
PHYSICAL REVIEW B VOLUME 19, NUMBER 9 1 MAY 1979

Local-band theory of itinerant ferromagnetism. IV. Equivalent Heisenberg model
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The main results of the picture of itinerant ferromagnetism previously presented are obtained

by the functional-integral method of Stratonovitch and Hubbard. A new form of this technique

is introduced which is spin rotationally invariant in all approximations and which respects the

Pauli principle. By a generalization of the saddle-point method, the itinerant-electron thermo-

dynarnics is transformed to that of a classical Heisenberg model with Ruderman-Kittel exchange.

I. INTRODUCTION

A new picture of itinerant-electron ferromagne-
tism, which is particularly apt for the nonweak mag-
nets, iron, nickel, and cobalt, has been recently intro-
duced. ' ' This "local band" picture is based on the
concept of short-range magnetic order (SRMO). The
idea is that the crucial magnetic fluctuations, those
responsible for the phase transition, are fluctuations
in the direction of the local magnetization. It is
further argued that this direction changes in space
(and time) slowly enough that locally and momen-
tarily, the state of the system is rather like that of the
ground state.

In this paper, we present a formal development of
these ideas using the Hubbard-Stratonovich
functional-integral procedure' and the one-band
short-range exchange model (Hubbard model).

One purpose of this paper is to give comfort to
those readers who consider the functional-integral
methods to be first principled and microscopic in con-
trast to the semiphenomenological methods used ear-
lier. Indeed, the method is free of some of the ambi-
guities of the previous approach, and does confirm
that the microscopic parameters enter the problem in
the way earlier found. This is, of course, not the
first attempt to solve the problem of itinerant fer-
romagnetism by the functional-integral method. '

The method is a transformation from one set of
variables, the single-particle variables, to another, the
fluctuating-magnetization variables. The result for
the partition function is a functional integral over the
magnetization field variables, which can be interpret-
ed as the partition function of a classical spin system,
i,e., of a classical Heisenberg model.

The only functional integrals which can be exactly
evaluated are of Gaussian form. In consequence,
most previous studies of this-problem" ' have relied
on approximation schemes which replace the correct
integrand by an approximate one of Gaussian form.
%e are quite confident, however, that the key to the

problem of itinerant-electron ferromagnetism does
not lie under the Gaussian street lamp and are
resigned to searching in mathematically murkier
areas. In compensation it turns out that the physics
of the situation becomes remarkably clear.

%e adopt the point of view taken by Feynman, '5

Hubbard and others, ' which is to seek the class of
"paths", i.e, , field configurations, which maximize the
integrand. This "saddle-point" approximation is
known to yield a mean-field theory. Small fluctua-
tions about it give the corresponding random-phase
approximation (RPA).

There are also many other field configurations, typ-
ically varying violently and discontinuously in space
and time, which make a contribution. The number
of such paths is so large that their net contribution is
finite, even though individually such paths are of no
importance.

The aim of our approach is to provide a formula-
tion in which the neighborhood of the saddle-point
paths dominates the physical description of the prob-
lem. The remaining paths then contribute a renor-
malization of the saddle-point result.

It is not obvious that this program can work.
Indeed, in the formulations heretofore used, it is
quite apparent that the saddle-point paths are an in-

sufficient starting point. However, we have devised a
formulation which is at least free of the known
diseases'7 "which have afflicted the. others. The
success of Fermi-liquid phenomonology gives hope
that the program is a feasible one.

Our main result is an expression for the partition
function which in spite of its apparent intractability
has several appealing features. It is the partition
function of a classical spin system which has interac-
tions between nearest-neighbor pairs of spins, i.e.,
among a total of four spins. The self-interaction of a

pair is ferromagnetic, while the interaction between
different pairs tends to be antiferromagnetic. The
net result is on average ferromagnetic. This provides
a mechanism by which SRMO can exist above the
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transition temperature Tc. The temperature at which
SRMO disappears is given by the nearest-neighbor
interaction. T~, on the other hand, is giveh in

mean-field theory (which is an overestimate especial-

ly in this case) by the average interaction. In fact,
further approximation reduces the result to a classical
Heisenberg model with Ruderman-Kittel-Kasaya-
Yosida (RKKY) interaction in ferromagnetic bands.
In lowest approximation this model gives quite rea-
sonable results for the transition temperature and
susceptibility of iron and nickel,

In Sec. II we formulate the theory. : This is fol-
lowed by a description of the approximation scheme
and the results. In this paper, we consider only the
first nontrivial approximation (which is a static ap-
proximation); We shall deal with dynamic and quan-
tum effects later. We shall remark on the technical
problems of this method elsewhere.

