience, the model is then
solved in mean-field theory.

The definition of a spin-glass is sometimes taken
to include as a precondition the existence of well-
defined localized moments on impurity atoms.
Such a definition mould not classify the systems we
are discussing here as spin-glasses, but this.
seems to be an artificial exclusion. (The corres-
ponding definition for ordered magnetism would
exclude nickel from the list of ferromagnets, for
example. ) %'e will take the point of view here that
the existence of an Edwards-Anderson order pa-'

rameter is a sufficient (though not necessary) con-
dition to call a material a spin-glass. Thus, draw-
ing on the analogy with the ferromagnetism of Ni
or the antiferromagnetism of Cr, we investigate
here the case where randomness of a suitable kind

is sufficient to drive a system. into, a state where
the frozen-spin density pattern is a random one,
characterized by the Edwards-Anderson order pa-
rameter q=((S(x})2),. [Here and henceforth, ther-
mal averages are denoted in the conventional way
(( )}, and averages over all possible impurity
configurations by ( ),.j

VFhen do we expect that an itinerant-electron de-
scription of a spin-glass state mill be appropriate?
For ordinary magnetic order, itinerant models are
generally more relevant for transition metals while
localized ones are better for rare earths, so we
expect cases'where both host and impurity ele-
ments and transition metals to be potential Stoner
glasses. Another may to answer the question is to
look at the dilute limit of the system in question.
If me have a very high Kondo temperature, so that
a local-spin-fluctuation description is more rele-
vant than a Kondo model, then any spin-glass order
that sets in at a temperature T «T~ cannot involve
couplings between well-defined local moments, but
must come about because of interactions between
the virtual spin fluctuations. The latter situation
is essentially the picture we develop here and can
be taken as the defining condition for a Stoner
glass: T, «T~. Several systems which meet this
criterion have been studied experimentally, most
notably AuCo, AAFe, and WACO. ' '

Another point to note, although it is in many
cases an academic one, is that at sufficiently low
temperature any impurity moment will be
quenched, ' and the localized- spin description will
fail. Thus an itinerant picture is always necessary
in principle as &-0.

ii. MODEL

The model, me consider here is-based on a pic-
ture of an alloy where both host and impurity are
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transition metals. Vfe suppose that the principal
difference between the two kinds of atoms is that
one has a larger intratomic Coulomb repulsion
energy I. Thus we write down a tight-binding mod-
el where this Coulomb (Hubbard) term is included
only at the impurity sites

o ~ o
Xt~ Xgg+ ~ X&kIXky ~

k

or, solving interatively, the series

o ~ o o ~ o o o
X&) =X&g+ ~X]kIXkg+ ~X)kIXk&IX)) +

k kl

(2 3)

(2.3a)

II =~ t&&c«c&a +I n&~n&&
/ga les

(2.1)

(2.2)

where S is the set of impurity sites. (For simplic-
ity, we consider only a one-band model. } This can
be thought of as either a dilute Hubbard"" or a
concentrated Vfolff model. " The randomness which
leads to spin-glass behavior originates in the ran-
dom distribution of impurity sites S. It can be
handled mathematically in several approximate
ways. The qualitative results do not depend on
which way we choose, as we shall argue later.

If I were very large, there would be well-defined
moments on impurity atoms (above a very low
Kondo temperature) and a Heisenberg model would
be a sensible starting point. That is not the situa-
tion we deal with here. We consider an I in the
intermediate region IiV(Ez) =1 where local spin
fluctuations on the impurities persist for times
long compared with electronic hopping states but
short relative to the inverse temperature. In
terms of the spin fluctuation energy +,

where X,.z is the susceptibility when I=O, that is,
the susceptibility of the host. [If every site had I
t0 (the Hubbard model), (2.3) would be soluble by
Fourier transform, yielding the familiar Stoner
instability. The randomness of the distribution of
impurities prevents this simple solution in the
present problem. ] It is convenient now to sum
separately all repeated interactions on the same
impurity, e.g. , k=l. Then, defining the exchange
enhanced interaction

g =II(I IX(-&) (2.4)

