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Two-site interaction model for a ferromagnetic metal
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A model Hamiltonian is obtained for the itinerant electrons in an elemental ferromagnetic

metal, based on two-site. interactions derivable from Coulomb fields. The energy parameters

are expressed as matrix elements of ferromagnetic band states derived from local-density-

functional theory. For a special case of the model, a single-orbital half-filled band, a systematic
perturbation theory is developed for the elementary excitations. The character of the spin

waves and Stoner modes is discussed.

I. INTRODUCTION

Two approaches can be distinguished in current
theoretical work on itinerant-electron ferromagne-
tism. Much the older of the two is the model
Hamiftonian. It is assumed that the metal can
be described by a small number of energy parame-
ters, sometimes by just one parameter, as in the iso-
tropic nearest-neighbor Heisenberg or Ising model.

These parameters characterize the processes that
are presumed to be the most important, for the pro-
perties studied. The origin of the interactions derives
in most cases from a selected part of the Coulomb
repulsion between the electrons, together with static
Coulomb fields from a rigid lattice.

Because of its simplicity, a rich array of results
have been obtained for the ground-state and thermo-
dynamic properties. However, it is often not clear
what part of the Coulomb interactions should be
selected to define the model; further, the parameters
generally need to be taken as adjustable parameters.

Recently, electron band theory has provided good
results for some of the ground-state properties of fer-
romagnetic nickel. Using the local-density-functional
theory in the form provided by Hohenberg and
Kohn, ' and by Kohn and Sham, ' various studies
have enabled the computation of energy bands for
ferromagnetic nickel and iron, often without the need
for any adjustable parameters.

The local-exchange approximation (LEA)
prescribes a spin-dependent exchange interaction, for
nonzero magnetization. Band studies based on this
concept have been performed by Connolly, ' Wakoh
and Yamashita, 6unnarsson, and others.

The LEA work of Wang and Callaway takes elec-
tron correlation into account by the method of von
Barth and Hedin, ' to obtain bands for ferromagnetic
nickel. A magneton number of 0.58 is obtained; this
agrees closely with the observed value of 0.56. Also,
the Fermi surface predicted by their results is in quite

good agreement with empirical data, except for a
small region near the zone edge in the (100) direc-
tions,

The experiments of Eastman, Himpsel, and Knapp'
do indicate that the theoretical exchange splitting at
the top of the 3d band is about twice the actual value.
The theoretical bandwidth is about 30% larger than
that observed.

The LEA has been used by Janak and Williams'
and by Andersen e( al. ' to compute various proper-
ties of ferromagnetic nickel and iron. The agreement
is good for the lattice constant and fair for the
compressibility. Kleinman" has analyzed the pho-
toelectron spin polarization by the functional theory
with very good results.

More recently, some work has appeared for the
purpose of computing the elementary excitations of a
ferromagnetic metal by band-theory concepts. The
transverse dynamic susceptibility has been calculated
by Callaway and Wang' using the LEA. A formula
is obtained for the susceptibility which requires the
computation of the inverse of an infinite matrix. The
poles of the susceptibility yield a secular equation
whose solution contains the spin-wave dispersion re-
lation.

Applying their result for the susceptibility, Calla-
way and Wang' obtained an explicit result for the
spin-wave stiffness constant D. All that is required
as input to their formula are the ferromagnetic band
states and their energies. For nickel, their result is
only 10% smaller than the observed value.

An independent calculation of the transverse sus-
ceptibility by Edwards and Rahman' also uses the
LEA and expresses the susceptibility as a sum over
band-state matrix elements. In addition to the band
states, the input needed to apply their formula is the
precession angle of the local magnetization due to a
time-dependent magnetic field perpendicular to the
magnetization. Their result for D generalizes that of
Callaway and Wang, ' displaying an additional term
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that accounts for local-field effects. %'ork by Liu and
Vosko" obtains similar results.

If band theory is to be employed to obtain thermo-
dynarnic properties, it would be judicious to make use
of results from model Hamiltonians; that is, it would
be desirable to bridge the gap between the two ap-
proaches.

For this purpose, the present study begins by
deriving a model Hamiltonian whose parameters are
matrix elements of the spin-split band states (Secs.
11, III, and IV). A special case of the model (single-
orbital half-filled band) is then solved for the ele-
mentary excitations (Secs. V, VI, VII, and VIII).
While the special case is not applicable to a real ma-
terial, it demonstrates that the original model is tract-
able.

