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Effect of tunneling on the frequency dependence and time evolution of
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The proton spin-lattice relaxation time in the rotating frame of a NH4 group embedded in a
crystal lattice is calculated. The eft'ect of the NH4-group tunneling is incorporated on the basis

of a phenomenological model introduced by Clough and Punkkinen. It is shown that, in gen-
eral, the magnetization decays with five time constants. If tunneling is very large, eoT && yHO,
the magnetization decays in the rptating frame with one time constant. Search for large tunnel-

ing frequencies by varying the Larmour frequency at a constant spin-locking field Hi is thus

easier in the rotating frame than at high fields. If tunneling splitting is small, 0)T —yH&, the re-

laxation rate shows maxima whenever co& =2ye&, in good accord with experiment.

I. INTRODUCTION

It has been known for a long time that at low tem-
peratures the tunneling of the NH4 ion affects the
spin-lattice relaxation, particularly in lattices with low
hindering potential for NH4 reorientation. It has
been pointed out before, and is also supported by the
present calculations, that. the tunneling splittings in
the energy spectrum of the NH4 ion embedded in a
crystal lattice, in general, cause multiple minima in
the temperature dependence of the spin-lattice relax-
ation. However, to study the temperature depen-
dence of the spin-lattice relaxation iri detail the
torsional-phonon interaction would have to be includ-
ed explicitly and its ePect on the transitions between
the Zeeman-torsional levels of the NHq ion calculat-
ed. Since the corresponding correlation functions in
the present work are assumed rather than calculated,
the temperature dependence of the spin-lattice relax-
ation will not be studied.

Our calculation was motivated by the experimental
results reported in Refs. 1—3. In that work, very
small splittings of the torsional ground state of the
NH4 ion were measured in solid lattices by match-
ing the precooled nuclear Zeeman states to the tor-
sional states at lattice temperature. Since the Zeeman
system and the torsional system are coupled by the
dipole-dipole interaction, there is a Aow of energy
between these two energy reservoirs. The rate with
which the energy is being transferred between the
two systems depends on the relative magnitude of
the tunneling splittings with respect to the magnitude
of the Zeeman splitting of nuclear-spin levels. As a
result, measuring M„(r) as a function of Hh it is
possible to observe the effects of the crystal field on
the spin-lattice relaxation in the rotating frame. It
was found, ' that for certain values of H~, the fre-
quency dependence of M„shows a local minimum,

and it was concluded that for those values of Hi the
Zeeman and torsional splittings are matched.

The present calculation is based on the model dis-
cussed by several authors. 7 ~ The same model was
also applied previously in a study of the proton spin-
lattice relaxation of NH4 compounds in the laboratory
frame. ' In the present paper, this model is used to
calculate the spin-lattice relaxation of the four-spin-

2
system in the rotating frame. Our results show

that in an asymmetric crystal field the proton magnet-
ization in the rotating frame will, in general, decay
with Qve separate time constants, and that the fre-
quency dependence of the spin-lattice relaxation wi11

show minima for those values of Hi which satisfy the
condition 2yHi = mT. The tunneling splitting of
those energy levels, which are coupled by the in-
traionic part of the dipole-dipole interaction, is %a~.

The most interesting result of the present calcula-
tion is that the magnetization in the rotating frame
recovers with a single exponential in the case of large
tunneling splittings. This makes a high-field disper-
sion study (by varying c»0) much more convenient in
the rotating frame (at constant co~). In addition, the
results for small F splittings are in qualitative agree-
ment with the observations reported in Refs. 1—3.

In the calculation it is assumed that the torsional
-system is at the lattice temperature at all times. Also
the experimentally determined torsional relaxation
time Ti T is considered to be the correlation time for
the relaxation. The erst assumption limits the appli-
cability of the presented calculation to larger than
very low temperatures since at very low temperatures
the torsional system becomes practically isolated from
the lattice (T~r —1 sec) on the scale of a typical ex-
periment (1 msec). The technique of spin thermo-
dynamics is then applicable. Such a calculation is
compared with the experimental data as given in Ref.
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11. The method is extended also into the nonequili-
brium time domain. "" H„(t) = ts—)iI„(e'"'+e '"'),

where ~~ = yH~.

II. HAMILTONIAN OF THE SYSTEM

In what follows, we will consider an isolated NH4
ion placed in a crystal field and an externally applied
magnetic field. The Hamiltonian of the system can
be written in the form

H(t) = Hz +Hr +Hp+Hrp +HD +H t(t), (1)

where the various terms are defined as follows. The
proton Zeeman operator is

Hz= —t 0 (2)
where I, is the z component of the total spin for the
four —spin- —, system of the NH4 ion and co0 is the

Larmor frequency of the proton spin in the external
dc magnetic field H0. The torsional operator is

Hr=L /2J+ V(a. P. y) 0)
with J representing the moment of inertia. L is the
square of the orbital angular momentum of the NH4
tetrahedron. V(a, P, y) is the potential energy of the
ion embedded in the crystal lattice, while a, P, y are
the Euler angles determining the orientation of the
NH4 ion with respect to some spatially fixed coordi-
nate system. Hp is the phonon Hamiltonian and Hyp
represents the interaction between the torsional de-
grees of freedom and phonons. At present we do not
need their explicit forms.