(2.6)

where the g matrix is given by the simple series

gled =805U+go4&go + Zkofgagof'aggo+ ' ' '
~

and the intersite part of the susceptibility matrix

(2.5)

we have

The one-impurity problem has a spurious instabil-
ity at IX&„=1where X'„, is the local susceptibility
of the noninteracting system; fluctuations actuajly
prevent the susceptibility from diverging at any
finite I.'4 We mill sweep all the problems associ-
ated with this difficult aspect of the problem under
the rug by treating I as a phenomenological param-
eter with IX„,&1. This is standard practice in lo-
cal-spin-fluctuation theory (LSF) for the single-
site problem. " Some justification for this practice
even for large I (provided T «T~) is provided by
recent mork on the Kondo problem. "

What we want to do now is to examine whether
the interactions between LSF sites mediated by the
host-metal electrons can drive the system into a
macroscopic condensed state. Depending on details
of the interaction, this state could be ferromagnetic
(as in AhNi and Pdwi), antiferromagnetic, or, if
appropriate randomness is present, a spin-glass.
Since we are interested in the spin-glass, we shall
emphasize the random aspect of the interaction in
what follows.

To express this formally, we consider calculat-
ing the spin susceptibiUty X(r;, r&} -=g, , in mean-
field theory. [The indices i,j label impurity (LSF)
sites. ] We have

(2.7)

This rearrangement illustrates the fact that the
intrasite part of Xo just determines the local ex-
change enhancement, producing slow local spin
fluctuations, while the intersite terms lead to a
large degree of randomness in the series (2.V) be-
cause of the random arrangement of impurity sites.
It is this randomness which can produce spin-glass
behavior. More explicitly, the Fourier transform
of X'„. contains singularities at the Fermi surface,
leading to oscillatory behavior in X&& as a function
of r, —r&—the same mechanism responsible for ex-
change interactions of varying sign in Buderman-
Kittel-Kasuya-Yosida (RKKY)-coupled Heisenberg
spin-glasses. The only difference is that here it
is the I SF sites, not well-defined moments, which
are coupled in this fashion.

For our idealized model (2.1), the free part of 0
is that of the pure host (since we assumed that the
only thing different about an impurity atom was its
I), so X,&

will contain oscillations characteristic of
a pure system. More realistically, me should con-
sider the one-electron effects of disorder as well;
these will tend to smear the Fermi-surface singu-
larities and damp the RKKY oscillations. But as



4798 J. A. HERTZ

long as P,.&
of either sign can still occur and not too

many p, , are of one sign, spin-glass behavior is
still likely.

To work out the consequences of these interac-
tions, we need to set up a perturbation theory for
calculating configurationally averaged quantities.
In order to do this conveniently, it is helpful to
further idealize our model. This simplication is
commonly made for Heisenberg spin-glasses: in-
stead of randomly situated impurity sites with the
interaction a given (nonrandom) function of the dis-
tance between impurities, we consider instead the
problem of LSF centers on a lattice, coupled by

Q, &
which are random. In the simplest model we

can make, we take

(y, ,y„),= (6„6,, + 6„6„)~,(r, —r, ),
(2.8)

with all higher cumulants vanishing. Although the
question has not been investigated very thoroughly,
the current folklore" has it that more elaborate
models (e.g. , with a distribution appropriate to the
HKKY interaction) would not change qualitatively
any properties of the resulting spin- glass.

We will also need to consider finite frequency
susceptibilities because we are dealing with a
quantum-mechanical problem. We therefore dis-
cuss the structure of Xo„(~) at finite ~ and how to
incorporate this into our model. For small k, we
have'7 (for a free Fermi gas)

~x'($ ~) = x'(e ")- x'(& 0}

=N(0)(el+i/2qv )8(qv —l(ol). (2.&)

(In this discussion, &o is a Matsubara, frequency
2vm T.) On Fourier transforming, we find that

T QG )(E)G)~(E+(d~)G~((E + 4)I + 602)

& G &,
.(E + R

&
+ (d2 + (d3) . (2.14)

