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Exact boson representation of quantum spin systems anti investigation of their critical behavior
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Quantum spin systems are shown to be rigorously equivalent to certain Bose systems. As a result the phase
transitions occuring in such systems can be regarded as generalized Bose condensation processes. In those
processes it is not the number of bosons that is kept constant but a certain function of it. The problem of
degeneracy arising in Bosonizing a spin system is solved in a simple fashion. The low-temperature limit of the
Bose systems reproduces the magnon gas with correct interactions. The Bloch sum rule becomes exact at all
temperatures, when one replaces the magnon number by the number of bosons. The crossover to classical
behavior at criticality is discussed and it is shown that at T, the quantum S = 1/2 spin systems behave like
the corresponding classical S = 00 systems. A classical effective Hamiltonian whose corresponding partition
function is equal to the partition function of the quantum spin systems is derived. Finally, possible
application to dynamics are briefly discussed.

INTRODUCTION

The powerful. tools provided by the renormali-
zation-group approach' have been used to investi-
gate the critical behavior of many classical sys-
tems. Less attention has been devoted to quantum
systems as can be judged from the relatively
small number of publications treating the latter. ' '
Two main reasons seem to be responsible for this
sta.te of affairs: the first is a philosophical one and
the other is technical in nature. The philosophical
reason. is that since close to the critical point one
can take the Kadanoff-type' blocks to be extremely
big, the microscopical quantum nature of the
Hamiltonian is lost and one can justify the. use of
classical Hamiltonians. The technical reason is
the additional complication introduced by non-
commuting objects.

The philosophy is certainly intuitively appealing
yet has never been proven to be true. On the con-
trary, numerical evidence suggests a different be-
havior for S = —,

' and S= ~ Heisenberg models. '
Thus the problem is open and requires investiga-
tion. - Furthermore, it is a problem of great
physical importance since mircroscopical Hamil-
tonians me of quantum nature.

One technical characteristic property of quan-
tum systems whose partition function has been
written in path integral form is the fact that the
"effective" classical Hamiltonian appearing in the
functional integral is a sum of an infinity of terms.
This is going to be the case here too and it should
be reminiscent of the fact that the (classical) mod-

els treated so far are merely a great simplifica-
tion of physically realistic models. It is not clear
a Pxio~i whether such Hamiltonians belong to the
same universality class as their corresponding
classical Hamiltonians. A naive renormalization-
group (HG) treatment would disregard the higher-
order terms (U„U„.. . , etc. ) as being irrelevant.
This may be particularlyuseless in case the ef-
fective Hamiltonian is written in terms of an or-
der parameter that seems to be of.lower dimen-
sionality than it should be (see below). It certain-
ly disregards a possible effect of the higher-or-
der terms. Yet, even jn the classical case one
assumes a certain form of the effective Hamilton-
ian in the linear range of the RG, namely, close
to T„since it is pratically. impossible to follow
the development of the effective Hamiltonian in the
nonlinear ra,nge of the RG.

The treatment of quantum spin systems, de-
scribed in this paper is based upon the author' s
view that second-order phase transition can be
generally described by condensation processes in
appropriate Bose systems. P ractically speaking,
we describe a general method of exact bosoniza-
tion of spin Hamiltonians that has, in our opinion,
many advantages over existing methods.

For example, we need not restrict the Bose op-
erators corresponding to spin operators to act
only on a subset of the Bose Hilbert space, hence
projection operators are not needed and the way is
open to use known techniques for writing the Bose
Hamiltonian in path-integral form. In addition the
effective Hamiltonian is analytic and can be ex-
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pressed as a converging power series in the order
parameters (methods we are aware of contain ex-
pansion of logarithms, see, e.g. , Ref. 2). As a
result one should find this representation useful
for numerical methods too.

The main features appearing in the process of
writing down the path-integral form of the parti-
tion function are (a) the appearance of an addition-
al dimension whose origin is the division of the in-
verse temperature P into segments (see below);
(b) the disappearance of t:his extra dimension and
crossover to the starting dimension when one ap-
proaches T„(c)at zero temperature the addition-
al dimension does not disappear; (d) by using the
naive renormalization-group approach mentioned
above one finds that the quantum Heisenberg Ham-
iltonian belongs to the universality class of the
classical Heisenberg Hamiltonian.

I. BOSONIZATION OF SPIN OPERATORS

In this section we use the results of Agranovich
and Toschich" to derive a representation of pauli
(spin) operators in terms of bosons. The work has
been published in 1968 but to the best of our
knowledge it did not attract much attention of peo-
ple interested in statistical mechanics and quantum
theory of magnetism. We believe that the results
of Agranovich and Toschich are of great impor-
tance and that is why in this section we will follow
the main steps which lead to the final formula ex-
pressing the spin operators in terms of bosons.
In addition we will show a way to simplify this
formula by rewriting it in a compact form which
is suitable for renormalization-group treatment.

We consider the case S=2, $,=~2, and

S, S~++ PS, = g a„[2B~""B"+'+(v+ 1)Bt"B",]=1.
v=p

Equality (1.3) can be fulfilled if and only if

a„=-2/(v+ 1)a„„a,= 1

or

a„= (-2)"/(1+ v)! .
Thus we obtained an Agranovich- Toschich spin-
boson transformation:

S = g B~B" B(I+ v) t
v=p

X/2
S+ —B~ ~ ' 2—' B~vBv~ (1+ v) t

v=p

(1.4)

The operator for the spin deviation number is just

(-2)" AI )
——SfS( N)+ Q—— Nq(N( —1)~ ~ ~ (N —v).(1+ v)! 1

We can see readily that together with (1.1)

$2 $+2 0

holds and thus tbe transformation (1.4) reproduces
all the properties of spin- —,

' operators. Equation
(1.4) is the result of Agranovicb and Toshich.

Now we simplify formula (1.4) and derive the
equivalent expression which can be written in a
compact form.