The intraionic dipole-dipole interaction is

2

X ( 1)kU» kvk
k -2 /&J

(4)

where KD ~ y'tt'/ro. The proton-proton distance is

r0, and y is the gyro-magnetic ratio for protons. The
spatial part is

y+2 I +/I +$
J

with (8», $») representing the spherical coordinates
of the proton-proton vector r&. The spherical har-
monics Yz (8, $) are defined with respect to the coor-
dinate system (x,y, z) which is orieiited so that the z
axis is parallel to the external dc magnetic field H0.

The spin operators VJ are given by

III. SCHRODINGER EQUATION IN THE
LABORATORY AND IN THE ROTATING

COORDINATE FRAME

The Schrodinger equation corresponding to the sys-
tem under consideration is

(6)

with H(t) given by Eq. (1). The transformation to a
rotating coordinate frame is introduced by

y(t) = e ' P,(t),
where p, (t) is the wave function of the system as
seen in the rotating coordinate frame. The
Schrodinger equation in the rotating frame is

i t ' =H (t) y, (t),8y, (t)
Qt

where the Hamiltonian in the rotating frame H, (t) is
given at exact resonance (co = mo) by

H, (t) -Hr+Hp —~iI„+Hrp
2

+K X X(—1)ke U, "V"
k —2 i&J

In the above expression we have omitted the term

—
z

fee~(I+e +I e )

since its effect in the rotating frame is negligible be-
cause coi/auo « 1.

In the laboratory frame usually the following set of
spin operators is used

I„I„+i' =—I-
and the spin-states are chosen to be the eigenstates
of I Iz + Iy + Iz and I,. In the rotating frame,
however, it is more convenient to choose the spin
states as eigenstates of I2 and I„, that is,

Correspondingly we have to define raising and lower-
ing operators as

I+- = Iy + iI,

Using these new operators, the rotating-frame Hamil-
tonian can be written

H, (t) =Hr+Hp —fa) I„+tH pr
also

IJ— = IJ„+iIgy, IJ =—IJ
+i 0—

2

+KD X X (—1)"e U» »C»» S»k',
k, k'- —2i &J

(9)Finally, the rf interaction term has the form
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where the spin operators S& are obtained from the
expressions for the VIJ upon replacing in the expres-
sions for the latter

IJ I~x and Ijx + I'I» ~ I» + I'I~,

The matrix Ck k is given in Appendix A.

IV. CALCULATION OF THE TRANSITION
PROBABILITIES PER UNIT TIME IN

THE ROTATING FRAME

We define a Hilbert space spanned by the eigen-
states of the unperturbed Hamiltonian in the rotating

frame,

At. ,wi 4r, t.4, t~ltp =
I kttMIt)

The subscripts have the following meaning: T stands
for the torsional degrees of freedom, o- stands for the
spin degrees of freedom, p stands for the phonon de-
grees of freedom, n =0, 1,2, . . . , denotes the
ground, IIrst excited torsional oscillator states, g
denotes the symmetry type (A, E,F), M denotes the
magnetic quantum number (—2, . . . , +2). The
eigenequation for 8, reads

HP I(nMp& =(Err„+E~—Mfa() lgnMp) . (11)

riting $,(t) = U(t) Q, (0), we obtain from Eq. (7)
the equation of motion for the evolution operator

Ho=0, +Hp —@ )I„. (10) gt
it =H(t)U (12)

An eigenstate of this Hamiltonian is written in the
form

Up'to first order in dipolar interaction, the solution of
the above equation is

1

~o
(

(

U'(t) = T exp
'

~
Hrp(t') dt'

g Jo

where T is the time-ordering operator and

(i/ett t (IteH t-
rp t =e rpe

The operator HD(t') is given in Eq. (9).
Now we wish to calculate the matrix element

&alU(t o) I p&
= e

""'.'&alU'(t o) I p&+
'

e
""'.'

I dt' (alU'(t t') lu& &vlH, (t') ll()

x (A. l
U'(t', 0) Ip)e (14)

In the above expression I a), I p), etc. , are eigenstates of Ho:

Hpla) =E.la) .

The subscript a stands for (nMp:

E =EOMp ET4+Ep Mt 1

In what follows we will consider only such transitions, for which (al U'(t)
I p) =0, and therefore the absolute

square of the above amplitude can be written

I (a I U(t, O) I p) I' ', , dt, dt, (al U'(t, t,) I v&

x &alU'(t t2) I» "(~IHn«~) I~'& &) IHD(»ll'&"

« """""."' ' " '&.'IU'«(, 0)lp&&~'IU'«2, »lp&'
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In Eqs. (14) and (15) the summation over repeated indices has to be taken.
The above result for the transition amplitude is not immediately applicable because we do not know the explicit

form of the evolution operator U'(t), generated by the torsional-phonon interaction. We shall assume however
that U'(t) is a stationary random operator. We have to calculate therefore the ensemble average of the transition
amplitude. However, instead of calculating this ensemble average, we sim'ply assume the following result:

X~~ (I (to'M'p'I U(r) I 40Mp) I')
2 g „' a'rt a'r2 go'M'IHD(rt) I (OM) (40'M'IHD(r2) I (oM)"

P~P
0 ~o

&& exp( —
I t&

—t2I/r, ) exp( (I/O-) (Er kr Et k—r) (t) —t2))

In the above expression we made the simplest possi-
ble assumption, namely, that the effect df the interac-
tion between torsional degrees of freedom and pho-
nons can be approximated by a single exponential
correlation function. Of course, one could make
more specific assumptions concerning the effect of
U'(r) which would also enable one to calculate the
correlation times, but we will not go into suCh details
here. We have also assumed that at low tempera-
tures most of the NH4 ions are in the ground torsion-
al manifold (consisting of several states), and we
need to consider only the transitions among these
states. Furthermore we introduced the following no-
tation in Eq. (16):

E~ ~=E]~ —Mko(

and

i)0M) =yr, t,4 . (,kr .

where ruhr& =-(Err E&~ )/—ilare the tunneling split-

tings of the ground torsional state.

V. RATE EQUATIONS FOR THE
POPULATION DEVIATIONS

The calculation in this section is based on a model
discussed previously. "0 The energy-level scheme for
the ground' torsional state of the NH4 ion is shown in
Fig. I, where the following tunneling frequencies are
introduced

carr (1/g) (EFr Eg)—
ruE= (I/g) (Ez EJ)

hs ——(I/g) (EFr -Epr), i 1,2, 3
J I

If the dipolar interaction is written in the form

2

HD(r) = X e HD

where

(17)

2

HD =ED X X( 1) Ut/ Ck—k'Sfj
k' —2i (J

(18)

(I (40™p'IU(r) I 4 Mp) I')

, PP

we obtain from Eq. (16),

and if we define the transition probability per unit
time among the lowest lying states of the ammonium
ion as

Fs Ii

Ii
FO

0

"I
0
I

af

0
I

-I
0
I

- ', Xl(g, 'M'IHklg, M)l'

2v.
I +t~t t +(M' —M)a&t+ka)0]2r~00

.it ii iP 0
2

4

FIG. 1. Energy-level scheme for the ground torsional

state of the NH4 ion in an asymmetric crystal 5eld.
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The spin-lattice relaxation can be described ' in
terms of the deviations of the populations of various
states N~„M from their thermal equilibrium values

hM„hM„
y 8'dLNg y AANg

—yeaNF ——E yI-EN,d
Ch 1

(24)

hNg~M ——Ng~M —
Ng~M (20) y fhNF

y AANF

y M, NF

y hhNF

It will be assumed that this holds true also for the

spin-lattice relaxation in the rotating frame. In other

words, the torsiona1-Zeeman system can be described

in terms of the populations of various eigenstates of
the Hamiltonian 0„. The combined effect of the
torsional-phonon and of the dipole-dipole interaction

are transitions among these eigenstates. This causes

the relaxation of the Zeeman system. All the

nonhero transition probabilities per unit time among

the energy levels shown in Fig. 1, are given in Ap-

pendix B. %e also neglect the Boltzmann factors p~&0,

which discriminate between the downward and the

corresponding upward transition rates. As pointed

out in Refs. 7 and 10, this is admissible, as long as

one is dealing only with the deviations of the popula-

tions from their thermal-equilibrium values.

Using the transition rates listed in Appendix B, the
time variation of the 4N& M is governed by the fol-

0

lowing set of coupled differential equations:

hM„

y fb, NA

yAENF, =—

y AANF

y AANF

X3 f

then the solution of Eq. (24) can be written in the
form

x, (r) = Xase J

J
(25)

~here X~'s are the eigenvalues of the matrix E and
the coefficients n J are determined by the equations

where E is a 5 x 5 matrix, the elements of which are
given in Appendix C. If we introduce

(~Nr M) X Hr M r 'M'~Nr 'M'd
dg 0, , 0 '0 0

0

where we have introduced the notation

(21)

5

X (K~ —XIS~q) ajl =0,
)~)

/, I =1,2, 3, 4, 5

and the initial conditions

(26)

and

AM' fp'M' $0 M'(0M (0M $0 M

(pM & gp'M'

HrpM;rpM $ HrpM;rp'M'

0
gp'M'&g( M

hM„= yt 2(ENg2 —EN' 2) +(EN') —dNg ))

In terms of the populations of the energy levels the
deviation of the magnetization from its thermal
equilibrium value is given by

5

x;(0) = X as
J~f

From Erl. (25), it follows that the time evolution of
the magnetization in the rotating frame is given, in

general, as a sum of five decaying exponentials. The
constants n& are given in terms of the matrix
eoeScients E&, and they also depend linearly on the
initial valueS Of b,M„, hN&, and b,NF. The depen-

i

dence of the O.,J's on the initial values implies that
the decay of the magnetization towards thermal
equilibrium will depend, in general, on the prepara-
tion of the system; i.e., on the pulse sequence being
used in the experiment. "

+ $(/ NF g
—EN'. ))

i 1

(22)

Introducing the notation

iLNr —= X ANrM (23)

and assuming the existence of a common spin tem-
perature for A, Ei, and F; spin species, " we obtain