[The sum is over the fermion Matsubara frequen-
cies 2v(n+-, )T.] A depends on all the ~,. and on all
the spatial separations r,.-r, , and so on. Just as
in the case of its two-point counterpart

xo, (a&}=-T QG, , (E)GJ,.(E+ &u); (2.16)

however, we expect A to oscillate in. space. Thus,
when we change the problem from one of randomly
located impurity sites to one of a lattice of random-
ly coupled LSF centers, A„.» acquires an effective-
ly random behavior for i tj, etc. To keep the
problem manageable, we ignore the randomness
and the frequency dependence in. A, on the argu-
ment that the spatial variation tends to get aver-
aged out anyway and the frequency dependence of
the vertex (which varies on a scale -E~) is unim-
portant relative to that in the susceptibility (which
varies on a scale 7, '). The simplest way to do
this" (expressed in momentum space) to to replace
the general A by its value when all incoming mo-
menta vanish. That is, we use as our coupling

The term linear in
l &el does not vanish because

X',.~(0) and 5X,.~(~) are not independent. We also note
that both y, &

and 5y„. decay rapidly enough with r, &

that all the Fourier transforms a,.(k) are well be-
haved at k =0.

To complete our model. , we will need the lowest-
order anharmonic couplings between spin fluctua-
tions, pictured in Fig. 1(a):

A;yaE(~a~ ~2~ ~3)

5XO&(w) ~
l
v

l r&&' cos(2k&x&&) (2.10) x=-T gG'(P, E}=~N,"(E„) (2.16)

for small & and icj, and

~x';g(~) =N(o) I
~ l/(E~/n) (2.11)

where Nr(E~} is a thermally averaged density of
states

f roi=j. Eq.uation (2.11) produces a frequency-de-
perident locally enhanced interaction or t matrix

N, (E,) = del — N(~}.sf (2.17)

(~)= I
1 —Ixo„.((u) 1+ l(ul7, ' (2.12)

As is' common in other spin-fluctuation problems

where &, is a local-spin-fluctuation time, while
(2.10) suggests a generalization of (2.8):

(y,~((u)), = 0,
& y, ,(~)y„(~)).= (6,,6„+6„6,,}

x [a,(r,. —r, ) +
l

ru
l o.,(r,.—r,. )

+ l~l'a, (r, —r, )]
= (5(gdj)+ 6g)6~g)6(1 —rj ~ (d) . (2.13)

F&Q. 1. (a) Four-spin
fl.uctuation vertex; (b) the
six-spin fluctuation. vertex.
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formulated in this way, we ignore higher-order
paramagnon-paramagnon interaction vertices [Fig.
1(b)]. As long as the fluctuations are not too an-
harmonic, this should not be a source of serious
error. [More precisely, as long as typical intern-
al field fluctuations (expressed in energy units) are
small compared to energies over which Nr(E) can
be approximated by a quadratic expansion around
Ez, higher-order anharmonicity should be neglig-
ible. ] We assume X &0 so that the anharmonicity
stabilizes the fluctuations.

We now describe the perturbation theory for this
model, beginning with the structure of the dia-
grams for a fixed set of p&&'s and then describing
the averaging over the distribution of the P,~'s.
%'e want to consider, in particular, the Green's
function g&z. The building blocks of perturbation
theory are the bare Green's function go(&u), the
vertex A, , and the random intersite susceptibility
P,.&(tc). We represent g, (ru) by a thin solid line„
P,&(~) by a wavy line, and a by a square. A p,.~
line can be inserted between any pair of g lines;
thus, the diagrams of Fig. 2(a) represent the ran-
dom-phase approximation (RPA) series (2.V).
Some diagrams for g with anharmonic vertices are
shown in Fig. 2(b).

In calculating susceptibilities and correlation
functions, we have to remember that an external
field couples into both parts of y (y«and P,.&), as
is evident from the form of (2.6}, and into the an-
harmonic vertex A. as well. Thus, for example,
diagr'ams like Fig. 2(c) contribute to y.