It is clear from (1.2') that

S) S]+S]S] = 1, B~)"B)=N((N) —1)~ ~ ~ (N) —v+ I) (1.6')

where i denotes the lattice sites.
Let us introduce (Agranovich-Toschicb):

Oo j. /2 00 Z/2
S = ~~ g B "B" B. andS'=B ~~ g B "B"

v i f 4 ~ v
v=p v~p

[Bq, Bti]= 6)i, [B),By]= [EPi B~j]=0. (1.2)

This is obviously a generalization of the Holstein-
primakoff" transformation. The latter corre-
sponds to &p = -az =1 and Q„=O for p&2, where ~„
are real coefficients and B~„B,are the Boson op-
erators. Substituting (1.2) into (1.1) and using
the fact that

and thus

(-2)
SJ=B~~ Q (I )t N, (N, —1)~ ~ ~

V=O

(1.6)

f'(N, ) = P N, (N, —1)~ ~ ~ (N, —v+ 1).
(-2)"

(1+ v)!

X/2
x(N, —v+ 1) =B~f(N)). —

Furthermore, a state which is an eigenstate of N
with eigenvalue N, is an eigenstate of f(N, ) with an
eigenvalue f(N, ) given by

Btv+&Bv+& (N v)BtvBv
4~

where N, =B~B„and that the term inside the
square root sign commutes with N, we get

(1 2') (1.7) follows directly from (1.6). We should note
that all the terms in the sum (1.7) with v&N, + 1
are equal to zero because they contain a zero in
the corresponding products. As a resuit (I.V) can
be rewritten
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N ( 2)Pf'(")= (l„)I (N,
' „)i.

v=p

It is easy to see that (1.7') is equal to
x(N~y1) '~2B, = —,'[1 ( 1)"( '] (1.13)

A

S;S;=B',(N +1)-'"-'[I+(-I) ']-,'[1+ (-I)"(]

N)

~'""=-a(((+()Z (-2(""(v'+()
v=j.

A

S, S;= —,'[1+(-1) '].
Hence

(1.13')

1 '" „N(+1f'(N)=-2N, 1 g (-2)" '„-I . (1.8)
'-vO

This expression is equal to

(((+( I (-I) '+ 1

2(N 1) [( ) I]
N 1 2

(1.9}

because

p (-~r("' )=(( —2("'=(-(("'.
v=p

We note that

![I+(-1)"']=![1+(-I)"']'"

S(= —,'[S(, S(]=——,'(-1) '. (1.14)

g(N)= Qb„
v=p

-=g b„N ((N, —1)~ ~ ~ (N, —v+ I).
v=p

The eigenvalues of S', are x—,
' as expected.

Thus Eqs. (1.11), (1.14), and (1.2) are equivalent
representation of spin operators through bosons.

Formulas (1.2) and (1.11) are inconvenient be-
cause they represent the Pauli operators in a non-
analytic way. Now we will show that they can be
rewritten in an analytic fashion.

To do it we must prove that for any function

f (N) there exists an analytic function g(N) which.
coincides with f (N) for integer values of N. As a
result f (N) =g(N) as a, function of the 8 operator.
Define

for integer N, . Thus,

f(N, ) =.(N, + I) '"-'[1+(-I)"]. (1.10)
The coefficients b„are determined below. We de-
mand f (N}=g(N) for integer N or

This formula is correct for any integer jV„ i.e.,
for any possible eigenvalue of N„hence we can
identify f (N, ) in (1.6) with

A

(I+N )-'"-'[1+(-1) '].
As a result we get

S;.= B',(N, + I)-'i'-,'[I+ (-1)"'],
S =(N + I)-(i2 2[1+ ( 1) (]B

otf (0)=0,
'

bo,

ff jtf (1)= I', ho+0( b„

2t 1 2t
f(2)=2,

'
bo+1, b(+0( b2

3t 3t 3t 3t
f(3)=—'b +—'b +—'b +—b0 2t 1 j t 2 Ot 3~

(1.16)

To calculate S& we use the fact that for any ana-
lytic function h, the following holds:

h(N()B; = B(h(N( —I). (1.12)

h(P()Bt( = Bt(h(N, + 1). (1.12')

Using (1.12) and (1.12'), we get

The proof of (1.12) is very simple. We can readily
see that

N(B( = B((N( —1),

hence- for every integer n

¹B(=B,(N, —1)",

which justifies (1.12). We also have

etc. We see that b, is expressed through b„b,
through bp and 5z and so on. Thus we can succes-
sively calculate all the coefficients b„. Writing

N

f~(x) Q ( ), b„x" ".
v=p

(1.18)

We can see that f~(1)=f (N) and f„(0)= b~! From
(1.18), we have

g(N) = Q b„N(N —1) ..(N —v+ 1), (1.17)
P-0

we have the desired operator g(N).
Vfe conclude this section by finding a closed for-

muLa for b„. To-do so let us define the set of func-
tions f~(x):
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dfN(x) f („)

dh~(x) ~)N-1

(1.19)

(1.19')

8( =B~( b„N] ( —1 ~ ~ ~ N] —n

B, = Qb„N (N~ —1) -(N, — ))B„
n=o

Sq = Q c„N((N) —1)~ ~ .(Nq —n),
n=O

(1.26)

h„(x) = f~(x)-/N I .

The solution of (1.19') is simple:
where c„ is given by substituting f(p) = --,'(-1)"
[see (1.14)] into (1.23). The result is

h„(x) = h~, (y) dy+ h„(1).
1

(1.20) —2B 1( 1)rtbb/~! (1.27)

By successive integrations, taking into account
that froni (1.18) follows that f,(y) =fo(l) and hence
ho(y)=ho(l), we derive

h, (x) = (x -1)ho(1)+ h, (1),

Now using (1.6'), we can rewrite (1,26) in normal
ordered form:

B' B~ P b=B~B"),
n=o

h, (x) = —,'(x —1)'h, (l)+ (x —l)h, (l)+ L,(1),

h, (x) = (1/3!.)(x —1)'h, (1)+-,'(x- 1)'h, (l)
(1.21)

B;= (gb B(B;)„B„
5 n.o

(1.28)

+ (x —1)h2(1)+ hB(l).

