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Anomalous spin-flip scattering rate near the magnetic-ordering temperature
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The spin-flip scattering rate of an electron, in a material which does exhibit long-ranged mag-

netic ordering, is calculated for temperatures close to the magnetic-ordering temperature T~.
The spin-flip scattering rate I/r, does have a critical temperature dependence and may be deter-

mined experimentally by its effects on superconducting materials.

I. INTRODUCTION

%e consider the scattering of the conduction elec-
trons by the thermal fluctuations of the localized
magnetic moments, in a material which does exhibit
long-ranged, magnetic ordering. As the temperature
is reduced towards the magnetic-ordering tempera-
ture, the correlation function for the localized mag-
netic moments shows a critical temperature depen-
dence. The magnetic correlation function deter-
mines the rate at which the conduction electrons un-

dergo spin-flip transitions and provides the spin-flip
transition rate with an anomalous temperature depen-
dence.

Previous authors, Ora Entin-Wohlman et aI. ,
' con-

sidered the spin-flip transition rate for ferromagnets,
and we shall generalize the calculation to cover ail the
cases of long-ranged magnetic ordering, such as anti-
ferromagnetic or helical ordering. The model used
(that of P. G. de Gennes and J. Friedel') consists of
an s for s-d exchan-ge Hamiltonian, to model the in-

teractions between the conduction electrons and the
localized magnetic moments, together with a Heisen-
berg exchange interaction between the localized mag-
netic moments. The calculation of the spin-flip tran-
sition rate of the conduction electrons is based on the
Fermi golden-r'ule expression. This involves the
correlation function for the localized magnetic mo-
ments. Near the magnetic-ordering temperature the
magnetic-moment correlation function is sharply
peaked for scattering wave vectors near the
magnetic-reciprocal-lattice wave vectors Q. However,
the correlation function is weighted, not only by the
usual phase-space density, but also by a factor which
favors scattering through smail wave vectors. The
competition between the weighting and the correla-
tion function for the localized magnetic moments
produces a temperature dependence of the spin-flip
transition rate that is sensitive to the type of magnet-
ic ordering. This is to be contrasted with the
anomalous resistivity at magnetic critical points,

which always has the critical temperature dependence
associated with the internal energy per spin, ""

II. THE MODEL

The ~odel is essentially the same as that of Ref. 2.
The Hamiltonian is comprised of three terms.

H =H, +Hd+H, d,

where the components are as follows:
(i) The Hamiltonian for the conduction electrons

H„where

H, = g F.-„„a-,"„a,„,
q, rr

and a t„, a-, respectively create and destroy a con-
duction electron in the conduction band state that is
characterized by a Bloch wave vector q and spin o-.

(ii) The Hamiltonian for the localized magnetic
moments Hd, where

1
Hd =— J-S- S—

g k k —k

k

and S-k is the Fourier transform of the localized mag-

netic moments, and J-„is the Heisenberg exchange-
interaction parameter.

(iii) The Hamiltonian which determines the in-

teraction between the conduction electrons and the
localized magnetic moments of H,q, where

+d $ Iq —
q 'i(~q 't~q t ~q 'J~q J)

~ 5„—+a la—)5—

+'q' t'-qt q--«

and Iq q

' is the de Gennes —Friedel interaction
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strength, which is a smooth function of the scattering
wave vector.

g-„(t) is the time-dependent correlation function for
the localized magnetic moments

III. SPIN-FLIP TRANSITION RATE
g-(r) = (S-(r) S -„) —(S-) (S -) (6)

The transition probability per unit time for a
conduction-electron spin to flip is calculated from the
Fermi golden-rule expression

, g ~1-„~'f(&-„)[I —f(&-„,—,)1
S k q

x „i dh exp[i/h(E-, E-„,—,
—) tlg-„(r) .

where f (x) is the Fermi distribution function and

Below the magnetic-ordering temperature, we do not
believe that this formula will be accurate, but in Sec.
IV we shall compare the results with that obtained by
a calculation which is of higher order in ~I

~
. The

functional form of the temperature dependence is
shown to be unaltered in this approximation. As-
suming a free electron band for the conduction elec-
trons, and that the derivative of the Fermi function is

large in a width of kqTM around the Fermi-level p,

and zero elsewhere, we may rewrite the spin-flip
transition rate as the power series