VI. RELAXATION IN THE ROTATING FRAME

The spin-lattice relaxation in the rotating frame,
under the condition that the spin system is initially in

thermal equilibrium with the lattice, is measured by

applying a 90 pulse, which is immediately followed

by a spin-locking rf-field pulse. The rf pulse is phase
shifted by 90' with respect to the 90' pulse. If the
duration of the 90' pulse is short compared to the
shortest of the time constants —1/hj (i =1,2, 3, 4, 5),
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then the appropriate initial conditions for the system
of differential equations (24) are

(b) Large splittings in a crystal field of tetrahedral
symmetry.

ouF ole » 0)p kit 0 (ij = I; 2, 3) (31)
xi(o)

X2(p)

X3(p)

X4(p)

X5(p)

hM„

0
0
0
0

(27)

QIF, Q)e, Alt =0 (/, J = 1, 2, 3) (2g)

here one obtains

K)J =KJI =0, j =2, 3, 4, 5

and the decay of the magnetization is exponential

EM„(t) = EM„e (29)

and the spin-lattice relaxation time in the rotating

frame T~, is given by

9 3 Tc 5 Tc

1+4'~ T, 1+eop T,

TC+
2 21+4~o T.

(30)

This result is the same as the one obtained by the

semiclassical Bloembergen-Purcell-Pound (BPP)
theory. '

In the following we will consider some special cases
of Eq. (24).

(a) All splittings vanish.

bit=0; cut. , tuE » co~ (i,j =1,2, 3) (32)

(rut;, cue are of the order of Zeeman splitting in the la-

boratory frame. ) In this case the decay of the mag-

netization is again exponential. T~, is given by

In this case again Ku = K&~ =0 (j =2, 3, 4, 5). This
can be seen from the results presented in Appendix
C. In this case the magnetization in the rotating
frame again decays with a single time constant; which
is given by Eq. (30) multiplied by —,6. It was also as-

sumed that NF T, NET ))1. We see that the pres-
I

ence of large tunneling splittings (large compared to
tup) slows down the relaxation by a factor of —.This

reduction of the spin-lattice relaxation rate occurs be-
cause for large tunneling splitting only the transitions
within the F manifold are effective in relaxing the
spin system. Note that there are no transitions
within the A manifold because (AM'~HD ~AM) =—0
(HD is assumed to include only the intraionic dipole-
dipole interaction). As already mentioned in Appen-
dix B, the matrix elements of the intraionic dipolar
interaction +ere calculated by assuming that the tor-
sional oscillations of the NH4 ion about its equilibri-
um orientations are of small amplitude, and could be
neglected. This is a good approximation in the case
of large hindering potential [case (a)], but is not so
good when tunneling splittings are large. In this case
one would expect additional reduction of the spin-
lattice relaxation, due to large torsiona1 oscillations of
the NH4 ion. ' '

(c) Moderate splittings in a crystal field of
tetrahedral symmetry.

't

T(t, g 160 I +4~) re 2 I +fluoro I +4«up2re~ 2 I + (~F)2g,
7C

I +(ruE) r,
1 t 'I

9 TC Tc 45 VC TC

2 I + (tuF —2tup) r,' I + (coF +2~o)'r,' 4 1+(«F ~o)'rc I +(tuFr+«uo)2r 2

TC Tc TC TC

I +(rue 2«up) r, I +(cog—+2&up) 7', 2 1+(rue o)p) 7c —+(~E~+~o)

(33)

For the sake of simplicity we assumed in the above
expression that the frequency cop is such that none of
the terms with tu&r-2tup, tutr tup, (g =F,E) is close—to
zero.

The fact that the magnetization in the rotating
frame decays with a single time constant is an impor-
tant advantage. According to the calculation in Ref.
10, the magnetization in the laboratory frame in gen-
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eral decays with three time constants whenever aoF

and cog are of the order of coo. In the rotating frame,
however, if co~ and eoE are in the neighborhood of coo

(assuming of course coo » cot) the magnetization M„
still decays with a single time constant. Consequent-
ly, it is easier to study the tunneling splittings which
are of the order of ~0, by measuring the Ho depen-
dence of T~, rather than by measuring the Ho depen-
dence of the spjn-lattice relaxation in the laboratory
frame.

(d) Small splittings in the tetrahedral crystal field.
In such field it holds that

(i) upper leve-l doubly degenerate:

~23 =0,

(ii) triplet with equal spacings:

(iii) triplet with unequal spacings:

523 5 LL'i2 5]3 5 )/ 0)$ LL

(38a)

(38b)

(38c)

5tt =0 (i,j =1,2, 3) (34)
f

It is also considered that 0JF, coE~ are of the order of
so~. From the results given in Appendix C, one ob-
tains by imposing the conditions (34) that the 5 x 5
matrix K which appears in Eq. (24) reduces to a
block diagonal form which consists of one 3 x 3 ma-
trix and two 1 x 1 matrices. The evolution of the
magnetization M„(t) is given by the following set of
equations: +(1—A)e" '] (39)

The time evolution of the magnetization in the ro-
tating frame is coupled only to the time evolution of
the ls.Nr (i =1,2, 3), which is a consequence of the

assumption cuj» cuo (i =1,2, 3). By solving the

matrix equation (24) we obtain for all cases (i) —(iii)
the following result:

iI,M„(t) =
3

AM„[(1+A)e"

3 hM„K))
d—y khNg = K2)
dt

y AANF 3K3,

K)2 K)3 5M„
K» K» y gb, N„, (35)

3K32 ——K32 'V AENF
3

The constants A, A. +, and A.
' for the three situa-

tions considered, respectively, are given by

X'+-' = —,
'

((Kii —3K34)

where we have defined

Qle, Qlr )) ctlo, (I = 1, 2, 3) (36)

but the splitting of the F states is of the order of co~,

hNF- =—hNF
)
+ ENF.

