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Local-band theory of itinerant ferromagnetism.
V. Statistical mechanics of spin waves

R. E. Prange and V. Korenman
Department of Physics and Astronornv, University of Maryland,

College Park, Maryland 20742
(Received 14 August 1978)

The functional-integral method of the previous paper is generalized to allow a discussion of
the dynamical spin fluctuations in itinerant-electron magnets. The magnitude fluctuations and

nonstatic spin fluctuations are treated as a perturbation on the nonlinearly interacting static spin
fluct'uations. The result is a free energy which is a sum of a Stoner contribution together with

correlation corrections, a classical Heisenberg free energy as found in the previous paper, and a

quantum spin-wave free energy minus its zero-frequency part.

I. INTRODUCTION

Iri this paper we are concerned with the effects on
the thermodynamics of the dynamics of the motion
of the magnetization of itinerant ferromagnets. The
best known such effect is the T' ' law for the mag-
netization. In contrast, the phase transition itself is
primarily a consequence of classical statistical
mechanics and the dynamics of the spin motion is a
secondary effect.

The method we use is that of expressing the ther-

modynamic quantities as a functional integral via. an
appropriate Stratonovich-Hubbard transformation.
As we discussed in the previous paper, ' earlier at-
tempts using this method have certain serious
shortcomings. This has led us to use a generalization
of the so-called "two-field" approach, which makes
possible spin-ro'tationally invariant approximations,
while retaining the virtues of the two-field method.

Illustrating the method with the one-band Hubbard
model, we have an exact expression for the partition
function

fP p
Z = J)uxx)pexp ——U Jl dr Xx —U dr gp, ' e

~here
f

Prob, p I —PHD pp
e '0 ' =Tr e 0 exp , iU J dr—gnx exp 2U J dr $p M (2)

Here x =x;(r), p, = I7. , (r) are functions of site i and (imaginary) time r;

n =n;(r) =e /chic;, e, M;(r) = —e peto. „c;,e
SS

a) IL = C g dP, ; (r) d'P, ; (r) (4)

are the position- and "time"-dependent density and
magnetization density operators. The Hubbard Ham-
iltonian may be written

H = Ho+ 4
U. X n;2 —g U(M; p, ~)

I I

where p, ; is an arbitrary unit vector. We use this
form to motivate the expression (1). Finally, the
functional integral is Z)x = C g, , dx; (r) and

where we have indicated certain constants, irrelevant
for our purposes, by C. The form (4) for aP, which
is less convenient and certainly less familiar than one
involving d p, ; (7), is the price paid for this choice of
transformation. It differs from the choice in Paper
IV by the ~ dependence of the unit vectors p, . Clear-

ly, approximate treatments will distinguish between
magnitude fluctuations and angle fluctuations. %e
have argued before that this is physically correct in

the cases of interest, particularly, for iron and nickel.
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We do not wish to dwell here on the effects of
density fluctuations, ~ so we replace x&(r) by its most
important value, x&(r) =i (n), and suppress further
mention of it. A similar replacement of p~(r) by

M, = (M&(r)) gives the Hartree-Fock approximation.
In Paper IV, we neglected the time dependence of

p&(r), to obtain a formulation of the thermodynam-
ics. Here, we wish to account for the time depen-
dence in an approximate way. This is necessary if
quantum effects are to be studied. For example, this
must be done to obtain the T ' law alluded to earlier.

We find in Sec. II that the neighborhood of the

minimizing path gives the free energy conventionally
found from RPA spin waves. This is satisfying as it
has not been previously obtained by functional in-

tegral methods because up to now transverse spin
fluctuations have not been treated properly.

At higher temperatures paths with deviations far
from the uniform field solution are important. In
Sec. III, we make an approximation keeping paths
whose high frequency excursions are small, although
the time-average deviation may be large.

p, ;(r) = (M;(r))„,

where

(M;(r))„=e 'Tr e

&& M;(7)exp 2U J dr XP M

The basic solution of Eq. (6) is

P;(r) =M, (g)

where the effects of x are incorporated into Ho. Our
previous point of view was that the paths which were
of most interest were those minimizing F[p], in oth-
er words, those satisfying

II. SPIN %AVES

We now turn to a study of the expression
and M, is the Stoner magnetization at temperature
T =1/P.