A few more comments are in order here before
we discuss the configurational averaging: (i) The
quantities g, (&o), p, ,(~}, and A. all have weak

[0(T/T~)'] temperature dependences which will
turn out to be capable of driving a spin-glass tran-
sition as a certain function of these quantities
passes through a critical value. (ii) One also has
to keep track of component indices on the propaga-
tors and vertices. The rule is simply that a ~ ver-
tex with incoming g lines with spin component la-
bels n, P, y, and 5 has the value

X~pyg = g XT r(o~osvy Qg ), (2.18)

where the o's are Pauli matrices. (iii} We have
ignored density fluctuations.

It is also a simple matter to generalize the mod-
el to the (more realistic) case where (P,&), is non-
zero. The bare Green's function g;(&u) is just re-
placed by a nonlocal propagator

g' (e)=—g e'""& 's'[I —I(}i'(h &u)) ] ' (2 19)

The averaging of these correlation functions, or
products of arbitrary numbers of such functions,
over the distribution of the random variables is
now straightforward to describe formally. One
simply connects all the "bonds"

P&& together in
pairs by dotted lines. A pair P„. and P» so joined
stands for the variance given in Eq. (2.13}. Figure
2(d) shows examples of (g,~), and (ga~), . The lat-
ter quantity will turn out to be the Edwards-Ander-
son order'-parameter susceptibility.

We conclude this section with a discussion of how
the spin-glass instability reveals itself in the be-
havior of correlation functions. An ordinary mag-
netic instability would occur when a particular
Fourier component of (g,~), became infinite. That
is, a finite external field would produce an infinite
mean magnetization. Vfe assume that this does not
happen here. We consider instead subjecting the
system to axandom magnetic field

(h;), =0, (h;hq), =h 5,) (2.20)

and examining the mean-square resulting magnet-
ization

q(h') =((S,)'), = Dh', (2.21)

(c)

~W — ~Q/
I

IMv

FTG. 2. {a) RPA series for g~y, (b) diagrams f» 8'

involving ~ vertices; (c) diagrams for X involving & and

P; {d}configurationally averaged diagrams for (g~, ),
and (gal;&, .

where the second equality defines a linear-response
coefficient for small variance h' of the random
field. If the response q(h') diverges, the system
is unstable and stabilizes itself by generating a
spontaneous value of q even when 4=0. This is the
Edwards-Anderson order parameter. Therefore
we will study the onset of the spin-glass order by
calculating the order-parameter susceptibility D
in the normal state and looking for a divergence in
it. In the spin-glass state, we will write a mean-
field equation to determine the spontaneous value
of q.

The uniform order-parameter susceptibility D
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can be generalized to finite wave number in the fol-
lowing way. Let the variance of the applied ran-
dom field (2.20} vary from site to site. Then

((S,.)')~ =(X(J)~hq (2.22)

where h& is the variance of the field at site j. De-
fining D, , =(y', &), and D(k} as its Fourier trans-
form, the parameter in (2.21} is just D(0).

The preceding discussion may seem to the reader
to be only very weakly connected with the notion of
a spin-glass as a particular frozen irregular mag-
netization pattern (S,.) x0, which suggests that the
conjugate field to the order parameter is an ex-
ternal magnetic field with the same irregular
spatial variation. Qne can in fact proceed in this
fashion in numerical simulation calculations, but
we do not know how to formulate an analytical the-
ory of the spin-glass on this basis. We need a
formalism which allows us to calculate the proba-
bility distributions of various physical quantities
over the statistical ensemble of macroscopica1ly
indistinguishable systems defined by, e.g. , (2.8).
Thus our order parameter and conjugate field have
to be parameters of these probability distributions,
not microscopic variables pertaining to only one
particular realization of the ensemble. The simpl-
est way to try to characterize a spin-glass in such
a fashion appears to be through the (configuration-
al) variance of the thermal average magnetization,
that is, by the Edwards-Anderson order param-
eter. The conjugate field also has to be such a
statistical parameter, and the previous discussion
shows that the variance of the field, h' (2.20) is the
appropriate choice if q is to be the order param-

III. MEAN-FIELD THEORY

It is known .that in spin-glasses, the notion of a
"mean-field" theory is not as straightforward as it
might appear. ' Here we take the view that a "cor-
rect" mean-field theory must satisfy two criteria:
(a) It should be correct to leading order in the
reciprocal of the coordination number z for a hy-
pothetical situation in which g, , =0 except for near-
est neighbors. (b) It should not violate any con-
servation laws. In particular, approximations for
the free energy, the susceptibility, and the order-
parameter susceptibility D, , can not be made inde-
pendently on one another; they must be related by
Ward identities. '0'2'

The more recent versions of mean-field theory
for the Ising spin-glass conform to these require-
ments. The present theo'ey has an analogous
structure.