II. FUNCTIONAL-INTEGRAL FORMULATION

The Hubbard-Stratonovitch transformation relies
on the identity

2ea ~—1/2

J dx e
—x +2ax

To utilize this formula, one must rewrite the interac-

tion term in the Hamiltonian as a sum of squares.
That this can be done in an infinite number of ways

is the source of many difficulties.
Our point of view is that a useful expression must

be one in which the important paths in function

space are those in some sense near the saddle-point

path. Thus, the effects of spin waves and spin fluc-

tuations have to be included in this class of paths.
For this to be the case, it is essential that this class of
paths maintains spin rotational invariance,

Another requirement, considered to be essential, "
but as a rule ignored in work on ferromagnetism, is

that the approximations used must respect the Pauli

principle. In fact, heretofore no approximation
scheme has been employed which satisfies both of
these criteria. '

We illustrate our approach for the case of the one
band Hubbard model, with Hamiltonian

H=g T&c;tcj„+U Xn;+n,

Hp+Ugn+n;—

The simplest method previously employed which
does not do violence to the Pauli principle is the so-
called two-field method, in which the interaction
term is written,

n;+n; = ,
'

(—n;)'—(Mf)',

where

'w.t-,' ai
2 ~ iS ~SS' iS-' ~

$$

o- being the Pauli matrices, and n; =n;++n; . Two
fields are introduced, one for n;, one for M, ,
corresponding to density and magnetization density
fluctuations, respectively. If corresponding approxi-
mations are made on the two fields, the Pauli princj-
ple is preserved. '

However, magnetization fluctuations which
correspond physically to long-wavelength deviations
of spin direction are not readily described by the two
fields. To achieve a more convenient description,
(M )' must be replaced by a squared operator which
is rotationally invariant. Usually' ' this is done
by the identity (Mf)'= —,M; M;, followed by the in-

troduction of a vector magnetization fluctuation field.
Unfortunately, approximations again violate the Pauli
principle. This can be checked by noting that the
saddle-point method does not give the lowest order
in U correctly.

To avoid these problems, we use the identity (valid
for spin 2)

1

(M')'= (M, p, ,)',

where p, ; is an arbitrary unit vector. The two-field
method is then employed and the directions of p, ; are
averaged over to restore rotational invariance. A

more detailed analysis of this method will be present-
ed elsewhere. We note here that the saddle-point ap-
proximation yields the standard Hartree-Fock, and
Gaussian fluctuations about that solution gives the
RPA corrections to the Hartree-Fock, including the
standard spin-wave results. These approximations
are known to be consistent with the Pauli principle
and; after Fermi-liquid renormalizations, are believed
to be numerically quite good at low temperaure.

' The expression for the partition function, using
this procedure, is

f I' i; 2 —PHp
Z =Tre ~ = Jt X)xX)pexp —U Jl dr $(4x'+ p, ) Tre exp &l dr $(2 UMp, +i Uxn)—

I i
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THp THp
x, p, , M, n are functions of i, r. The "time" dependence is given by M, (r) = e M, e . The functional in-

tegrals are defined by

(2)

with C a constant, irrelevant for our purposes. The time ordering, symbolized by ( )+ has been introduced for
the usual reasons. The price paid for the proper treatment of the Pauli principle is Eq. (3) which defines a func-
tional integral of a somewhat inconvenient and unfamiliar form. It is equally exact, and more conducive to ap-
proximations which take into account dynamic and quantum effects to average p, ; over directions independently
for each ~, but in this paper we shall be concerned with the static approximation, which already gives the major
results.

The saddle-point paths are the ones which minimize

pPf ( p„x) =—7'
J d r $ ( 4

Ux'+ U p, ) + 5p,
I

where

(4)

-pe . 1
pp= —TlnTre P exp J dr $(2UM p, +i Unx)—Jp 2 (5)

The paths satisfy

x;(r) =i (nj(r))„„,

p, (r) = (M,i(r))„„,
where for arbitrary operators OJ(r) we define

(6)

(7)

(OJ(r))„„=e Tre P O&exp I dr X(2UM p +i Unx)—

Since we are interested in ferromagnetism, we as-
sume that the parameters are su'ch that ferromagnetic
solutions of Eqs. (6) and (7) are the most stable.
Then

x;(r) =i n,

p, , (r) =M, e,

are the saddle-point paths, constant in space and
time, and F(M, e„ i n ) is preciseiy the Stoner free
energy, M, is the Stoner magnetization at tempera-
ture T = P ', and n is the density.