-PHDe-»'~'=exp —U i dr Xp, ' Tr e
0

t'P
x exp 2U I droop, M

We here keep small fluctuations about this solu-
tion, i.e. , we expand S[p] in powers of
p, —M, —= 5 p;(r) This , is ap. propriate well below the
transition temperature. Then we have

pP P
& [p] =$,(T) + $ J~ J d 7 dr' X KIJ e(r —r') 6pP (i ) spy'(r')

eP ij

F,(T) is the Stoner free energy. The kernel K is closely related to the reciprocal of the random-phase approxima-
tion (RPA) susceptibility,

Ke "(r —7') = U[g.egsg(r —r') —2UXse(r —r')] (10)

and

Xe "(r —r') = ((M; (r) Mf'(r'))+) —(M~ ) (MJ&)

is the susceptibility of free electrons (Hamiltonian Ho) in a constant exchange field 2 UM, .
The kernel is diagonalized as usual, by the introduction of the Fourier representation, and the transverse parts

of p, are represented by hp, - = hp, "+i hp, . We also have

dp, "dp, ~=M, HdHd@=M, d p, (12)

valid for small fluctuations.
The result for the longitudinal susceptibility is

d3k f(~k+q, ) ' f(Ek.
(2~)' I'~. —(&k+,, . &k.)—
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Since K" has period P, co„=27rnT. Near q =0, this
formula gives (for v„q « 2m T),

For vkq « 5, r»„« d, , Eq. (16) is approximated by

K"(qic,o„) —U, cu„&0 K' (q, i~„)= (is„+akq)1

S

(17)

K"(q. 0) = U[1 — U(N— +N )]

where N+ is the density of states at the (+) Fermi
surface. Actually, in this case the coupling to the
fluctuations in total density is of some importance. It
is usually taken to be a better approximation to re-
quire the total electron density to be fixed, (although
this is not a consequence of the simple Hubbard
model we are using), In that case, the expressions
for K*'(q, 0) becomes

K"(q 0)=UI —2U +I 1

W+

with eu, =Dq at small q. The contribution of these
terms to the free energy is

(l Qly + Qlq) '

F,„=T X Xln " ' -+const . (18)

This free energy is, up to an irrelevant constant term,
the standard expression for the free-energy contribu-
tion of spin waves,

F,„=(TXln(1 —e ~) (19)

It follows that the magnetization obeys the usual T '
law. Thus, this formulation is capable of giving the
correct low-temperature properties, and is- the first
formulation of the Stratoriovich-Hubbard variety to
do so.

III. NONLINEAR CASE

As the temperature rises, thc magnetization can
fluctuate in direction over substantial angles. The
question arises how to deal with the time dependence
of such fluctuations.

%e here assume that those configurations which
do not deviate too much from their time average, are
of special importance.

We put p, ;(r) = M, i;+5 p;(r) and e, xpanding in

Bp;, we evaluate Eq. (5) as

K+ (q, i&a„) =2U I —U
d3k

f(~k, +) f(Ek+q,). —
X

~ ~n + ~k+q, — ~k, +

(16)
I

Since K" does not vanish or become small, its con-
tribution to the total free energy represents a correla-

tion correction of quantitative interest only. It would

predict large fluctuation effects only near the Stoner
transition temperature.

The configurations of p, such that k vanishes or is

unusually small arc of special importance. These
correspond to low-lying elementary exc!tations and

the system is soft against distortion in that direction.
In this case, it is the long-wavelength low-frequency

~ transverse fluctuations which are soft. In fact, the
transverse static long wave susceptibility' X is just
M/H, i.e. , M, /2UM„which shows that Eq. (10) van-

ishes in this limit.
The transverse responses, K+ and K += (K+ ) '

are given by

P P rP
PF[p] = U J dr $5p, '+pUM, '+2UM, J dr XBp, i+$0[Mv] —2U J dr ggp. ; (M;)

I l I

—2U' Jf ) dr dr' X $5pP(r)Xia(r, r')5pJ'(r').
iJ u, P

(20)

The unit vector 7; is determined by the require-
ment that

, d r [5 iT, ; (7) x v;] =0

The quantity 5 p, ; v; is regarded as small, but does
not have to vanish, on the average.

e again make the assumption of short-range ord-
er, and expand in powers of v; —i&, where ij are
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neighbors. The expression (20) is most easily stu-
died in the spin coordinate system (LRSCS) locally
rotated so that i; is the z direction. The form of the
expression is preserved by this rotation, but the ex-
pectation values (M ) and X " are to be evaluated
with the Hamiltonian

H = Hp —2 UM, M'+ Hi + H2 (21)

where Hi and H2 are given in Paper IV. The single-
particle eigenstates of Eq. (21) with neglect of H~ and
H2 are j'ust those of the Stoner model, E~„.