2
+ b, N

and the matrix coefficients E~t appearing in Eq. (35)
are obtained by using the results giveri in Appendix
C and making use of the conditions (34). We were
not able to obtain an analytical solution for this case.
We did however obtain some approximate expres-
sions for the time evolution of the magnetization for
the two limiting situations: (i) ruE = r~r ——~i and (ii)
co& && coF, aoi ~ co+. In both cases the magnetization
decays with two time constants. Since qualitatively
very similar behavior results in some other examples
where the analytical solutions exist, we will not dis-
cuss the present case in any more details.

(e) Large A to Eand A t-o -Fsplitting but small F--
splitting. Here we consider the crystal field where

+ [(K„+3E34)'+-',Ki', ]'"},

K)) +3K)4A=
[(Kii +3K34)'+ —,

' Ki'3]'i'

At+3 =- (
—(K34+ 2K35 —Kii)

+ [(Kit +E34+2K35) +
3 Ki3] }

Kii +K34+2K35A~
[(Kii+K34+2K35)'+ 3

Ki'3]' '

3 ((Kii —K34 —2K45)(+)

+ [(Kii+K34+2K45) +
3 K/4]' }

K(i + K34+2K45

[(Kit +K34 +2K45) + Ki4 ]

(40a)

(40b)

(40c)

Ao=tdi (l j=1,2, 3) (37)

We also assume (mt r, )) 1, g -E,FI). We will con-
sider three special cases of F splitting.

The matrix elements K& are given in Appendix C but
also satisfy the conditions (36)—(38c).

Since the vaIue of the magnetization in the rotating
frame in thermal equilibrium with the lattice is small
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compared with the thermal-equilibrium value in the
laboratory frame, we may replace AM„and EM„by

0

M„and M„ in all the formulas given above. When-

ever the splitting between A and F states is large
compared to the KD/Ir (cur ))ED/lt), M„ is given

by
i

5 r 3M =Mp — +-
Xp 8 QJ~ + QJLg 8 cd] + QJLF

2 2 2 2
(41)

Mp is the thermal equilibrium value of the magneti-
zation in the laboratory frame and coL~, cuLF are the
local fields in the rotating frame for the A and F
species, respectively. If ~r ——ED/t, the appropriate

I

expression for M„becomes

M„=M0((oi'/(coi'+ o)L)] (42)

with coL, representing the local field in the rotating
frame of all species.

VII. DISCUSSION

In general, the presence of the tunneling splitting
of the torsional ground state of the NH4 ion causes
the magnetization in the rotating frame to decay with
several different time constants. Specifically, Eq.
(24) shows that under the assumption of the com-
mon Zeeman spin temperature the magnetization will

have, in general, decay with five time constants.
Furthermore, Eqs. (25) and (26) also show that the
evolution of the spin system towards the thermal
equilibrium will depend on the preparation of the sys-
tem, i.e., on the particular pulse sequence applied.

The details of the time evolution of the magnetiza-
tion depend on the relative magnitudes of the tunnel-
ing splittings as compared with the magnitude of the
Larmor frequencies: cop=—yH~ and cd~

=—yHj, where
o)p && 0)&. In the limit of vanishing tunneling split-
tings, Eq. (29) tells us that the magnetization in the
rotating frame decays with a single time constant, ,

which is identical to the semiclassical expression ob-
tained previously. ' Similar situation results also in
the case when the tunneling splittings are large com-
pared to cop, except that the strength of the relaxation
is reduced by a constant factor with respect to the
result obtained in the case of zero splittings. More-
over, from Eq. (33) and the above discussion, it fol-
lows that the decay of the magnetization in the rotat-
ing frame is exponential provided that the tunneling
splittings are either large or small compared with so~.

If we were to study the temperature dependence of
the spin-lattice relaxation in the rotating frame, Eq.
(33) also shows that several minima would occur in
the temperature dependence of T~„ in addition to the

classical minimum which is given by the condition
that co~~, = 1. However, one should keep in mind
that the applicability of expression (33) is restricted
to the temperature range consistent with the assump-
tion that most of the NH4 ions are in the ground tor-
sional state. Identical conclusions hold true also for
the remaining examples discussed in Sec. VI. Be-
cause a rather crude approximation of a single ex-
ponential correlation function was employed in our
calculation, a study of the temperature dependence of
the magnetization was not attempted. On the other
hand, for the analysis of the frequency dependence
and the time evolution of the nuclear magnetization,
the assumption of a single exponential correlation
function is quite reasonable.