III. FLUCTUATIONS

We have thus found that the best single path al-

ready gives the Stoner approximation; a satisfying
result since it has long been apparent that the band
theory is on the right track (at any rate for low tem-
peratures). At higher temperatures, the Stoner
theory fails. From the vantage point of the

functional-integral formulation that simply means
that paths exhibiting significant global deviation from
the path of Eqs. (6) and (7) become important. In
principle there is a competition: Is the system stiffer
against temperature effects on the dominant path or
against temperature effects inducing fluctuations
away from the dominant path~ In practice, a fer-
romagnet with spin rotational symmetry is intrinsical-
ly weak against fluctuations in the directicn of the
magnetization. In fact, it is clear that any path with

~ p, ;(r) ~
=M„and which is slowly varying in i and r,

will give a free energy F close to the minimum, and
therefore will contribute heavily to the functional in-

tegral.
Our approximation consists in keeping just such

paths. To the extent that such slowly varying field
configurations dominate the integral, there will be a
form of short-range magnetic order (SRMO). We
have argued previously that there is considerable ex-
perimental evidence in favor of the existence of
SRMO, even to temperatures well above T~. ' We
shall also see that the present formulation provides a
way to study the reasons for its existence.
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The next step is to evaluate the expression (5) for
the paths slowly varying in direction;

l p, , (r) l

= M„
x&(r) =in,

l p, ; —
p&l small (ij neighbors). Fluctua-

tions in the magnitude p;(r), and x, (r) can be rea-
sonably handled by a Gaussian expansion, and give
RPA correlation corrections to the free energy.
These contributions will be discussed else~here, but
they do not significantly affect the phase transition,
except possibly in the case of truly weak itinerant
electron ferromagnetism.

The free energy, may be evaluated by the technique
introduced in Ref 3, of utilizing a locally rotated spin
coordinate system (LRSCS). The transformation to
this system is of course canonical. The expression
for Fo, Eq. (5), becomes, in the LRSCS,

Hamiltonian are

HI =—
/ ~ Tk/% Cks~ ''~/s'&k/ + Cks'~ss'~/ ''&k/

Ic, /

f z,
Cks ~ss'Cls'gkl)

+2 $ Tkldklcks cls
kl, s

The central quantity ak/ is

I ~ . I . I k/aki = ( sin
z stskl sin Hkl

—i cos , stsk—l sin , Hkl) e—

1 —ib
T(saki Sill Hki l 8 )e

(12)

(14)

with

qo = —Tln Tre & (10)

Here the direction p, / is labelled by polar angles 8/, g/,
and b; is the (arbitrary) third Euler angle necessary to
specify the local coordinate system. Also,

I
H,i =8; —8, , etc. , 8„"= —,(8;+8,). The other quanti-

ties are-

& = f/0+ U $ n e;t c; + Ht + H2 .
i, o'

I I I
gkl stn

2 bkl cos
2 bkl cos

2 Hki

I+cos
2 ~k/ sin —

@k/ cos gk/

The terms perturbing the Hartree-Fock single-particle
I=
2 (bki+sbkicos Hki)

and

I I I ~ I . I , 1

d„i =cos
z b„icos 2 saki cos , Hki

—sin
2

bki—sin t saki cos Hki
—1 = —', (bki+ saki+ 8—k) +2stsklbkicos Hki)

It is straightforward to evaluate the contributions
of HI and H2 in perturbation theory. The result, to
second order, is

and

I
+s 2 Q ski Tklfkl.

k/

+Stoner + ~1 (17) I
gkl grs Tkl Trs fks rrrlrr, .

klrs, o.
(20)

where ' Here we have

SI ——$'~+ S, , (1g) (21)

with

+kl il Tkl T fk, ; I — ~J. ++k.
klrs o.

(19) „f(Fq „) f(Fs.)—.

Eq „—Ep„
(22)
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IV. FUNCTIONAL INTEGRATION

Functional integrals of the type here encountered,

Z., e stoner l d2 e 1
—p~F —P

JtL I' (23)

The quantities f(E) are the Fermi factors, E» the
single-electron eigenenergies of Ho, and N is the total
numbe'r of sites.

It remains to perform the functional integral over
directions of the field p, ;.

As expected, .the one electron per site, large-U lim-

it, is unstable to the ferromagnetic solution, and
favors a staggered, antiferromagnetic field configura-
tion.