From (1.21) one can see that

(1.22)

~(-1)" "f(!),
N

p. )
(1.23)

since

f(V) =f„(1)
Substituting (1.10) into (1.23) we end up with

h„(x) =g, (x- 1)~-"h„(1).N

Equation (1.22) can be clearly proven by mathe-
matical induction. Recalling the def inition of
h„(x), we obtain

gg ~ C ggngn
n

n=o

where b„ is given by (1.25) and c„by (1.27). From
the above given derivation it should be clear that
expressions (1.28) are built in such a way that
their matrix elements bebveen states with well-
defined eigenvalues of 8, are equal to the corre-
sponding matrix elements of (1.11) and (1.14), re-
spectively, i.e, , they coincide on a basis of the
Bose-Hilbert space. As a result all their matr'ix
elements coincide, respectively, and we can re-
gard the two Bose representations of the spin op-
erators as equal. Thus we can use each of them
according to what we find more convenient.

II. INTUITIVE TREATMENT OF THE QU.4.NTUM

HEISENBERG MODELS

The Heisenberg Hamiltonian is

3C= Q Jq~(nSfSj+ S(S~)+h Q Sf, (2.1)

Since only even p. contribute to the sum, we can
rewrite (1.24)

N! + (B)41+()
even

(1.25)

g?e see that bN alternates in sign with N. Thus we
have the following analytical expression for the
spin operators:

where n is a measure of anisotropy (n =1 means
isotropic Heisenberg model) and i,j denote lattice
sites.

To treat (1.26) we substitute the representations
(1.2) or (1.11) or (1.15) into (1.26) and then we are
left with the problem of the interacting Bose gas.
This problem was treated by various groups, Pa-
taschinsky and Pokrovsky, "for example. We as-
sume that near the critical point only B~P„»1 are
of importance, that we can consider the operators
as c numbers and that only terms up to the fourth
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order must be taken into account. This means that
we should plug (1.2) into the Hamiltonian and eval-
uate the coefficients U, and U4 considering the
higher orders as irrelevant. This intuitive scheme
will be verified in the next sections while now we
shall limit our considerations to this simple pro-
cedure.

To illustrate the results we take J,.~=J- const.
After a simple calculation we get the following:

(a) Isotropic Heisenberg model: U, = U, and

30= Z &&"'(IB'I+ IB'I) =- Q i &'"(IB.I'+ IN. I'}

The shape of this Hamiltonian corresponds to
three order parameters in the system or in other
words to O(3) symmetry. The new U, term is as-
symetric with respect to the order parameters
(see Sec. III).

(b) x-y model (ci&1):

X= Q jk'a~lB
I
+4J(o! —1) 2 IB

and we see that U4&0 and the model has two order
parameters.

These results, although they are of intuitive
quality, show that the quantum and classical Hei-
senberg models behave in the same way at the cri-
tical point because the expressions obtained above
repeat the output of the vector-spin-model con-
siderations.

To conclude this section we would like to stress
that although our assumption B» 1 is equivalent
to a transition to a classical Bose system the re-
sults correspond to the quantum spin system with
spin S= —, in which the straightforward transition
to a classical limit is impossible. This can be
seen in a simple way: if we neglect the spin com-
mutation relations, going to a "classical limit, "
it is impossible to derive the spin-Bosons re-
presentations derived above and used in the above
calculations of U, and U, coefficients. Thus the
classical features of the system near the critical
point stems from the fact that near T, the quantum
spin system is equivalent to a classica/ Bose sys-
tem which contains the information about the quan-
tum nature of spins (commutation relations,
S= +-,', etc.).

S =--,'(-1) (3.2)

Qne can easily check that the commutation and
anticommutation relations of those operators are
in accordance with what is expected of spin--,'

operators. In particular (S;)'= (S, )' = 0. The ei-
genvalues of S; are +-,' as expected.

Now we shall turn to a problem of general na-
ture that appears in every attempt to bosonize any
spin model. Any finite lattice having say, N lat-
tice sites, with a S= —, spin at each site has a finite
number of independent states, namely, 2", since
the state of a spin —,

' is always described in terms
of two orthogonal states.

fn contrast to the spin Hilbert space, a system
of bosons always lies in an infinite-dimensional
Hilbert space. (For example, B' IO), (Bt)'IO), . . .
are mutually orthogonal). Thus it is impossible
to find a one-to-one correspondence between the
basis elements of a spin Hilbert space and any
Hilbert space of bosons. However, a multivalued
transformation assigning to each basis state in the
spin space an infinity of states in the Bose-Hilbert
space is possible. To see how this happens let us
examine the set of 2" states S defined by

S = ( I
m „m„.. . , I~), rn; c fn;, n; + (-1)"if),

where n„n„.. . , n„ is a given set of integers and

m,. denotes the number of bosons associated with
lattice site i. Now from (3.1}and (3.2) we see that
S, changes an even number of bosons to an odd one
[keeping the norm with the aid of the (N+1) '~'
factor] and gives zero for an odd number of bo-
sons. S,. changes an odd m,. into an even nz, but
gives zero when acting on an even m, . S',. does not
change the boson number at lattice site i. We con-
clude that the spin operators can connect only
states inside the set S but they cannot connect
states belonging to different sets S. An even m,.
corresponds to S', =--,' and an odd one to S, =-,'.
Since the different sets S are mutually exclusive
and their union constitutes a basis for the com-
plete Hilbert-Bose space we conclude the following:

(a) In the process of bosonization we have em-
bedded the spin Hilbert space into an infinite-di-
mensional Bose space.

(b) The infinite-dimensional Bose space is a
union of an infinity of mutually orthogonal sub-

III. BOSONIZED HEISENBERG MODEL: STATES OVER
COUNTING PROBLEM AND ITS SOLUTION

e recall the transformation relating the Boson
operators B~„B,to the spin operators:

S'=B'~(I+N ) '~'-'[I+ (-1)"'j,
(3.1)

S;=-,'[I+ (-I}"'](I+ N,.)-'~'B„

H fp
IG. 1. Structure of the
onized Hamiltonian in

the Bose space. Each block
is a. matrix identical to the
Hamiltonian matrix in the
spin space.
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FIG. 2. Diagonalized form of the bosonized Hamilto-
nian, in Bose space.

E,+W"'/g

E +w&."/P2

E N+W /P

E(+N z!/p

E +W~ /P

E2N+W@/P

FIG. 3. Diagonalized form of the Hamiltonian in Bose
space, including the weight function.

spaces each having the dimension of the original
spin space. S gives a possible definition of the
basis of such a subspace.