We begin, in the paramagnetic state, with an ap-
proximation to the average free energy [Fig. 3(a)]

/vs v'vv

(c)

(e)

FIG. 3. Mean-field approximation (solid lines stand
for the fu11 Green's function G). (a) Diagrams for free
energy, T& T~; (b3 self-energy diagrams, T& T~; (c3
typical ladder diagram for I'; (d) extra self-energy dia-
gram for T & T~; (e) extra free-energy diagrams for
T& Tg.

which is correct to lowest order in ~ and x, and
also to leading order in 1/z. In these diagrams
the thick solid lines stand for the full G(e) =(g(+)),
(We confirm our attention to the simple case
(p,.z), = 0 for now. } In the standard way, " the ap-
proximation for the self-energy Z(u&), defined by
the Dyson equation

G(~) =g, (~)+g, (&)Z(&)G(&) (3.1)

is obtained by functional differentiation of the free-
energy diagrams with respect to G. Thus Z(&u) is
given by Fig. 3(b):

(3.2)

(3.3)

Thus the randomness enhances G (or )I), while the
anharmonicity suppresses it (In the .correspond-
ing Ising case, ' a spherical model constraint is
imposed, forcing the two effects to cancel exactly.
No such exact cancellation happens here. )

Leaving aside the solution of (3.1) and (3.2) for
6, we proceed to derive the order-parameter sus-
ceptibility, which is proportional to the fluctuations
ln g, .:
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Z„(~)—5,, G'(~) =G'(~)1 „(a), (3.4)

[The factorized form (3.3) is, strictly speaking, only
a mean-field result; it ignores correlations be-
tween p's at the external vertices of the y, &

dia-
grams and those in the g,&'s. ] If we now define a
vertex function by

-approximation to retain only the new term, dis-
carding the previous single-loop one. This is one
simple way to see the point that a proper mean-
field theory for a spin-glass must include terms
which would be the first (single loop) corrections
to mean-field theory- of an ordinary phase transi-
tion. ' Thus

it then follows that I',.z is obtained by functional
differentiation of the self-energy: & (e ) = -,' T&g G(a ') + -,

' ~Q- &(0)G(&), (3.10)

I'„(~) = 5T',"(a)/«, (& ), (3.5)

where Z@' consists of all diagrams for g that be-
come disconnected (except for being tied together
by averaging lines) when a G line is cut. In the
present case, just one of the two diagrams for Z
(the one with the P,J's) meets this requirement,
and we obtain the simple ladder series [Fig. 3(c)]

E(k, ~) = G'(~)/[I —G'(~}a(k, a }].

This shows an instability when

(3.6}

I =G'(0)&(0, o) =G'(o) g &[X' (o)]'&, (3.V)

G =gall roEg(0) -l ) T]+ — y (3 6)

The explicit linear T dependence will dominate the
quadratic one implicit in g„a(0),1 and X, and we
can solve (3.V) for T

g'[& (o}l"'- I+a'&(0)
—.g'.x (3 9)

%e turn now to the -spin-glass phase, for which
we simply augment the self-energy Z(co) by a term
dependent on the order parameter [Fig. 3(d)].
[This term comes from functionally differentiating
the first diagram of Fig;-3(e},] It is clear that
consistency requires that we add this term to the
single-loop one in order to keep all terms of first
order in ~ when a spin-glass order parameter is
present. Conversely, it wo uld not be a sensible