In the itinerant case, fq~ has a range determined by
the Fermi-surface structure, i.e., typically short, but
extending certainly to nearest rieighbors. If fer-
romagnetism is stable, i.e., if A & 0, then W&' will be
positive, as can be seen from Eq. (24), and suffi-
ciently so to more than compensate for the essentially
negative contribution of 5&".

have been studied in relation to the classical Heisen-
berg model. In our previous work, ' we arrived at an
expression of this form in which the long-wavelength
limit of the expression for $~ appeared. The limit is
obtained here by the replacement a&~=a (r& —r~),
where a is the continuous limit form, used in Ref. 3,
1.e.,

a= , e '~—(sin 8 VQ —i'78) .

V. HEISENBERG MODEL

f

Aside from the static approximation, the main sim-
plification we have so far made is that lp, ; —p,, l (( I
when i,j are neighbors. If we are ~illing to use the
approximation that all four p, ; appearing in a typical
term in Eq. (19) are nearly in the same direction,
further significant simplifications can be made. In
this case we have

In this limit the terms in g cancel, and Fj is &a( ~rs =
» (Pk w) ' (Pr Ps) . (26)

with

t A ('7M)'d3x,
It is thus apparent that, with the continued neglect of
„+& is of the form

f(&a„).1 1

k, rj.

gjwPs ' Pt
kI

(27)

(24)

%e have introduced the exchange splitting 5 =2M, U.

This is just the standard expression for the Bloch wall
stiffness in the RPA. 2' The first term in Eq; (24) is
$&', the second is g~".

The renormalization-group study of integrals of the
form (23) shows that the short-wavelength cutoff is
of numerical importance. In Ref. 3, it was assumed
that this cutoff was the zone-boundary wave vector,
and at first sight that appears to be plausible here.
The explicit expression for ~ provides a basis for
numerical study of this question.

%e next study the instructive case of one electron
per atom, for very large h. This is expected to
describe a localized magnet. Then fq~ = gq~ and the
first, positive, term W&' vanishes. It also follows that

The above expression is of interest only for k W l.

Many simplifications are possible in the second term
of Eq. (19) because Eq. (26) can be broken up into
terms depending on only two subscripts at a time.
There results

Jk~ —— kl

4 N „Ep+~ „—Ep,„
(28)

L(q) = $ J~((l —e "')
l

This expression is just of the familiar Ruderman-
Kittel type. It is to be emphasized, however, that the
bands involved are ferromagnetic and that the usual
oscillations of wave number q = 2k' are replaced by

ones which span Fermi surfaces of opposite spin. It
thus differs from the interaction advocated by
Stearns.

The Fourier transform of Jk~ is of interest. In par-
ticular

so that, in this limit

k(
(25)

1s

(29)

The terms in g again vanish. As discussed in Ref. 3,
they can only be important at short wavelength and
we continue to neglect them here.

At small q,

L (q) —( V/W) Aq2, (30)
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where A is given by Eq. (24). Thus the long-
wavelength limit of this Heisenberg model reduces
appropriately to the continuum limit. The mean-field
value of the Curie temperature T~ is given by-

kTmf g L (q)
2 1

3 N
(3 I)

The Green's function scheme" gives
r

I Tor=
3 W ~ L(q)

(32)

If L (q) is replaced by the estimate (30) throughout
the entire Brillouin zone, and this is estimated by a
sphere, Eq. (32) yields

kTGf- 4
C

3 G
' (33)

where 6 is the Brillouin-zone radius. This is a factor
—,m greater than the estimate obtained in Ref. 3, and

yields estimates of Tc, 35% too high for iron and
cobalt, 10% too high for nickel.

The susceptibility may be calculated in the mean-
field theory and gives (for T ) Tc)

x= ,
'

M,'/(T —T—c) . (34)

This estimate of the Curie constant
3 M, is consider-

ably smaller than that found by experiment for iron
and nickel. However, two effects have been left out.
The first is the quantum effect, which is neglected in
the static approximation, and which will go in the
direction of replacing M2 by M, (M, +I). The second
is the effect of short-range order, which should also
increase the Curie constant, but decrease the quan-
tum effect.

The calculation of the susceptibility is along the
usual lines. It should be shown, however, that the
magnetic field enters in the ordinary way.

To see this, one may note that an external field H,
changes Fo, to first order in H, by an additional term,

J dr (M; (r) )„„Hwhich is approximately PM p. , H.
Corrections to this are of order al,I, and give a correc-
tion to the Curie constant of second order.

We mention for the sake of comparison some
results of Moriya and Takahashi, '4 using the Gaus-
sian method designated earlier. They obtain for Tc
an expression

T = rt —QL(q)—2 1

3 N

3where q is a parameter between —, and one, and

f. (q) =2(—U)2M2(XO —X,). The quantity X, is to be

chosen phenomenologically and is a paramagnetic,
noninteracting, susceptibility. (Their U' is our U.)