(c) The spin operators are invariant inside every
subspace described in (b) and their action there is
completely isomorphic to the action of the spin op-
erators in the spin Hilbert space. Inside this sub-
space the matrices representing the spin-Bose op-
erators are equal to the matrices representing
those operators in the spin space, provided the
proper correspondence between Bose states and
spin states i.s kept, i.e., even m, corresponds to
S', = ——,

' and odd m, to S', = —,'.
(d) It therefore follows that the matrix repre-

senting any spin Hamiltonian in the original spin
space is equal to the matrix representing it in any
of the above defined subspaces.

(e) In conclusion the matrix representing the
spin Hamiltonian in the Bose space is of block
form, each block matrix being equal to the matrix

representing this Hamiltonian in the original spin
space. (See Fig. 1.) Diagonalizing this matrix we
get Fig. 2, where E„E„.. . ,E» are the eigen-
values of the original spin Hamiltonian. Thus the
new partition function is the trace of e ~~ due to
one block, namely, Z, , e ' multiplied by the
number of blocks which is infinite. To remedy
this point we can assign a different weight to each
block such that we get a finite partition function.
(This is possible since for a finite lattice the num-
ber of blocks is denumerable. ) By this we mean
calculating Tre ~~ w, where W is chosen so that
it commutes with X and is constant inside each
block. The new "effective" Hamiltonian X + (I/P) W
will have the form shown in Fig. 1 when repre-
sented in the basis in which X is diagonal (see
Fig. 3). Denoting by Z„ the original Heisenberg
partition function we see that the partition function
we get for the Bose system with the weight func-
tion is

2
W (z) +e-wg (2) e 8~&+ ~ ~ ~

i-"1

-w(a)Z

at=0

where n is an index denoting the number of the
block. Now if we choose the W's so that Ze ~ is
a finite number M we get that the partition func-
tion of the Bose system is MZ„. Thus our Bose
system will reproduce the thermodynamical pro-
perties of the original spin model. W is not de-
termined uniquely by the requirements mentioned
above. We can choose, for example,

W= —p, P I 2N, + (-1) '+ X]',

where p, and A. are constants.
Denote the two possible eigenvalues of A, in a

certain block by 2n„2n, + 1, where n, is an inte-
ger. The 2N, + (-1)~& has the same eigenvalue for
both of them, i.e., it is actually a constant inside
a given block. One can even calculate the constant
M (to do so one has to calculate the number of
blocks n contributing to each eigenvalue of W and
then calculate Zn~e "). The result is of the or-
der of N! /, N, where N is the number of lattice
sites.

This completes the description of the exact bo-
sonization process we propose for spin systems.
Its virtues are its exactness and the fact that one
does not need projection operators in order to
project a partial Hilbert space out of the whole
space, as is done in other bosonization schemes.

Finally we would like to stress the fact that our
picture describes the conventional magnon gas in
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the low-temperature limit, provided B~~, B~ are
identified as creation and annihilation operators
of magnons, respectively. ZI [2N, + (-1)"»] is con-
stant in each block and since p is temperature
independent, &ZI [2N, + (—l)~I]&= const, the latter
constant being independent of temperature. Since
S,'= ——,'(-1) I, we can rewrite this relation as

& g B~~B,&
-M = const, (3.3)

IV. PATH-INTEGRAL FORM OF THE QUANTUM-

HEISENBERG-MODEL PARTITION FUNCTION

In this section the partition function of the quan-
tum Hisenberg model is rewritten in a path-in-
tegral form using Klauder's technique" of coher-
ent states. The only difference between what is
used here and what Klauder does is the fact that
we calculate Tre ~ for real P whereas Klauder
does so for imaginary P (P = it). Transcribing
his it into P gives immediately the desired result
for .the partition function. The reader is reminded
that a coherent state is an eigenstate of a, Bose
operator B with given complex eigenvalue X:

ajI&&=I&jI).&, &I). ja =&I&jI& .

where M = &ZI S,'& is the total magnetization. Re-
lation (3.3) is the well-known relation of Bloch."
In our picture this relation is exact and true for
all temperatures [the sign in (3.3) differs from the
one used in Keffer" due to the fact that in our
ground state the spins point in the --,' direction].

Now, we wish to calculate Z=Tre ~~ ~. Using
Trotters formula, "we can write

Z—= Z = Tr 1 ——H- — —= Trq(~) (4.4)

where

q =-1-—H- —W.P
M M

The limit M - o gives the exact Z. %'e shall
take a finite but very big M to make Z'"' close
enough to Z. Let us insert complete sets of co-
herent states among the members of this product:

Z" =&I&'jq j~&'&&~&'jq jX'& ~ ~ ~ &~"-'jq jI).'&. (4.5)

Summation (integration) over equal indices is un-

derstood, jX"& is defined as a coherent state of
N bosons:

0- ~&M —1. (4.6)

&/" jato& "atop " a„j~""&

Now

&» I«I» "&=&» I»- —(«»—M P

p &/,r~&err/I)jy~e'&=(»'I»'" ) (»
——

When using coherent states it is convenient to have
the Bose operators in normal ordered form since
then the B 's operate on the left and yield complex
numbers and the B's operate on the right:

Coherent states for different complex A. are not
orthogonal but satisfy

( yr
j

korea& arel arel .../ rel yr /r, ~ ~ yr
f k 8 m n (4.7)

( I/ j
I &

e- ll» I /2-IXI /&e)»

As a, particular case (I& j I&& = 1.
The most important property of coherent states

is their completeness:

(4.2)

f I»&
'"'

&»~~=),

and all previously proper described properties of
coherent states still hold. Jn particular,

dI(., dA., dI& d/&

where dXdI&~ means now and henceforth d(BeI&)
d(1m'&). The extension to many bosons is straight-
forward. We define

Using (1.28) we already have H in normal ordered
form and W can be easily rewritten in this form.
The conclusion is that in the normal ordered
form of H+ W/P, we have

tt yp ) H+W / g ) yt'+kg' =H(I(. * I(.")+—(I&"' * A.")
&'j~"'&

-=H(I&""e I&,") (4.8)

=exp[-—,
'

j/&" j'--,' j/).
""j'+ X'*/"'