This is the spin-glass counterpart of the ferro-
magnetic Stoner criterion 1 =I+& ye„.. Note that
while the direct calculation of G(0) from (3.1) and
(3.2) is somewhat messy because of the anharmonic
term, G(0) is well defined experimentally as Iy/
X p ~g Sine e both Q and G are tempe rature depen-
dent, (3.V} can define a critical temperature below
which spin-glass ordering sets in. Although it is
in general a complicated matter to calculate T„
taking into account the temperature dependence of
all these quantities, we can study simply the case
where the local spin fluctuations have a lifetime 7,
such'that T, &7, '. In this case their statistics are
essentially classical, "and only the &' =0 term in
the sum in (3.2) is sizeable. We then expand the
Green's function as

where Q (Fig. 4} is proportional to the Edwards-
Anderson order parameter q

e= [(x';;)'+&(0)]Q. (3.11)

The functional differentiation of Z to obtain the re-
duced-order-parameter susceptibility E is un-
changed by this. modification; we st'ill have (3.6}
except that G is now Q. dependent because of the
extra term in Z. How do we determine Q itself?
Again, by functional differentiation of the free en-
ergy including the new graphs [Fig. 3(e}]. Just as
the connected part of the functional derivative with
respect- to G gives Z, the disconnected part gives
us simply

Q= ~(0)G', (0}Q (3.12)

(remembering that G is Q dependent). Thus, if we
expand G to first order in Q

Go =Ge(l ——,
'

A. QGO+ ), (3.13)

where G, is the value of G(0) when Q =0, we obtain
the characteristic linear growth of Q in the spin-
glass phase

Q = [~(0)G', —I ]/S~G, . (3.14)

(Go- Go)/Go =
2 ~GO@ (3,15)

X..
It .~ 6

FIG. 4. Relation between Q and the Edwards-Anderson
order parameter q= ((S;)2) .

That is, if z(0) and Go vary smoothly with temper-
ature, Q o- (T,—T) near the transition. This is
characteristic of mean-field theory for all spin-
glasses. ' 4" Thus, because of the term in (3.10)
linear in Q, the susceptibility will have a discon-
tinuity in slope at the transition —again, a fami1.iar
result. The magnitude of the suppression of y is
just
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We note further that the self-consistent equation
for Q (3.12) is equivalent to the vanishing of the
denominator of the order-parameter susceptibility
(3.6) at k = ~ =0, every&chere in the spin gla-ss
Phase. The long-wavelength order-parameter
fluctuations remain divergent, rather than being
healed by the growth of the order parameter as in
mean-field theory for an ordinary phase transition.
This "soft" response also occurs in other. mean-
fieM theories' "for spin-glasses. Lest any con-
fusion arise, we also remark that this divergence
has nothing to do with "Goldstone modes, " since it
occurs with a scalar order parameter as well.

The more general situation (2.19) where the
susceptibility matrix elements g,.&

have a nonvan-
ishing mean for i tj as well as i =j can be treated
almost as easily as this simple case. The Dyson
equation (3.1) is unchanged except that G and g, are
momentum dependent, with

g, (k, ~) =f [1 —l()&'(k, ~)),] ', (3.16)

Z is (at this level of approximation) still momen-
tum independent, so the modifications of the sus-
ceptibility are the same as in the previous case.
However, the k dependence of G does modify the
analytical form of the ladder series [Fig. 3(c)] for
the reduced order-parameter susceptibility; in-
stead of (3.6), we have

(3.17)

where

II(k, ~)= 2, G(P, ~)G(P+k, ~).d dp
(3.18)

Thus the instability condition (3.7) becomes

(3.19)

Similar modifications occur in the spin-glass
phase as well. The equation for the reduced order
parameter Q (3.12) becomes

(3.20)

The qualitative conclusions remain unchanged. Q
grows linearly with T, —T and F(0) remains infin-
ite.

Thus all the qualitative features of the transition
to a Stoner-glass state are the same as those found
for other spin-glass models in the corresponding
mean-field theories. ' ' The fact that we have de-
rived them in a fashion that imposed mutual con-
sistency on approximations for different quantities
enhances the credibility of the results for all the
models. Of course, we do not know whether this
mean-field condensation will survive the effects
of fluctuations in three dimensions, but we do at

least have a sensible, consistent mean-field theo-
ry. (The early mean-field theories" which were
played by unphysical features like negative entropy
at low temperatures, on the other hand, are not
consistent in the sense we have required here, they
omit the single-loop corrections ).