The remainder of this discussion is restricted to the
case of large A-to-F and large A-to-E splittings, and
small intra-F splittings, as presented in case (e) of
Sec. VI. The characteristic feature of this type of
splitting is that the magnetization decays with two
time constants as shown in Eq. (39).

In Fig. 2 the H~ dependence of the magnetization
M„(H~, r) as given by Eq. (39) is shown. The
corresponding crystal-field splitting is given in (3'8a).
The upper graph in Fig. 2 corresponds to a 100-p,sec
if pulse and the lower graph corresponds to a 4-msec
rf pulse. The splitting 4 of F states was chosen to be
24 G. In order to take into account the finite
linewidth of the transitions under consideration, the
j(r„~),which are given in Appendix C, were re-
placed by j(r„co) defined by Eq. (CS). The distribu-
tion function p(8) was assumed to have a Lorentzian
shape,

p(8) = (I/2m) /o( 8+ (r'),

where a., the broadening parameter, was chosen to
be 2 G. The correlation time v, appearing in the ex-
pressions for j(r„ra) is equal to the torsional relaxa-
tion time T~T, determined from the experimental
data for NH4I at 20 'K. ' ', From the expressions for
j(r„&o) it follows that the resonance condition is
fulfilled when b 2H~. This is manifested by a dras-
tic loss of magnetization as seen on the upper graph
of Fig. 2. Since b was chosen to be 24 6, the max-
imum loss occurs for H~ =12 G. The lower graph in
Fig. 2 which corresponds to t =4 msec, does not
show such a pronounced resonance effect because for
longer times also those levels, for which the reso-
nance condition is not exactly fulfilled, become im-
portant for the relaxation. This broadens the reso-
nances. It was also established that the characteristic
features of the graphs in Fig. 2 do not change
significantly when the temperature is varied between
10 and 67 K. ' ' The results for the crystal-field
splitting corresponding to example (38c) are almost
identical to the results for (38a) and need not be dis-

cussed. On the other hand, Fig. 3 shows the H~
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dependence of M„(HI, t) corresponding to example
(38b). The parameters characterizing these graphs
were taken to be the same as those in Fig. 2. Here
again a significant loss of magnetization occurs at two

values of Hi. The two values of Hi are 4 and —,5,1

respectively, where b =24 G. It should be noted,
that the results presented in Figs. 2 and 3 are valid

only for values of Hi large compared to the local field

in the rotating frame.
The magnetization losses due to the resonant

matching of Zeeman and torsional levels were ob-
served experimentally in NH41 in the temperature
range between 4 and 67 K.' ' The relative loss of
the magnetization for the upper graph in Fig. 2, at
Hi =12 6 is approximately 29%, while the example
presented in Fig. 3, gives for HI = 12 6, the relative
loss of 57'k. The measured loss of magnetization. in
NH41 at 10 'K and HI =12 G is (32 +4)%.1 The
maximum losses of the magnetization as given by
our calculation are somewhat larger than the
corresponding spin-temperature estimates. " This
results from the assumption that the temperature of
the torsional system is equal to the lattice tempera-
ture at all times. Similar results were obtained also
for Ch3CD I '

From the above results it can be concluded that the
values of Hi, where the maximum losses of the mag-
netization occur, are related to the tunneling split-

tings of the torsional ground state of the system

through the relation of 2yHi = co, where co is the
tunneling splitting. This is true for rf pulses which
are a few T2 long. On the other hand, the determi-
nation of the type of the crystal-Geld splitting from
the magnetization losses alone is not unique. This
result should be compared to the data from neutron
scattering, and NMR line-shape experiments. The
magnetization evolution spectra are significantly
better resolved. ""

In Figs. 4 and 5 the time dependence of M„(HI, r)
was plotted on a semilog scale for a fixed value of
HI = 16 G. Since all three examples [(38a)—(38c)]
show the same behavior only case (38b) is presented.
The values of the parameters appearing in expression
(39) are the same as those on the HI graphs. The
two graphs in Figs. 4 and 5 differ only in time scales,
which were chosen to be 100 and 10 msec, respec-
tively, The characteristic feature of both graphs is
the rapid drop of the magnetization at the origin and
the subsequent exponential decay of the magnetiza-
tion. This is typical of the situation where the time
evolution of the magnetization is governed by two
time constants. If the slope corresponding to the
longer time constants is extrapolated back to the ori-

gin, the semilog axis is intercepted at a given point.
The ratio of the lengths of the divided sections is
given by (I —2 )/(I +A), where 3 is defined by Eq.
(40b). This was observed in NH4I in the temperature
range between 4 and 60 K."
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FIG. 2. Hi dependence of the magnetization M„ in the

I'otating frame. The crystal field is such that eoE, eoF » fIoo
. i

(i =1,2, 3) and hi2-4&3=4 24 6, 423=0. Temperature

is T =20 K, the broadening parameter o-=2 6, and time

t =100 p,sec for the upper graph and t =4 msec for the

lower graph.