The right-band part means substitution of X&' *
for B~ and X", for B& in both W and H. The defini-
tion of H is clear from (4.8). Hence

(»'I« I»'")=&»'I»"') (»
——«(» *"»))M

- (»'
I
»'") exp ——«(»'" »'))M
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A summation over i is understood in (4.9). We
have used the smallness of P/M and (4.2).
. Now we canwrite (4.5) as

&=' dX"dV*
Z(dd) '"- pr iq iyr+1)

7r
f'=O

with
~

X~) =
~

Xo) . Or,

Z(M) '
eXp) g (

& )yr[2 &

~y +z(2 pre::grdce)

where x is a continuous variable 0&v & p. It
should be mentioned that (4.11) is not enough to
define the path integral in general and (4.10)
should be taken as its proper definition. '4

%'e would like to illustrate this procedure on a
system of free bosons, where we also drop the
index i. The partition function is

(g) ~ ~ ~ dX" dX"

2 2
N (

2 2

(4.10)

The limit M- ~ gives a proper path integral (see
Klaude r') .

g = X, .exp—
~ Q( x)*(s/Br)x(

2

pre yg+1

where E is hen.

Fourier transforming with respect to x (remem-
ber ~"=~0):

)if

g exp i -rn—
~

X"",

+ dd (V, X')) dr, (4.11)
where A,

""is defined as the Fourier transform of
X", we get

Since
2

(ss)

(1 —PE/M)" 1/(1 —PE/M) ~ '

where P" is the phase of X"", we get

N 1
(e) 1

(1 PE/M)e $(2r/N)n

Af f

(1 PE/M)" -)1 1/(1-PE/M) -e~~'" "
n= ()

Every polynomial P(g) is proportional to II&(Z —Z, )
where Z, are its roots. e"~ "are the roots of
unity, hence

N

ZAf 1 (g e2l rn / M)

n 0

Hence

1 -(1—PE/M) ~

Hence

Z = lim Z '"'= 1/(1 —e ~ ),
N

as it is expected.

V. CLASSICAL EFFECTIVE HAMILTONIAN FOR THE

ISOTROPIC HEISENBERG QODEL

The path integral as it stands is very complicated
and even the original O(3) symmetry is not obvious
in it. In this paragraph we shall show that only a
few properties of, this representation are really
needed to write down a simple O(3) symmetric
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equivalent classical Hamiltonian for the Heisenberg
model.

As we have shown, we can. write S;, S, , S; in
terms of the Bose operators B~&, B&. Equivalently
we can use S"„S'„S&.When those operators are
put between the coherent states, we get

S, jy") ={X"'){V~Z"")S"(q"+y ) (5.1)

IIRft f g S 45 'RS 45

jf
a-f, 2~ 3

where n =1,2, 3 represents x, y, or z, respective-
ly, and S",' is a function of A. ","*,&",. The explicit
dependence is given in the Appendix. Thus the ef-
fective classical Hamiltonian in the former para-
graph is

4+525'2+Rt) . (5.4)
Cyan

-(X)A(X)/2+b X 2g 5)A i (y )/
n ~ i/2

~;" ~
. detA)

(5.5)

where 5 is another n-component vector. Now take

Now let us denote by (X) the column matrix whose
components are the real numbers X, (1 &i & n) and
by (X) the corresponding row matrix. Let A be
an n &n symmetric matrix. Then the following
holds:

Tr ~rg ~r ~reig ~r~i

PhaSr, l
fear

mi~2, 3

(5 2) A]~ ——J]) or A =J,-i

g T
- Qc+hoB) )M (5.3)

where T, contains both the weight function S'& and
the part coming from the norm of the coherent
states. The variables appearing in the effective
classical Hamiltonian -g&&, gr&' ~ carry an addi-
tional label with respect to the original variables,
i.e., the label x. The latter label stems from
the division of the inverse temperature P into seg-
ments. Thus we have added, in effect, a new
dimension to the system. If the original quantum
system was a d-dimensional system, the classic-
al effective Hamiltonian describes a (d + 1)-dimen-
sional system, which is finite in the (6+1)th di-
mension. As we approach criticality we expect a
crossover from (d + 1)-dimensional behavior to
d-dimensional behavior. It is important to note
that the last two terms in X,«are sums of single-
ion terms, i.e., they do not couple different spin
sites. T& may however, depend on the z's through

) 'or X' A.
'

I . I I

We have also added a magnetic field h&, the pur-
pose of which is to keep track of symmetry. By
this we mean that if we have h~ = 6,&h then the par-
tition function

where 8 is the (symmetric) matrix whose elements
are J&&, 8 should be invertible (det /55 0) in order
for formula (5.5) to apply. The condition for J to
be invertible can be best seen in its Fourier-
transformed representation. We can write

2 (2222 —
pxp~ p 5 5 )

r'1

2

1
=exp 5

&( )5bb) ~

Thus we can deduce that the condition det J4 0 is
equivalent to demanding Z(k) e 0 for all k. lf J(k)
does not fulfil this requirement we can add a con-
stant c to it so that the requirement is fulfilled.
Since Z(k} is bounded in all eases of interest such
a c may be taken as max

~
J(k}

~

+ 1. Adding this
constant to J'(k) amounts to changing Z, ~ to J,i+ c.
Doing so in our original Heisenberg Hamiltonian
will have the effect of adding to it a constant term
cZ&S& ~ Sz ——&cN only (a different constant is added
in the anisotropic case). Henceforth we shall take
J&&+ e as our new J&&.

Now, define

should be independent of the direction of h. This
results merely from the O(3) symmetry of K. The
same is true for S' as well, because Q(3) is not
broken in its definition.