There are also a few points about the present
theory which do not occur in the other models men-
tioned above, but are particularly relevant to the
Stoner glass. The first of these is the presence of
quantum effects (via the Matsubara sum) in the
self-energy (3.2). In our treatment, these effects
do not modify the general features of the spin-glass
transition. Whether this conclusion would also ap-
ply to quantum Heisenberg models is unclear.
Early work by Fischer4 would support a universal-
ity hypothesis, but a more recent investigation by
Klemm" leads to a second-order transition only in
the limit where the spin magnitude $ is infinite.

The second point to discuss is the temperature
dependence of the susceptibility, p3rticularly the
effect of the single-loop term in Fig. 3(b) [Eq.
(3.2)]. As we already noted, these terms, which
would be the first corrections to mean-field theory
for a ferromagnet, are necessary to a consistent
mean-field theory here. The effects of such cor-
rections for itinerant- electron ferromagnets and

strongly enhanced paramagnets have been consid-
ered by a number of authors. "' They find that
the temperature dependence of y is dominated by
these corrections, leading to a large reduction of
the effective spin fluctuation temperature w,

' from
its mean-field value, and that for T»~, ', y

' is
approximately a linear function of temperature.
We expect these effects to be present in the
Stoner-glass case as well, since strong local sus-
ceptibility enhancement is a basic ingredient of
our model. Experimentally, this seems to be
true: Coles' susceptibility curves for AhCo show
something like Curie or Curie-Weiss above the
spin- glass transition. '

We finally recall that the other term in Z [Fig.
3(b) or Eq. (3.2)] has a sign opposite to that of the
anharmonic term; thus it enhances the susceptibil-
ity. Hence, as we increase the randomness ~ and
approach the spin-glass transition (by, say, vary-
ing the concentration of spin-fluctuation impurities
at T =0), the spin-fluctuation (or Kondo) tempera
ture will fall. This sort of effect is also observed
experimentally. '

IV. DISCUSSION AND CONCLUSIONS

We now r'eturn to some questions about experi-
mental studies of Stoner glasses. In particular,
in what systems might we expect to observe a tran-
sition of the sort described here, and how would we
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know that an itinerant model was better than a
Heisenberg one?

As we noted in Sec. I, the important condition is
that the spin-glass transition occur at a tempera-
ture lower than the Kondo temperature, so that it
cannot be viewed as a freezing of ordinary local
momentp. If we restrict our attention to systems
where both host and impurity are transition metals,
so that the multi-impurity Wolff model picture we
have used is a sensible one, the best candidates
seem to be RACo and AAFe, both of which have

' been studied by Coles. v ' The former is a cleaner
example, since its Kondo temperature is higher.
Another possibility is VFe. At first sight, alloys
where the impurity is Ni seem attractive, but they
always seem to go ferromagnetic beyond a critical
Ni concentration, without any intervening spin-
glass phase. Apparently, there is not enough ran-
dom oscillation in X',

&
for these systems to produce

a spin-glass transition. (But see note below. )
The present theory does not apply in detail to sit-

uations where the impurity is better described by
an Anderson" than a Wolff model. In these cases
(e.g. , a transition-metal impurity in a noble-metal
host), the spin fluctuations are associated with an
"extra orbital, " and, for high T~, one may intro-
duce anharmonic effects perturbationally in an
Anderson-F riedel virtual level picture. Couplings
between virtual levels on different sites will then
lead to randomness in the same way that they do in
the present description, and the description of the
spin-glass transition can be expected to have a
form quite similar to that given here. For low T~,
on the other hand, one can perform a Schrieffer-
Wolff transformation" to a, Kondo Hamiltonian.
Now the host conduction electrons can both mediate
an RKKY exchange interaction between local mo-
ments and quench those moments (below Tx). The
spin-gla, ss transition occurs at the impurity con-
centration where the former effect first wins out
over the latter. It is the random counterpart of
Donaich's Kondo lattic.e"; we can call it a Kondo
glass. The theory of the Kondo glass remains to
be worked out, but our understanding of the low-
temperature properties of the single-impurity
Kondo problem" suggests that the present Wolff-
model picture is essentially correct. AuCo is one
example of a Kondo glass which has been studied
experimentally. Some other examples of transi-
tion-metal impurities in noble-metal hosts have
solubility problems' (CuFe and ALMn), but it
should be possible to find other examples. Another
class of systems to examine would be alloys con-
taining mixed-valent rare-earth impurities in
transition metals. (In this case the mixed-valent
situation is necessary for a high Tx. )