In Sec. II, the electron Hamiltonian is written in

the Wannier representation. A truncation procedure
deletes terms in the electron Coulomb repulsion in-

volving more than two sites; this defines the model.
Included in the model are the Hubbard and

Heisenberg Hamiltonians, intra-atomic exchange and
some less familiar pair-site iteractions. The various
parts of the model are examined in Sec. III and ine-
qualities obeyed by the parameters are displayed in

Sec. IV.
.In Sec. V, the problem of finding the elementary

excitations is reduced to simple perturbation theory.
The ionic states can also be viewed as exciton modes
and possess the properties generally ascribed to Ston.
er modes.

The spin-wave states and their energies are com-
puted for the first few orders of perturbation theory
in Sec. VI. ' In Sec. VII the stability against spin re-
versal of the saturated magnetic state is examined.
The energies of the Stoner modes are considered in
Sec. VIII.

Finally, Sec. IX contains a comparison with work of
other authors. Some concluding remarks are given in
Sec. X.

II. MODEL

Assuming a rigid Bravais lattice of W ions, the elec-
tronic Hamil'tonian is

vector potential for the external magnetic field B. In
this study, the field will be chosen as uniform, static,
and in the direction of the magnetization.

The second term in Eq. (2.1) is the electron-ion in-

teraction

+ion = g Vien(~s) (2.4)

Here, V;,„(r)denotes the potential energy of an
electron at r due to all the ions.

The repulsion between the electrons is

+coulomb 2 $ $ Vc(rs~
s 1%s

(2.5)

with

(2.6)

(2.7)

Here, o-, is the Pauli spin operator for the sth elec-
tron, g is the Lande factor, and p, & is the Bohr
magneton. The up direction is selected as antialigned
with the field and is the direction of majority spin.

The second term in Eq. (2.7) is the spin-orbit cou-
pling

a (Vvxp)
4m c

(2.g)

where V(r) is the self-consistent potential field on
an electron at r due to the ions and all the other elec-
trons. By writing the second term of Eq. (2.7) as a

sum of one-electron operators, it is tacitly assumed
that the interaction is a static, local field.

The dipole-dipole interactions have been omitted
from Eq. (2.7).

A convenient basis of one-electron states is ob-
tained from the eigenstates of the one-electron Ham-
iltonian

H;, =p'/2 m + V„(r ) (2.9)

The last term in Eq. (2.1) is the interaction that in-

volves the electron spin explicitly

+spin 2 p'Bg $ &s B

+kinetic+ lion+ +Coulomb+ +spin

The kinetic energy is

1

+kinetic =
2

m ~ +s

(2.1)

(2.2)

The second term V (r) is the net interaction on an
electron of spin o-, due to the ions and the other
electrons. Thus, we have

(2.10)

~here m is the electron mass and

v, = [p, + (e/c) A(r, )]/m (2.3)

where V,','r(r) is a self-consistently determined field
on the electron, obtained by the methods of the
I.EA. For example, the choice

is the velocity operator for the sth electron. Here, e.
is the absolute value of the electron charge, p, is the
momentum operator for electron s, and A (r ) is a

Vscf ( r ) VHsrrree( r ) + Vexch (r )

+ Vcorr (r ) (2.11)
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can be made. The first and second terms are the
Hartree and exchange operators. The last term ac-
counts for correlations omitted in the Hartree-Fock
approximation and can be chosen, for example, in

the form proposed by von Barth and Hedin. '
The spin-averaged potential

(2.12)

can be chosen for the potential in the spin-orbit cou-
pling, Eq. (2.8).

The bandstates
l
n k o)so.lve

The second term in Eq. (2.16) is the Zeeman ener-

gy

Hz= —2g paB $s n (2.20)

Hsp = X Y acres
a, P

(2.21a)

Here, n =etc is the number operator for state n..
Also, s„is defined as 1 or —1, for o. corresponding to
up or down spin, respectively.

The third term is the spin-orbit coupling

H lnkir) =e„k lnka) (2.13) Y p=
2 (nlo (V V xp)ll8)4m'c' (2.211)

The wave vector k is restricted to the Brillouin
zone, n is the band index and ~„-„denotesthe band

energies. Equation (2.13) or (2.9) is the local ex-
change approximation (LEA) used in Refs. 3—6.
However, from the viewpoint of the present study,
the LEA is not an approximation but just a choice of
a convenient basis, as many-electron effects will not
be discarded.