Let us write the partition function

b)' =(2P/M) ~ ~ S)'

and (b"') as the matrix whose components are
b",' . From Eq. (5.5) it follows that
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exp ~—J&/S&' S/' ~= d~; exp -2~M"J~p +~M'
M S,det 4 )~M ) ) 2

(Q p ) 1 /2 //

dy" n exp —~- ~ J ' 1'" ~Y" ~+ 2 Y~ ~S~ ~~

f, j e, f~r i

where

Y,""(2P//M)' "= X,""

(5.6)

or

p
"

1 ( p ) N 3N/2 . pexp(g —J,,S",~ S",."~=
I I dy", ' exp —(- g J, 'Y,"' 1'" +2 g Y",' S",'

(
(5'f)M /. ,de|J ~Mr~ i

r, e

Now Z'"' can be rewritten

z(N )

fear, e

I

exp —(- ~ J 'Y" Y"' +2 ~ Y" S" ~+ ~ k~S"
)

r& e
(5.8)

with

„detJ Mg

Thus we have the 8",' in the "classical effective
Hamiltonian" only in a linear form. The procedure
we used is very close to the Hubbard-Stratono-
vich"~" transformation. For a short-range in-
teraction J,z, the small-k behavior of its Fourier
transform J(k) is proportional to k2+r, where r
is a constant so that the asymptotic behavior of

J,,' is given by

elk(i- j)e
d k~e " ''~ ~i-l~-~ (5.9)k'+ r

i, j denote the lattice vectors corresponding to lat-

tice sites i, j, respectively, and translational in-
variance is assumed. As a consequence J,~' is a
short-range interaction too. Since the new coup-
ling is (-J&,.') the coefficient of k' in the U2 term
is kept positive and we stay in a ferromagnetic
problem.

The term in the effective classical Hamiltonian,
containing Sr&' is

(2Y)' + k))S~)'
M

k, r, e
(5.10)

It is convenient to perform a shift 7",' Y",'

We shall also denote J,~=-J,&'. By a proper choice
of the constant C, J,&

can be made positive. Now,
Z'"' can be rewritten

/ A ]
xp —J J Yr eYr e+ J Yr e@e+ ~J @eye

g~ j f, j r ~ e
r, e ry e f, J|

+2 ~ Y"' S"' +~T"~~
i-

(5.11)
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The term

gi, ,f;.~;

is independent of the integration variables and
multiplies Z'"' by a constant

This term does not contribute to the magnetization
or susceptibility at zero field and we can therefore
either disregard it or absorb it in G.

The only term in the classical effective Hamilto-
nian that couples different lattice sites (after we
omitted the Ti,. 5,. terms) is the

exp p P/, ,Ti, ~

K~)
.

itj
The term it adds to the free energy is

~ Z,,h; ~ h, .
terms. The rest are "single-ion" terms. Equation
(5.11) can be rewritten in the form

p~dy'-'' exp — J..Y"'~Y"'~+ J.-Yr'~h-
Il/I' &j ij t'. j

i 1$ J j, i, r, O.

x ]I ]][- ' ' exp (g s', I', +Q 7',
i

(5.12)

The expression in the curly brackets depends only on the index i (or lattice point i) and since the functional
dependence of S;. and T", on the &'s .is independent of i (see the Appendix for the explicit dependence of
S",. ), the result of the integration can be written as exp[(P/M) f(Y,)j, meaning that f is a function of
Y",.~, Y,". I* (x=0, 1, . . . , M —1; n =1, 2, 3). The form of Z'"' is therefore

(5.13)

The effective classical Hamiltonian here is built
as the usually investigated classical spin models
are, i.e. , it has a quadratic spin-spin coupling
term and a sum of single-. ion terms. " This result
follows essentially from the fact that during the
process of bosonization and the rewriting of the
partition function in terms of the coherent states,
the 8,. ~ Sj part coming from the original Hamilto-
nian is kept "form invariant. " The next step is to
Fourier transform the Y",.' with respect to x:

~ e stdt Y(d of
i 4 i

~=(2~/P)n, n=O, I, . . . , M

f„=Pe/M, r=0, 1, . . . , M —1.
(5.14)

u are the Matsubara frequencies. " They corre-
spond to the boundary condition Y" o = Y",-, which,
here, follows from ~~i' =~' . Expressing Z'"' in
terms of Y,"' we get

(5.15)Z&//) GM3NN/2 dycoaexp p ,~ J' YM ~ 'R Y 4lpaf + J YlAl Pt N@lM +f(Y )i ij i j j i JJ
4)y Of td, j

The additional term M'""/' stems from the Jacobian of the transformation {Y",' )-{Y", $. It cancels a
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similar term inside G [see Eq. (5.8) thus making it M independent]- We define G =GM'""~'. We observe
that the upper cutoff on ~ is the only reminiscent of the fact that we divided P into M segments. In the
limit M-~, cu will have the values (2mjp)n, where n is any integer from zero to infinity. Thus the limit
M- ~ of Z'"' in Eq. (5.15) is achieved by letting w be unbounded as' we have explained:

Jh, 2m' 'l dy", 'exp P~ gZ„Y,. ' Y,"' +.g J,,Y& "=h", +f(Y;), w= n,—n=0, 1, 2, . . . .
J i&4
fy 4)

(5.16)

[5 P~"A(k')+x5, +C„'8„], (5.17)

Alternatively we could develop a, field-theoreti-
cal approach and show tha, t the critical behavior of
the system described by the above given Hamilto-
nian is independent of the cutoff on +, hence one
need not take the limit M -~ in order to find this
behavior. In the renormalization-group approach
it is corivenient to have such a cutoff, since then
we can regard the system as the 3M-component
anisotropic vector model that crosses over to
three-component isotropic vector model in the
process of renormalization. For details of this
approach we refer the reader to Young. "

Another approach within the finite cutoff theory
would be (as has already been mentioned in Ref.
2) to regard the r's as an additional dimension in
whose direction the system is finite in extent (of
size P). Such a system will crossover to the orig-
inal dimension as has already been explained. '

The common feature of all approaches mentioned
so far is the fact that only the & = 0 component sur-
vives renormalization. In Eq. (5.16) we see that
the external magnetic field h couples only to Y",. =" .
We conclude that the Y",. =" component represents
the physical spin. At criticality we can replace
Z; /;; Y,"=" by a constant c times Y";=", s ince J,&

is short ranged. The constant c can be absorbed
into the magnetic field h. The interaction with the
magnetic field is now+, Y", =" h,

It is easy to show that partition function of the
isotropic quantum Heisenberg model is a scalar
in the h, 's for all temperatures. Thus