In Paper IV, we expanded $p to second order in
the small quantity aj,

The result was an effective Heisenberg free energy
in addition to the Stoner free energy. %'e shall ex-
pand (M™)to first order, and X is evaluated to
zeroth order. Thus we have

p,„'= T g [ln(1 —e ') —lnPcu~] (23)

IV. DISCUSSION

The total free energy is thus a sum of four contri-
butions. The first is the Stoner free energy, i.e., the
free energy of a system of noninteracting metallic
electrons. A contribution of this type is certainly
needed on experimental grounds. The second is
from the longitudinal (and density) fluctuations.
This is a correlation correction of a familiar type.
The third is from the effective Heisenberg Hamilton-
ian, i.e., from the static magnetization deviations.
This contribution was the subject of Paper IV. At
low temperatures this contribution just cancels the
second term in Eq. (23), but at high temperatures
the nonlinear effects are important. The phase tran-
sition is dominated by this term. Finally, there is a
"finite frequency" spin-wave contribution.

(M,') = S,M, + m;

In the LRSCS, m; is purely transverse, to the ord-
er calculated, and independent of time.

Thus, to the order calculated, the fluctuations in
the magnitude of the order parameter remain uncou-.
pled from the transverse and their contribution is ex-
actly that given earlier. The temperature, in other
words, enters only through the Fermi factors appear-
ing in Eq. (13), and this dependence is weak for T
less than the Stoner temperature.

The transverse fluctuatioris may be diagonalized as
before, and since their time average vanishes, the
zero frequency term is eliminated. The term in m&

does not contribute because of this. The contribution
to the free energy is just the spin-wave contribution,
Eq. (18), less the zero frequency term; i.e.,

To this order, there is no coupling between the
various contributions. It is straightforward, though
tedious, to extend the calculation somewhat to in-
clude some such coupling. One may calculate, for
example, XJ~ of Eq. (20) treating the terms H~, and
H2, in the Hamiltonian of Eq. (21) as a perturbation.
This will introduce terms coupling Sp, ' and Sp,"~. The
effect on K, (ru„) will be most prominent at small q,
which, according to Eq. (23), is not too important
anyway.

There is also a coupling we have neglected between
the finite frequency and static transverse fluctuations.
This comes from the linearization of the d2p, . We
have in essence assumed that the time average of
p, ;(r) is a unit vector, v;. This time average will be
approximately a unit vector if

~ i; & p. ;~' is smali on
the average. The smallness of this quantity is the
basis of our approximation, ho~ever.

One can of course, a posteriori, estimate
(~gp. ;(r) ~2), to be approximately

Using Eq. (16) we see that there is an ultraviolet
divergence, since K becomes constant for large n.
This divergence means that the paths are varying
with infinite amplitude at infinite frequency. Such
paths are incorrectly treated by Gaussian expansion,
and it must be imagined that a renormalization has
been carried out in which such paths have been in-
tegrated out in favor of a renormalized Hamiltonian.

As usual with approximations involving the time
dependence in the functional-integral formulation,
the degree of validity of the scheme is difficult to as-
sess. %e feel that the most important error is the
neglect of the coupling between the static and dynam-
ic spin fluctuations at short-wave lengths, which will
appear as a stiffening of the effective HeiSenberg ex-
change against short-wave length fluctuations. In
other words, we have not yet succeeded in making an
approximation which would be the equivalent of the
quantum replacement of S~ by S(S +1). This error
has little or no qualitative importance but may have
significance in determining the Curie temperature
and constant numerically.

We finally remark on the role of dynamic equa-
tions of motion. In the functional integral formula-
tions of field theory, the integrand is

exp( —i Jl L d x) and the stationary condition is just
the condition that the field equations are obeyed.
Equation (6) here does not look like an equation of
motion. However, if one removes its static part, say
by taking a time derivative, it may be shown that a
dynamic equation results. This- equation in the long-
wave length limit is just the Landau-Lifshitz equa-
tion, as we shall show elsewhere. 'p

Minimization of Eq. (9) (for transverse fluctua-
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tions) gives Kgp. =0; Eq. (17) shows this is just the
linearized Landau-Lifshitz equation, the static part
p, = M, e, having been removed. Minimization of Eq.
(20) gives a Landau-Lifshitz equation, linearized
about a typical static fluctuation. This technique has
been exploited in the third paper of this series, 5 and
elsewhere. "

It would be of interest to cast the functional in-

tegral in a form which displayed more clearly the role
of the nonlinear Landau. -Lifshitz equation. and then

to discuss the statistical mechanics in terms of solu-
tions to it. In one dimension at least, the Landau-
Lifshitz equations can be completely integrated, "and
there is a possibility of discussing its statistical
mechanics as the statistical mechanics of solitons.
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