The Wannier states are defined by

lrii~) =(&) 'i2 /exp( —ik Ri) lrik~) (214)

Finally, the Coulomb repulsion energy is

Hco io b=,' X (ciPI V ly")

& C~cpCgcyt (2.22)

To construct a tractable model, a truncation can be
made on Eq. (2.22). Note that (alel V, lyfi) is

t d'r d3r' „()
where R, is the location of the jth lattice site. The
phases of l

n kir) are chosen so that l nj a)is rea. l and
positive at the origin. Then

l nj o) will decay ex-
ponentially with l r —R, l for large

l
r —R, l and will be

symmetric under inversion. Also, the spatial part
p„;„(r)of

l
ni o)will satisf. y the translation property

(2.1S)

Using Greek indices (n, P, etc.) to denote Wannier
states, the electron Hamiltonian Eq. (2.1) can be
written in Wannier representation as follows:

Hssh + Hz + Hs 0 + Hcoulomb

Here, the "simple single-'hop" Hamiltonian is

Hssh $ Trrpcac p

(2.16)

(2.17)

and contains all static interactions except for the Zee-
an energy and spin-orbit coupling. The operator c„

is the absorption operator for Wannier state n.
The amplitudes T„&are defined by

T a= (~IH . Vsci+ Hmaglg) (2.18)

with the orbital part of the magnetic field interaction
given by

2 2

H ( )= L + (x'+y2)
mc

' 8mc'
(2.19)

The z direction is that of the field, L is the orbital an-
gular momentum operator and the vector potential
choice A = (—,) ( 8 x r ) has been made.

x ya'(r ') yv(r) y~(r ') (2.23)

if o(oi) = o.(y) a.nd o (P) = o.(5); a.(a) denotes the
spin index for state la). Otherwise, (uPl V, lyg) is
zero.

If the band indices of a, P, y, 5 are all the same,
the largest integral occurs when all four site indices
are also identical. This can be termed the zero-order
overlap term; integrals that contain two distinct site in-
dices are firsr order in overlap, etc.

Mattheiss'6 has performed numerical calculations
of these integrals for the sites comprising the six ver-
tices of a regular hexagon. The Wannier states are
orthogonal linear combinations of hydrogen atom 1s
wave functions, each centered on a vertex. Calcula-
tions are performed for nearest-neighbor separation
between three and five Bohr radii; the largest 3-site
integral is less than one half of the smallest 2-site in-
tegral. Practically all of the 3-site integrals are an
order of magnitude smaller than the nearest-neighbor
2-site integral. Hence, transitions second order in the
overlap are much less important than those first ord-
er in the overlap.

When the band indices are not all identical, it is
reasonable'to expect that integrals containing two dis-
tinct bands will dominate the 3-band and 4-band
terms. Herring" has tabulated nearest-neighbor in-
tegrals for cobalt, using atomic 3d wave functions ob-
tained from the Hartree-Fock approximation; shield-
ing effects of the 4s electrons are not included. In-
tegrals from wave functions involving only one 3d
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Hmodel + H3 —center + H4 —center (2.24)

state are at least ten times the size of integrals
between 3d states of differing magnetic quantum
numbers.

The foregoing evidence suggests the utility of de-
fining "order of overlap" as follows: First, let the
term "center" denote the spatial part of the Wannier
state. If lettersf, g, et,c. denote centers, then

f = (n, i) where i denotes the site. Then the
order of overlap of the integrals Eq. (2.23) is defined
as one less than the number of distinct centers in the
quartet of Wannier states otp, ,y, 5.

Let H ode) denote that part of H which includes
terms to first order in the overlap

+Hubbard +ash + $ U(f) nf f nf J

.f

The simple single-hop Hamiltonian H„h is

Hssh Hband Hscf + Hmag

(3.1)

(3.2)

+band X erg rrC)rr Cg rr (3.3)

The amplitudes ef, are

er„,=(fal&.Iga) .

The self-consistent-field term in Eq. (3.2) is

(3.4)

The band Hamiltonian is the sum of Eq. (2.9) over
all the electrons. Formally, we have

The last two terms comprise the second- and
third-order overlap terms

+3—center + &4—center
= X (r-rp I Vc I vg)

ePy5

X C~CpCgCyt t (2.25)

with

H„r=g Vr""cj„c

Vsc" (fal Vsc lg )

(3.5)

(3.6)

The prime on the sum prescribes that only 3-center
and 4-center terms are to be included.