FIG. 3. Hi dependence of the magnetization M„ in the

rotating frame. The crystal field is such that ~ET, coF~ && coo

(i = 1,2, 3) and Ii3 =2h, d, i2 = b 23
= 5 =24 6. Tempera-

ture is T =20 K, the broadening parameter a =2 6, and

time t 100 p,sec for the upper graph and t =4 msec for the

lower graph.
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10
6-

(10 I I I I I I I
0.0 0.12 0.25 0.37 0.50 0.62 0.75 0.67 1.00

70" T
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0.0

I I I I 'I I I I
0.12 0.25 0.57 0.50 0.62 0.75 0.67 1.00
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FIG. 4. Time dependence of the magnetization M„ in

the rotating frame. The crystal field is such that

E ~F ++ coo ~i =1,2, 3) and 413 =231, 512 = 623 = 5=24
I

G. Temperature is T =20 K, the broadening parameter
a. =2 G, and H1 = 16 G. Time varies from 0 to 10 msec.

FIG. 5. Time dependence of the magnetization M„ in

the rotating frame. The crystal field is such that

E FI 0 ~ 13 12 23

G. Temperature is T =20 K, the broadening parameter
can=2 G, and H1 =16 G. Time varies from 0 to 100 msec.
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APPENDIX A

The matrix Ckk is given by +F M'~F MI I

K2
I ck,~ I'Dk' '(~E')
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0
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1

4
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APPENDIX B

For powder samples Eq. (19) yields the following
results for the transition probabilities per unit time:

+F.M'~F MI J

le' —Ml
X

9 lc l
D( — )(~ )

4 20 k M' —M k IJ
k

(i w j, i,j =1,2, 3) (&5)
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3

4

0 —1

1 0
1 1

4 2

Here the matrix Ckk is given in Appendix A, while

the matrix BM M is as follows:
where P(E) stands for the normalized torsional
ground state belonging to a certain orientation of the
NH4 ion, and OR is the operator representing the
effect of the symmetry operation R on P(E). In cal-
culating the matrix elements (/0M'~HD /0M) we
make the approximation

3
4

3 ~

0 4

(y(R') IU;"~y(R)) =—gs, R'(p(R)
~ ~g "(y(R))

1

2

1 3

4

1
1

2

We have also defined

D(hf M)(
' —T)— 2T.

1 + [«&r+ (M' —M) «3) + k«&0]2r,

(B6)

and we also assume that the angular variables appear-
ing in ([&(R), enter only as arguments of the g func-
tions corresponding to a given orientation of the NH4
ion relative to the crystal lattice. The states

r3r used in this calculation are given in Ref.

18, except the spin states, formally the same as those
in Ref. 18, are chosen to be the eigenstates of I' and
I.

In calculating the above results we made the follow-

ing approximations; the states ~/0M) have the form
of a product (IIr & @ &, where the torsional part of

the wave function i~ gi:='i oy'

([&r r, ——X Cr, (R) (]&(R)
R

The sum in the above expression runs over the 12
symmetry operations of the point group T, and

APPENDIX C

In order to write the matrix coefficients E& in a
compact form, we first define

j(r„«&) =—2r, /(1+«&'r,') (Cl)

j(r„«&+«&')(+) —=j(r„ru —«)') +j(r„«)+co'), (C2)

j(r„«& + «&') ( )
—=j(r„«&—«&') J(r„«)+—o)') . (C3)

Using the above definitions we can write the ele-
ments E& for a powder sample, as follows:

2
'

3

K» =— x [ j(r„«&—F + 2400)(+) +—j(r„«)F +~0) (+) + —,J (.r. , «&F +2«)))(+&].D 9
160 ; 1

4

+[—j(rc «&s+2«)0)(+)+ —j(rc «&E+ «)0)(+)+—4i(r «&E—+ 2«&))(+)]

+ [j (r„2«&0) + j(r„)—«+&0—j(r„2«))]

+
4 [J(r ~12 —2«&0)(+) +J(r ~)3 —2«&0)(+) +j (r" ~23 —2~0)(+)]

+
g

[J(r ~12 —~0)(+) +J(r 4')3 + ~0)(+) +J(r ~23 —~0)(+)]

+ [j(r„h» + 2«)—))(+) +J (r„h)3 + 2«&)) (+) +j(r„523 + 2«)))(4)]
2

1

E» —— x j(r„~F +2«&))( )+— j(r„~E+2~))( &100 ; 1 8

I( )3 (KD/8' ) 6 [j(r„h)2 + 2')) ( &
+j(r„h)3 + 2co))( &

—3j(r„ f«F + 2a)))( ) + 3j (r ~ fdE + 2'))( )]

&,4 ——(I('D/&'),'0 [ 3j (r„«&F, +2«&,—)( )+3j(r„«&E+2fo))( &

—j(r„h»+2«)))( &+j( hr+223)( «&&]
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K&5=(KD/t ), [—3j(r„c»F +2c»1)( )+3j(r„c»E+2c»1)( ) j—( r„b, 13+2 c»1) () j—(r„h33+2c»1)( )]

K31 3 XJ(r, c»F + 2c»1)( ) + j(r, c»E + 2c»1)(—)

2 1

K33=—
3 X [3j(r„c»F 2 c»0)(+)+ 3 j(r., c»F + c»0)(+) + loi (re c»F +2c»1)(+) + —,j(r., c»F)]
D 9 3 T

g2 100 2 '
I'