, —g~l-„~
'

g-„(r )[ksTM —g~f(p, )+ . ],1 vF m2 1 2 1," d~
~ g~w-„

2k~

$ ~l-(' g (r =0)-1 ~r m ka ~M 2 1
(g)

where gk (cu) is the Fourier transform of g-„(t).
The first term gives the contribution of the quasi-

elastic scattering processes to the spin-flip transition
rate, awhile the other terms represent the contribu-
tions from the inelastic scattering processes. In Sec.
V, we shall argue that this series expansion is rapidly
convergent so that, to a good approximation, the
spin-flip scattering rate is given by the first term. In
this case, when the limits on the eo integration are
taken to be +~,—~, then the spin-flip transition rate
is given by the weighted instantaneous correlation
function for the localized magnetic moments, i.e.,

part of the temperature derivative of the spin-flip
transition rate is given by

d 1 1 d

D-'(x) =C-'(1+x'-X,x'-" )

for values of x && 1, and

D '(x) = C 'x2 n(0.962 2x(~ &l . . .)—(10)

where g = (qAT ' is the coherence length, and in the
vicinity of Q; the scaling function D (x) is given by

IV. TEMPERATURE DEPENDENCE OF 1/v, ABOVE

THE MAGNETIC-. ORDERING TEMPERATURE

As the temperature T is reduced towards the
magnetic-ordering temperature T~, the correlation
function for the localized magnetic moments will

start to diverge at wave vectors associated with the
magnetic-reciprocal-lattice wave vectors Q;. For the
antiferromagnetic, the Q, will lie on the Brillouin-
zone boundary, awhile for the ferromagnetic we have

Q =0. If there are z points Q;, we shall divide the
Brillouin zone into a set of z nonoverlapping regions,
in each of which there is only one magnetic-
reciprocal-lattice wave vector Q;. The magnetic-
moment correlation function in the vicinity of Q, is

expressed in terms of the scaling function of M. E.
Fisher and A. Aharony. ~ In this manner we have as-
sociated the fluctuations at each point in the Brillouin
zone with the nearest Q;. The dominant, quasielastic

for values of x &) 1. The critical exponents y, v, q,
and o are defined as usual. ' It can be seen that the
temperature derivative of the magnetic correlation
function dg-„(r =0)/dt becomes negative in the re-

gions with wave vectors
~

k —Q;~ ( $0'AT", the in-
verse correlation length. For wave vectors
~

k —Q;~ ( $0 'b, T' the correlation function becomes
positive and goes through a maximum (Fig. 1).
Above T~, the correlation function satisfies the sum
rule'

X—[g-„(r =0)[=0, T ) TM,
d

—dr
k

where the summation is over the entire Brillouin
zone. Most of the cancellation of the negative region
by the positive region occurs in a volume, with a ra-
dius of order $0 '/t T', around Q;. The temperature
derivative of the spin-flip transition rate gives a larger
weighting to the fluctuations of small wave vectors by
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g~ t=O)

T)TM

F16. 1. Temperature derivative ot the zero-time
magnetic-moment correlation, f'or scattering wave vectors
along Q;, the magnetic-reciprocal-lattice wave vector, the
temperature being greater than the magnetic ordering tem-
perature TM,

FIG. 2. Section of the Brillouin zone of an antiferromag-
net in which. Q; and Q& are magnetic-reciprocal-lattice wave

vectors. After Ref. .6.

d 1 1 d
dT r, '~k (k( dT

(12)

Thus the temperature variation of 1/r. , is dependent
on the positions of the magnetic-reciprocal-lattice

a factor of
~
k

~

', as compared to the above sum rule, wave vectors Q and on the Fermi cutoff on the
scattering wave vector 2kF. In each of the z regions,
defined by. the magnetic-reciprocal-lattice wave vec-
tors Q, , we shall change the variable from k to

q =k —Q;. Then for large enough Q, we may express
the temperature derivative of the spin-flip transition
rate as a power series

d 1
c AT 'r $2rr q dq ~ dcosH QP„(cos8)(q/Q)" —yD(q) —~T D(q)„1 d

dT ~, dT
t

where P„(x) are the Legendre polynomials. The range of integration is restricted by the conditions

I q+Q;I & 2kF ~ I q+Q —
QJI &

I q I,

together with the constraint that q+Q, should lie within the first Brillouin zone (Fig. 2).
We shall first consider the case of the proper antiferromagnet, in which Q; lies on the Brillouin-zone boundary.