82Z

all h.=o
l

is zero for neP and does not depend on n for n =P.
As a result the renormalized propagator for the
co = 0 component in our equivalent classical model
is proportional to the symmetric tensor & . On
the basis of those considerations we expect the
general form of the renormalized inverse prop-
agator close to T to be

where k are the vectors in the reciprocal lattice,
g is the well-known exponent. A represents cor-
x'ections to leading scaling behavior, and C„,
represent the behavior of + W 0 components. The
form is correct in the limit of small k. C„~ can
be written as

Col ~ g + ~Q(Ry 8 + O(~2) (5.18)

(The other term of the inverse propagator are re-
garded as "zeroth order" in (u. ) Hence for small
~, k and neglecting corrections to scaling and the
k dependence of Q, we have the inverse propagator

. 5 k~" +x5 y(uQ (5.19)

As is shown in various references~" """the dis-
crete values of ~ lead to disappearance of all but
the m=0 term in a renormalization group proce-
dure. Thus we get a.n isotropic fixed point in d
dimensions. When the temperature goes to zero
the values of-the ~'s become continuous and then
we have exactly a (d+1)-dimensional system.
The crossover from 8+1 to d dimensions is ex-
plained in several references'~ ''~"' and we shall
not reproduce it here.

We can summarize this chapter as follows:
(a) The classical effective Hamiltonian that re-

produces the partition function of the quantum Hei-
senberg model has been written in the general
form of the classical Hamiltonians that we have in-
vestigated using RG (see Aharony"). ,

(b) Using the 0(3) symmet'ry of the problem it
became clear that only an isotropic fixed point
with a n = 3 order para, meter can exist at a finite
temperature.

(c) As T approaches zero we cannot get rid of
the dependence and the problem becomes essen-
tially a (d+1)-dimensional problem, that is iso-
tropic in the first d dimensions and anisotropic in
the (d+ l)th dimension.

(d) The derivation of the classical effective
Hamiltonian is exact and the only inexact argu-
ments are the RG considerations. But the latter
considerations are inexact in any calculation in
the sense that one can do calculations only in the
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linear range of RG and has to assume the form of
the effective Hamiltonian in this range. This is
usually done assuming universality.

(e) Our "classical limit" has nothing to do with
block constructions in the manner of Kadanoff. On
the contrary, it is correct at all temperatures and
therefore presents a proof that classi'cal Hamil-
tonians can represent the thermodynamics of
small-spin systems, which is a nontrivial result.

VII. BOSE EFFECTIVE CLASSICAL HAMILTONIAN:

HEURISTIC ANALYSIS

It is instructive to examine the Bose effective
classical Hamiltonian, i.e., the Hamiltonian ex-
pressed in terms of the X's. Since we know by
now that only the ~ =0 terms are important close
to T„we shall restrict ourselves to the analysis
of those alone. In addition we shall mainly focus
our attention on the quadratic and quartic coupl-
ings of the Hamiltonian, regarding the higher-
order couplings as "irrelevant" (in 4-e dimen-
sions). We assume therefore that close to T,
one can write

Z~ j [dX, dX*,. exp —P gK(z+, x,.)
i i

+ g w(x,",z;))
i

(7 1)

The label + =0 has been omitted in (7.1) and the
& =0 component coming from the norm of the co-
herent states is zero. W is the weight function
(see Sec. III) and it is defined here as

W(N, )=-p,g [2Ã, +.( —I)"~]'..

W(&,*. , x, ) denotes (x;
I WIQ) as before,

(7.2)

w(&,*,&;) =-~ Q(41&; I'+41&; I'-21&; I" ' ""}.
i

In our crude approach we shall take W=4 pZ(1 A. ; I

VI. ANISOTROPIC HEISENBERG MODEL

Formula (5.6) remains basically correct if J', ,
depends on n too. One can have J,-,.=8 J;,. with 8
=1 for +=3 and 8 =8 for a=1, 2. As a result we
shall have J;,'/8 instead of J,] in (5.6) and (5.7).
Since the coupling in (5.6) and (5.7) is -J,&, the
corresponding anisotropic coupling is -J,.', /8 . If
8 &0(X-Yanisotropy) -J";,'./8 is bigger in 1, 2
directions than in the third and we still have an
X-7 anisotropy. A similar conclusion holds for
8 &1. Now using. the usual RG arguments we ar-
rive at the conclusion that for 8 &1 we have a
X-F-type critical behavior whereas for 8 &1 we
have an Ising-type critical behavior.

+ Ix,. I') only since this is the part that is re-
sponsible for the convergence of the path integral.
H is not assumed to be O(3) symmetric:

H =-n g J;q&;&j.—Q J,,S;S;.

Going to momentum space and denoting by U, the
coefficient of X*-X- and by U4 the coefficient of
te: ms of the type a% N X- x. , we get (in the small-
k limit):

Uz ——4p+2dPZ(1 —n)+PnJk'a'+ 0(k') .
U» =4p/N+ p(4dJ/N)(n 1)+—O(k') .

(7.3)

a is the lattice constant and N the number of
lattice sites. When a & 1, U, )0 and we have a
X-Y-type model. The order parameters are X

and X* or Rek and 1m'. When Q 1& i e., in the
isotropic case we have U, -4p. when k-0. Act-
ually both U, and U» are 4 p, +0(k'}. As we shall
see this situation reflects the fact that in this
case we have three order parameters. One can
see this formally by defining a variable n, =-

I K, I'
and integrating over it with an appropriate o

function expressing this equality 2' In the mo-
mentum space we can use

0' n~

q

which-can be put into the exponent as

2 2

exp b(n„)' —-g X» „-»,

(7.4)

Rigorously speaking one should use the b-~
limit, but assuming universality we can keep a
finite b.' We take n,. as the third-order para-
meter. The quartic part of the Hamiltonian can
be expressed as 4p. + pJ/P term in the exponent
will affect only the U, part. The U, part is now

[4p, + 2dpZ(1 —n)+ npJJPa']i*-x- + (4 p. + pJ'kaaa) In, I'

(7.5)

when ~ =1 we have just

(4~ PJk a~)(x~»'x-+
I
n„-

I
)

corresponding to the usual O(3) symmetry of the
Heisenberg Hamiltonian.

When n & 1 then the constant (k independent part)
corresponding to In, I' in (6.5) is smaller than the
constant corresponding to the 'A*,X, part, which in-
dicates. a crossover to Ising-type behavior.