+ [—j(r„c»E + 2c»O) (+) +
3 j(r c»E + c»0) (+) +—„j(r„c»E + 2c», )(,) + ',j (r„—c»E)]

)

K33 (KD/t')
40 f [-', j(r„c»F, + 2c»o)(+& +

3 j(r c»F) + c»0)(+) +,&
j(r„c»F",+ 2c»,)(„+'

, J (r-„c»F )]
1

[3J(r ~ c»I+2(»0)(+)+ 3J(re c»E+c»0)(+)+ lo J(r ~ c»E —2(»1)(+) +
g J(r c»E)]] K33(c»F )

1

K24 K23 (c»F3)

K35 K33(c»F ) y

K31 (Kg)/t )
lqo [ 14 J ( „&13+ 2~1)( ) +

)q J (r„&13+ 2~1) ( )
—

15 j (r„r»F) + 2m)1)( )]

K» -—(KD/t'), «[ j(r„~F'-+2~0)(+)+-,J(r„~F + ~0)(+)+—„J(re, ~F& +2~1)(+) +
() J(r" "Fl

1

K33 (KD/t )—([-J(r„c»F + 2c»0)( &
+ —'j (r„c»F + ~0) ( &

+—j (r„a)F + 2c»1) (+) +
g J (r, mF))]

+ [3j(re, 6» +2c»0)(+) +
3 j(re, ~13+ c»0)(+&+ —,4 j(r„512+2c»1)( ) +-j (r, L)3)]

1 1 3 1

~0

+ [-,j(r„ih&3+2(»0)(+) +-,J(r„h)3+ c»0)(+) +,z j(r. ~13+2c»1)(+) +
g J (r' ~13)]]1 1 3 ~ 1

K34 (KD/t ) 30 [ 3 J (re ~12 —2(»0)(+) +
3 J (r ~12 + c»0)(+) +

14 J (re ~12 + 2c»l)(+) +
g J (re ~12)] ~c

K35 = (KD/t ) 30 [ 3 J (re~ ~13 -+ 2c»0)(+) + 3 J (re~ ~13 -+ c»0)(+) +
114

J(re~ ~13 + 2(»l)(+) +
g J (re ~ ~13)]

K41- (KD/t'), «[-—„j(re.~F'3 -2~1)(—) „j(re.~13+2~1)(-)+ &'&i (r" ~33-+ »1)(-)]

K43 (KD/t ),00 [ 3 j(r„c»F3 +2c»0)(+) +
3 J (r„c»F + c»0)(+) +

14 j(r„c»F—+ 24»1)(+) +
() J (r„c»F3)]

E43 =K34

K44= (Kc)/t ) 30 {[3j—(r„c»F +2c»0)(+) +
3 j(r„c»F + c»0)(+) + —, J(r„c»F +2c»1)(+)+

g
j(r„c»F )]

+ [ ,i (re e ~13+ 2~0)—(+)+ —,j(r"~13+ ~0)(+) + —,4 j(r„&13+2~1)(+) + —,j(r, . &13)]
1 1 3 0 1

+ [ 3 j(r ~23 —2 ~0) (+) +
3 J (r ~ ~23 + c»0) (+) +

14 J (r ~33 + 2 c»1) (+) +
g J (r ~ +33)]]

1 '1 3 +
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~45=(~D/') 30'3J(rcpt'23 +—2"0)(+)+ 3J('ci'23 +—"0)(+) + 16J(rcpt'23 —+2"1)(+)+ g J(rcpt'23)]

~5) (KD/'), ",, ( —
,',—j(r„~F+2«)))( )

—1'6j (r„')3+2cu))( )
—

)'4 j(r„533+2«)1)( )]

19

~52 ~D/') )00'3J('c ~F +2"0)(+)+TJ(r ~ "F +~0)(+)+ 16
j('&c, cdF +2'))(+)+ ,'j(—r„cuF')]

3

K53 = K35

K54 =K45

~55 (~D/') 30 Ã3 j(r "F'3 —2"0)(+)+ 3 j(r "F3+-"0)(+)+ )4 j(rc. "F +2&1)(+)+ g j(r„cuFr)]

+[—,j(i„b)3+2a&0)(+)+ 3 j(~c. ')3+~0)(+)+ )5 J(rc, h)3+2cu))(+)+ 0 j(r„h)3)]1 1 3 1

+~—,J(rc '23+2"0)(+)+—,J(rc, '23+~0)(+)+—„J(rc, '33+2"))(+)+SJ(rc, '33)]} .+ 3 0 1

The tunneling frequencies that appear in the above
expressions for K& represent the average values of
the tunneling splitting in the sense that each transi-
tion has a certain linewidth characterized by a distri-
bution function p(5), normalized to unity, i.e.,

f oo

p(5) d5=1

j (r„co)=— p(5)j (r„su+5)d5

which is

(C4)

l

linewidth of the distribution function p(5), one
should use instead of j(r„ro) a new quantity j(r„co)
defined by

So in order to incorporate the effect of the finite j (r„ru) =2 d5 p(5)
(1/r, ) + (~+5)'
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