The angular integration can be performed over the range I & cos0 & 0, giving

dT
r«. AT ~ 'g —

i q2dq X P„'(0)(q/Q)" yD(q) —AT D(q)
dT

(14)

where P„(x) are the associated Legendre polynomials. We may rewrite this expression

I (—') I'[—'(2+ n) J.-~T-~-~ '"
)& 2dq I+ g

s Q « =i ,
'

[n (n +I)]I—[—,
' (1+n) j

sin
2

(7m)

«r Q,
yD(q) ~T D(q),

dT

(15)

where I (x) is the Euler y function. Above the Neet
temperature T~, the first term is simply the average
of the temperature derivative of the moment correla-
tion function. The higher-order terms give a larger
weighting to the region in which the magnetic-

moment correlation function has a positive derivative
than the region in which the temperature derivative
is negative. For the metallic antiferromagnet,
which has 2kF & Q, the first term is zero, due to the
sum rule. The higher-order terms when integrated
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over q, give the temperature dependence of the
spin-flip transition rate to be an increasing function
of temperature. The exponent being that associated
with the large q behavior of the magnetic correlation
function'

d 1 ac+AT, T ) Tg .
dT 7.

In the antiferromagnet with a small Fermi wave vec-
tor 2kF ( Q the semiconducting antiferromagnet, the
range of integration is that of only large q. Again,
d(1/r, )/dT is dominated by the asymptotic behavior

of the large q correlation function, and again we have

d 1 ~+AT, T) Tg.
s

r

For the cases in which Q is still large, but lies within
the Brillouin-zone boundary, such as a helical mag-
net, we have a different behavior for the spin-flip
transition rate. The metallic helical magnet 2kF ) Q
has the critical region well inside the limits of integra-
tion. In this case, there is an approximate spherical
symmetry around Q;. The angular integration can be
performed over the whole range of 0, 1 ) cos0 )—1.
This results in the temperature derivative of 1/r, to
be given by

r

d 1 )
t'

2 1 d
cx —hT ~ $27r Jl q dq —yD(q) —

/rr, T D(q)
dT T. dT

(16)

From the sum rule on the magnetic correlation func-
tion we see that for the metallic helical magnet, with
a Fermi cutoff larger than the reciprocal-lattice vec-
tor, gives

spin-flip scattering rate is thus dominated by the
negative peak in the temperature derivative of the
magnetic correlation function. The radial integrative
gives, in agreement with Ref. 1,

d 1

T 7s

r

d 1
tx —Q T'")v —1

dT 7
T) T, ,

However, as the geometry is not perfectly spherically
symmetric, the leading will exhibit a AT " depen-
dence. The semiconducting helical magnet is similar
to the case of the semiconducting antiferromagnet.
The behavior of the spin-flip transition rate is deter-
mined by the large q part of the magnetic-moment
correlation function, and gives

d 1
&&+AT "

dT T
t r

For materials which have small magnetic-reciprocal-
lattice wave ~ectors Q, one is no longer justified in

using the expansion

(q/Q)", q/Q &1,
I Q+ql ~ Q

(17a)

but for large q one should use the complementary ex-
pansion

I Q+q I

(17b)

For Q near the center of the Brillouin zone with

2kF & Q, then the integration is spherically sym-
metric. As Q —0, the expression for d(1/r, )/dT be-

comes that of the ferromagnet as calculated in Ref. 1.
In this case, the scattering wave vector k and q coin-
cide. The factor 1/q favors spin-flip transitions that
occur at small wave vectors, as compared to the
phase-space average of the magnetic-moment correla-
tion function. The temperature derivative of the

where we have used the scaling law vq =2v —y.
Thus for a ferromagnet d(1/r, )/dT is an increasing
function of T.