Thus we see that an analysis of the U„U, parts
alone (dropping hi'gher-order terms as affecting
only higher-order corrections in c}already gives
the results we got in the last paragraph.

Several remarks about the analysis carried out
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above are. in order:.
(a) The U, part is not O(2) symmetric. Pet it

is believed from works using the & expansion
that the isotropic fixed point is stable. In this
case there is no doubt that the exact fixed point
is isotropic (see Sec. V).

(b} This remark is concerned with the additional
variable n,. =

i X, i' that we use as the third-order
parameter. .One should note that the reason one
could bosonize the spin operators is the fact that .

only two of them are independent, say S' and S-.
S' is given by —,

' [S',S ]. Otherwise the two indep-
endent operators Bt, B would not suffice. The
S;.S&part of the Heisenberg Hamiltonian can be
rewritten in terms of the independent S'. operators
as

showing that the term corresponding to the "third-
order parameter" is a magnon-magnon interaction
term. This explains the identification of n,. as the
third-order parameter, and simultaneously shows
why the O(8) symmetry of the original Hamiltonian
is not obvious in this representation.

(c) In spite of (a), one can make the effective
Hamiltonian O(S} symmetric up to any U,„. This
is possible since one can trade a iX, i' term for
a ~n; i

2 term and thus transfer terms between

U~„and U2„,. Thus any anisotropy can be pushed
into as high U,„as one wishes.

(d) One may note that when o =1 the only k-in-
dependent term in (6.5) is p, i.e., a temperature-
independent constant. However, after the first
RG iteratiori one gets corrections to p. that come
from U4 and higher-order couplings, all of which
are proportional to P. Therefore the U, term will
be of the form 4 p, -cP and we shall have a term of
type P-P, as in usual Landau-Ginsburg models.

CONCLUDING REMARKS

The work presented here may be of use in under-
standing dynamical critical phenomena too. MOst
of the work done so far in this field" is based
upon phenomenological Hamiltonians and the use
of linear response theory for deriving equations
of motion.

Some works (e.g., Ref. 24) have tried to find a
microscopic justification of the above mentioned
phenomenology, but they were restricted to Boson
systems since only there the convenient existence
of coherent states and other -methods made this
task manageable. Similar methods for spin sys-
tems lead to extremely complicated ' and non-
intuitive expressions. Furthermore if one is not
interested only in the linear:relaxation process

but in cooling a system below the critical point, "
the situation gets much more complicated. Though
it may be true that the phenomenological equations
of motion lead to a physically correct description
of the systems described by them (even in the
nonlinear domain) it is of great importance to jus-
tify them f rom a microscopical point of view.

This paper is not concerned with dynamical
problems but since it presents a unified pic-
ture of second-order phase transitions as
generalized Bose condensation process it may
lead'to a unified picture of dynamics —as soon as
the Bose condensation problem is satisfactorily
solved. An important feature of the bosonized
systems is the fact that certain quantities are
conserved. In the real boson system we have a
boson-. number conservation whereas in the sys-
tems corresponding to spin system, some func-
tions of the number of bosons are conserved, as
we have seen. Since it is clear that without the
existence of conserved quantities one cannot have
a condensation process, our method leads to an
understanding of the phase transitions in spin
systems from a very general point of view.
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APPENDIX: CLOSED FORMULA FOR THE CLASSICAL

EFFECTIVE HAMILTONIAN

In this Appendix we calculate the part of the ef-
fective classical Hamiltonian (ECH) that comes
directly from the original Hamiltoniaa, i.e., we
do not include the norm of the coherent states or
the part coming from the weight function. This
remaining part is called henceforth the ECH. The
formula we derive here should be useful for fur-
ther analytical and numerical investigation.

First we note that the ECH corresponding to the
Heisenberg Hamiltonian can be written as

Since always i cj in the Hamiltonian S„S&commute
in the original Hamiltonian and thus one can calcu-
late separately the results for S;., S,, and S', .

A. Calculation of S',.

From (1.2V) and (1.28), we have

SE ~ ( } fltvfIv
2 ~ pf

v=0
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Hence

(X"*'!S;!X") 1 " (-2)"
(

„„.),( „)„
(A.""!X") 2 . v i

v=O

r+lg r1 e-2&i &i (As)

In what follows we rewrite (A6) in another form,
that explicitly shows the convergence of (A6).
From (A5) we ha, ve

dZ e-g2~1+»

where:

gI P hgtnfIn
n=i0

B. Calculation of S,'. (~",. '*,X")

From (1.25) and (1.28) we have:

(A4)

( 1)n

Dn!

p, even

zz '-"g ("'~.-"'
p, even'

dec" P ( ~(e")."

From (A4) we get in a similar way to (A3)

(A5) g(")(,-) x'

(A6)S+(&„r+1e
&&r) yr+1 e~ b (&

r+leyr)n
fl

n=O

(A6) can be considered a closed formula for S;..

d« "[(1+8")"+(1 —8 +)"].(A7)
2 xnan

Substituting (A7) into (A6), we get

1s (x"'* x") =x""*
i i t i i

- ~" 1dye-e' g g (1+e- ')y"."*y ] +t (1 e- )g
~ *yr]n]

n=O

-g2 r. +1~ r. r+1~~r+I e ~~ -e i -(&+e &Xi xi -(1 ez&&. -z

2 && CD

(A8)

So we have
fr+i

s;.(x",."*,».",.) =
2 && 'o

dge "( ' e +(' 'e&(Ag)

In any case we write

S+(&r+1n yr) &
r+Ief(~r+lrz&r)

i i y i i i i

r+1&!' r. r+14 re~ e &~i &i&)e &i-
The last integral can be evaluated by expanding

g2 r+1&!e
e+e )ti X

where f is defined through (A10). f is clearly well
defined for every value of (&I.",-"*A.",.).

(c) S;(&&.",'*,&i";) is calculated like S;. The result
ls

in a power series in e '. The result is S-(~r+& e ~r) f(& r+ie& r)~r

S,(&,
r+& e&„r) ~r+& *~i i i i

m=o
m even

(-&i.";"*X";) ~r. +W, ~r
i i.

m! Wi+m
(A10)

where f is the same as in (b).
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