In order that L (q) = L (q), one must choose

x, = —,
'

(—',)' Xf(E,„)/(E„, E-,.)
p& rj

= —'(—')'x'
2 2

where X~+ is the susceptibility of free electrons in an
exchange field strong enough to give the splitting h.
The factor (2 )2 is a result of their choice of a Strato-
novich transformation which does not respect the
Pauli principle in low approximation. The factor 2
may be related to the fact that their X, represents a
longitudinal, paramagnetic susceptibility, not the
transverse, ferromagnetic susceptibility of our formula.

For the Curie constant, they obtain 3' qM,', close
to our result.

VI. DISCUSSION

It has been the goal of theorists for many years to
relate the thermodynamics of itinerant magnets to
that of a Heisenberg model. A Heisenberg model
can indeed come close to fitting the "magnetic part"
of the thermodynamic data. To do this, it is known
that the effective exchange must be of long range
and oscillatory in sign, as is the RKKY.

Earlier studies using the functional-integral method
include those of Cyrot" and of Evanson, Wang, and
Schrieffer. ' The spirit of these approaches was rath-
er different than ours, (and in addition spin rotation-
al invariance was lost at an early stage). They con-
centrated on special configurations in which the field
p, &

was nonvanishing only at one or two sites. Their
approach thus sought to build up the magnet as a col-
lection of local moments of the Friedel-Anderson
variety.

Great difficulties have been encountered in previ-
ous efforts which sought an appropriate transforma-
tion at the operator level. Herring" has reviewed
and criticized some of these efforts.

The result which comes closest to ours is that of
Capellman. ' By a Hartree-Pock method he obtained
an energy precisely equal to our Eq. (27), with the
exception that the Fermi functions in Eq. (28) were
taken at zero temperature and p, ; was replaced by
(M;)/M, [as is true if Eq. (26) holdsl. The meaning
of the result was unclear, however, and Capellman
replaced (M;) by a spin operator S;, a step both un-
justified and unjustifiable, since 2M, is not integral.
This illustrates the central difficulty in the program of
finding an effective Heisenberg Hamiltonian at the
operator level.

As a matter of principle, the density fluctuations hx
and 5~ p, ~ may always be integrated out of Eq. (I) to
yield an expression for Z of the form (23). Thus a
classical Heisenberg-like free energy can always be
found. The question is whether the approximation
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we have made of ignoring the coupling between the
density and the orientation fluctuations is adequate as
a first approximation. In a similar way, dynamical ef-
fects corresponding to having spin operators will be
sought here as corrections to the static approxima-
tion. These corrections will be discussed in a subse-
quent paper. Thus, this approach renounces the at-
tempt to express the itinerant-electron Hamiltonian
as a Heisenberg Hamiltonian. in favor of the less am-
bitious plan of expressing the free energy as arising
from a classical Heisenberg Hamiltonian with correc-
tions for density and dynamic fluctuations.

Before the above results can be seriously compared
with experiment a number of additional problems
must be resolved.

First, one must generalize the procedure to a more
realistic Hamiltonian, say that of the combined inter-
polation scheme. Such a choice assumes that Fermi
liquid and other correlation corrections can be ac-
counted for by the effective parameters of the Hamil-
tonian.

Corrections to the short-range-order approximation
must also- be investigated. Actually, the smallness of
~y, ;

—
p~~ is a sufficient, not a necessary criterion.

%hat is necessary is that the perturbation treatmerit
of Ht and H2 be adequate. %e have estimated this
to be the case, at least for nickel. In making the re-
placement of Eq. (26), however, the small angle ap-

proximation has been used, even for further than
nearest neighbors. Since we found in Ref. 3, that a
typical angle between nearest-neighbor p, ; vectors is
45', at and above T~ in Fe and Ni, this will be a
source of error.

There is finally the question of the prediction of
short-range magnetic order. This question hinges on
the spatial structure of the function f~„,,i „. Rough-
ly speaking, the situation is promising in that F&' is of
the shortest possible range and is ferromagnetic,
whereas F&" is of longer range and is antiferromag-
netic. Thus ~akl~ is inhibited from becoming too
large, while there is a correlation between nearby
pairs which favors an accumulation of spin deviations
on a larger scale. The details of this depend on the
band structure, and may well be more sensitive to the
approximations previously mentioned than the esti-
mate of the Curie temperature.

In spite of these questions, it is satisfying that this
crude first treatment is in order-of-magnitude agree-
ment with experiment and that the expected correc-
tions go in the right direction.
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