V. INELASTIC SCATTERING

The phase space which is available for the elastic
scattering processes limits the energy transfer ~ to be
less than AT~. The dynamical scaling hypothesis
asserts that the magnetic correlation function has the
form

1

g-(Or) = g-(r =0)F-2

( )

0)

o), (k)

where FHcu/ru, (k)) is the shape function which is

normalized, with respect to ~, to have unit area and

cu, (k) is the characteristic frequency which has the
form

~ (k) I k Q l, f1
I

k Q I to
AT'

(20)

We shall argue that the inelastic component of the
spin-flip transition rate is negligible compared to the
quasielastic component of the spin-flip transition rate.
The leading inelastic spin-flip scattering term is pro-
portional to the integral

Jt rrrgk (Qr)
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Near the critical temperature, F-„(x) is dominated by

a central peak, and so the integral in the leading
inelastic-spin-flip scattering term may be carried out
with a Lorentzian shape function

i co—,(k)
Jf cog-„(cu) = '

tan '

2m

For positive z, this term tends to zero as k Q. fhe
decrease of rv, (k) occurs just at the scattering wave
vectors for which g„(t=0-) is maximum. This is the
phenomenon of critical slo~ing down. This critical
slowing down may be understood, physically, in
terms of the ease in which fluctuations, with k =Q,
occur and their consequent slow relaxation. In this
regime, the inelastic scattering is smaller than the
quasielasttc scattering by a factor of cu, (k)/ktt T~.
The above type of argument might lead one to expect

that for large values of I k —Q I, the inelastic scatter-
ing should be comparable to the elastic scattering.
However, for the large values of I k —Q I, the mag-
netic correlation function is small and has the same
type of leading temperature dependence as the ener-,
gy, that is AT' ". The set of wave vectors, for
which the elastic scattering processes and the inelastic
scattering processes are equal, provides only a small
contribution to the total spin-flip scattering rate.
Physically, one can understand the dominance of the
quasielastic terms as the fast conduction electrons will
see the slow moment fluctuations as if they were
frozen. In this case, ru, (k)/ka TM, is the ratio of the
relevant time scales which is estimated to have a
value of 10 2. Also for the large values of'

I
k —Q

the validity of the dynamical scaling expressions for
the characteristic frequency and the shape function is
questionable.

Following the same procedure as for the quasielas-
tic scattering, we see that the temperature derivative
of the inelastic scattering rate may be written

cr 5T ~ ' $— d3q tan 'x yD(q) —/AT —D(q)
I t 3 ~e(q) t kB TM d

I q+Qtl cu (k), dt
(22)

The Van Hove theory of critical dynamics predicts
that, for small q, we have z =2. For sufficiently
small q, the critical slow-down argument applies, and
the average energy transferred between the critical
fluctuations and the conduction electrons is small
compared to k&TM. The temperature dependence
comes from the large q part of the correlation func-
tion and is of the form AT . The coefficient of the
inelastic scattering processes is small compared to the
quasielastic scattering processes.

The domiriance of the quasielastic scattering is
similar in the related phenomena of critical resistivi-
ties. Geldart' has shown that the inelastic scattering
contribution to the resistivity is small compared with
the quasielastic terms, and that the temperature
dependence is similar to that of the quasielastic part.

$g-„(t =0) =S(S+I) —M2,
N k

(23)

&&(gd&t=Ol)

cancel. The sum rule on the temperature derivative
of the magnetic correlation function is modified due
to the existence of the temperature-dependent order
parameter. This allows dg-„(t =0)/dT to be positive
for all the scattering wave vectors k (Fig. 3). The
sum rule for the correlation function becomes

VI. SPIN-FLIP TRANSITION RATE BELO%
THE MAGNETIC-ORDERING TEMPERATURE

The behavior of the spin-flip scattering rate below
TM is far more complicated. This is due to the ex-
istence of a nonzero order parameter, and due to the
opening up of gaps in the electronic band structure,
which is associated with the new magnetic periodicity
of the system. ' In particular, the magnetic-moment
correlation function is altered. At the magnetic-
ordering temperature, the positive peak, and the
negative region in dg-„(t =0)/dT contract at Q and

0

T& TM

FIG. 3. Temperature derivative of the magnetic-moment
correlation function, for wave vectors along Q;; The tem-
perature is assumed to be below the magnetic-ordering tem-
perature TM.
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where M is the order parameter (So). Thus the tem-
perature derivative of the Fermi golden-rule approxi-
mation to the spin-flip transition rate, for both anti-
ferromagnetic and ferromagnetic materials, increases
as T is lowered below the ordering temperature, the
critical exponents being the same as those above the
ordering temperature. The resulting behavior of the
approximate spin-flip transition rate is plotted in Fig.
4