Whichever description is appropriate, a key ex-
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FIG. 5. Coles' picture of
the phase diagram of a
Kondo alloy, showing the
hypothesized lowering of
Tz to zero at the critical
concentration for spin-
glass formation.

perimental signature which sets itinerant glasses
apart from simple RKKY-coupled Heisenberg sys-
tems is the fact that they require a finite concen-
tration of impurities [in our model, this translates
into a finite 6(0)] to drive the system to a spin-
glass state at T=0. The usual Heisenberg models
give a T, which goes to zero only at zero concen-
tration. The reason for the finite threshold here
is that the magnetic ordering has to overcome band
(kinetic) energies, or, in the case of the Kondo
glass, the Kondo singlet binding energy.

A naive expectation might be that a Stoner glass
was characterized by a relatively temperature-
independent susceptibility above the spin- glass
transition, rather than the Curie or Curie-Weiss
law found for localized-spin systems. This is in-
correct, since the fluctuation effects simulate the
Curie or Curie-Weiss y in the present description
via the first term in Z [Eq. (3.2)]. Any system
where these fluctuation effects were negligible

. would presumably also not become a spin-glass,
since the spin-glass terms in the free energy ar' e
of the same order.

Finally, a few words about "clustering": A popu-
lar ad hoc description" of many spin-glass materi-
als invokes a picture of fairly large clusters of im-
purity moments coupled strongly together internal-
ly to account for the gross features of measure-
ments (specific heat, resistivity, etc.) which are
sensitive to properties on a wave-number scale of
inverse interatomic spacings. The spin- glass
transition is then seen as a freezing of the cluster
moments. An extension of this idea has been used
by Coles' for AuCo and AQFe. In it, one argues
that a pair of impurities very close to each other
will interact in such a way that the pair, viewed as
a single entity, will have a lower Kondo tempera-
ture than a single impurity, that close triplets will
have an even lower effective T~, and so forth.
Then, as one turns up the concentration, there will
be more and more such cluster configurations
present, with a concomitant lowering of the effec-
tive T» for the alloy. In this picture (Fig. 5), spin-
glass order only becomes possible after T~ has
been driven to zero.

Sherrington" has formulated an approach to these
clustering effects in the paramagnetic state which
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is based on Anderson localization theory. ' In it,
a local cluster moment is associated with the mag-
netic instability of a localized solution of a random
Landau-Ginzburg theory which is similar in some
respects to the formulation of the problem given
here. Although such an approach does not suffer
from the shortcomings of Coles' ad hoc picture (it
is possible to do a calculation in the Sherrington
model), the approach has not yet been followed up
to the point where its success or relevance can be
judged. Furthermore, the connection with the
spin-glass state is unclear, .although presumably
the transition is associated with the first extended
eigensolution. In particular, there is no obvious
order parameter in such a description.

It is not the intent of this discussion to argue that
either of the above pictures is incorrect; rather,
it is to point out that these clustering effects are
implicit in the theory given here, at least insofar
as they may be observed experimentally. As wp

noted at the end of the previous section, '
the second

term in the self-energy (3.2) acts to enhance the
susceptibility and thus to lower the Kondo tempera-

ture from its value in the (dilute) limit of zero
random couplings between impurities, as observed
experimentally and inferred from ad hoc arguments
in the Coles picture. Ne do not need to resort to
such arguments, as the observed concentration de-
pendence of the effective T» (inferred from sus-
ceptibility measurements) and the observed tem-
perature dependence of g fall out naturally from
the theory.

Ãote added in Proof Aft. er this work was com-
pleted, spin-glass behavior was observed in NiCu
alloys [C. J. Tranchita and H. Claus, Solid State
Comm. 27, 583 (1978)j.
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