In the above we have neglected the changes in the
electronic band structure that are expected to occur
as a result of the new periodicity, which is associated
with the magnetic ordering. The repeated scattering
of the conduction electrons off of the ordering mag-
netic moments will produce a new periodic average
potential. that will determine the band structure. At
'the ordering temperature, gaps will appear in the
band structure at wave vectors associated with the
magnetic Brillouin-zone boundaries. These types of
effects do not occur as a renormalization of the band

structure, but occur, naturally, through the higher-
order terms of the perturbation series. We have
evaluated the next order contributions to the spin-flip
transition rate, in order to ascertain the effects of the
differing electronic spectra below the magnetic-
ordering temperature. Thus formula (5) is modified.
The next contributions to the spin-flip transition rate
are proportional to the fourth power of the de
Gennes-Friedel interaction strength and involve four
moment correlation functions. The four moment
correlation functions were decoupled into two mo-
ment correlation functions, and. terms involving the
diagonal z component of the magnetization. This
decoupling procedure is unjustified, but it is done in

the expectation that the irreducible terms are negligi-
ble. We Fourier-transform the magnetic-moment
correlation functions and then perform the time in-

tegrations. We only retain the terms which represent
the quasielastic spin-flip scattering of the conduction
electrons. We find that the quasielalstic scattering
contribution is proportional to

~ gk( ) d 1, , g-, --, ( ') d—(Sg) +

(a) (24)

In the vicinity of the magnetic-reciprocal-lattice wave
vector, q —q

' =Q, the last term in the parantheses
may be approximated by

gq-q'(~) d(o'

Q 2rr

&Tc j

Indeed, if the region of summation is approximately
shperically symmetric, this will be a good approxima-
tion. On making this approximation we note that
there is a cancellation in the temperature dependence
of the two terms in the parantheses due to the modi-
fied sum rule

2 ggk (r =0) =S(S+1)—M2, T ( TM . (25)

This gives the fourth order contribution to have the
same type of critical temperature dependence as the
second order contribution.

VII. CONCLUSION

( TN J

FIG. 4, (a) Schematic plot of the spin-flip transition rate
for a ferromagnet. The critical exponent is uq. (b) Spin-flip
transition rate for an antiferromagnetic metal. The critical
exponent is 1 —n.

We have calculated the spin-flip transition rate 1/r,
for conduction electrons in systems which exhibit
long-ranged magnetic ordering. We have shown that
the interplay of the phase space available for elec-
trons to scatter into and the fluctuations of the mag-
netic moments lead to differing behaviors of in the
various cases of magnetic ordering. In the antifer-
romagnet, the spin-flip scattering is dominated by
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the long-wavelength behavior of the moment correla-
tion function. This gives I/r, an energy-like tem-
perature dependence, i.e., it decreases like AT' " as
T decreases through T~. For the ferromagnet, the
spin-flip transition rate is dominated by the peak in

the moment correlation function. Thus, in the fer-
romagnet I/r, behaves like hT+'t' giving a positive
cusp at T&. In a helical magnet, I/7, is not expected
to have any significant critical type of temperature
dependence.

The spin-flip transition rate I/r, behaves different-
ly to the resistivity which is proportional to

greater than the critical temperature of the alloy. For
a small range of concentrations x, the superconduct-
ing transition occurs at a lower temperature. This oc-
curs at the point where the critical temperature be-
comes of the order of the superconducting transition
temperature. A much more sensitive measurement
would be that of tunneling experiments on proximity
effect sandwiches. In the proximity effect tunneling
experiments, the zero bias conductivity is a direct
measure of the superconducting density of states
p, (~).

The weighting factor
~
k

~
occurs in the resistivity, as,

in the resistivity the important fact is not that the
electron is scattering, but the amount that the wave
vector along the electric field is changed in the pro-
cess. However, the temperature dependence of the
spin-flip scattering rate can be measured by its ef-
fects pn superconductors. In the superconductors,
the spin-flip scattering strongly suppresses the super-
conducting transition temperature. It has already
been seen on thin Pd„Ni~ „.'Sn proximity effect
sandwiches. " In these alloys the Curie temperature
may be varied by changing the concentration x The
superconducting transition temperature can be made

The spin-flip scattering rate exhibits itself through
the superconducting density of states. '
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