The result for H, d, ~
is conveniently expressed as

a breakup into the seven terms

Hrnodel HHUbbard + HHeisenberg + HN with

g
—~ fg rrCf rrCg

.fg, ~
(3.7)

The last term in Eq. (3.2) is the contribution of the
orbital effects of the magnetic field

+ Hcsh + Hcdh + Hs P + Hz (2.26)
(3.8)

The first two terms have the familiar Hubbard and
Heisenberg forms, respectively, although interband
transitions are included as well as intraband
processes. The third term HN is that part of the
Coulomb repulsion between electrons that can be
written as Wannier-state number operators (exclud-
ing number operators already included in the two

preceding terms).
The fourth and fifth terms are the Coulomb

single-hop and Coulomb double-hop terms, respec-
tively, and also arise from the mutual electron repul-
sion. The last two terms are the spin-orbit coupling
and Zeeman energies. In Sec. III, the terms will be
defined formally.

III. TERMS IN THE MODEL HAMILTONIAN

A. Hubbard term

The Hubbard term is

The three terms of Eq. (3.2) can be succinctly writ-
ten

+ash g ~fgrrC)ITC»rr
.fg ~

scf
Tfg„=~fg

—
Vgg + Af~g

(3.9)

(3.10)

The second term of the Hubbard Hamiltonian, Eq.
(3.1) is the Coulomb repulsion of electrons of oppo-
site spin on the same center. U(,f) is the average
Coulomb repulsion

U(f) = (f1;.

foal

v, lf t;fl) (3.1 I)

This term arises from the choice rg=y, p=5 with cg

and p referring to the same center, but opposite spin.
The Hamiltonian, Eq. (3.1) is identical to that of

Hubbard' and Kanamori, ' except that it is general-
ized beyond the single-orbital case; also, the hopping
amplitudes Tfg depend on the spin (T.

To conclude this subsection, the band energies e„-k
are related to Tfg by

Tfg =5 „e„(lrj)+N ' X e ' J (mkaIH„,» —V""Ink'a)
k, k'

Here, we have f =(m, i) and g=(nj) Also, we.

(3.12)
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have 1& =R; —RJ and

Ie„„(l) = —Xe'"'e„-„„.
k

(3,13)

and

with

J(fg:~) = (f~;g~l V. la~;f~)

(3.25)

(3;26)

B. Heisenberg. Hamiltonian

The second term of Eq. (2.26) is

HHeisenberg = —$ $ J(fg) Sf ' Sg
,f g&f

The exchange integral J is given by

J(fg) = (f1;gal V. lg I;.f l)

and the spin operators Sf have components

Si = —(Si +Si ) t

Sz ———, (Sf+ —Sr )

zSr' = , (nf l
——nfl)

(3.14)

(3.1 5)

(3.16)

(3.17)

(3.18)

The exchange integrals J(fg), J„„(fg),and
J(fg:rr) are identical if the basis corresponds to the
paramagnetic case. That is, if the spatial part of ifo).
is independent of (T. In general, the exchange in-

tegrals will differ in value; however, it is easy to
show that the difference between any two of. these
exchange integrals is second order in the overlap. In
fact, the difference between any two energy parame-
ters will be one order higher than the parameters
themselves if the following condition holds: the two
integrals only differ in that a spatial function'in one
has a different spin-index than the corresponding
function in the other. A proof is given in the Appen-
dix.

The two terms HH„„„b,„,and H~ together arise
from terms of Eq. (2.22) with

.f( ) =.f(8), .f(P) = f(y), .f( .) ~.f(P)

S/. = Cf1Cf.1

Sf =CfiCft

(3.19)

(3.20)

The Hamiltonian Eq. (3.14) is of the familiar
Heisenberg form when the pairs, f and g correspond
to the same band; the terms with distinct band and
identical sites represent intra-atomic exchange.

In the preceding equations, the raising and lower-

ing operators Sf+ and Sf are defined via
plus the terms

.f( )= f(y), f(P).=f(8), f( ) ~f(P) .

The notation f(or) refers to the center described by
Wannier state ia). In particular, the transverse
terms of HHeiscnberg arise from

.f( ) = f(8), .f(p) =.f(y),
f(n) W f(p), rr(a) W rr(p)

C. Number-operator term D. Coulomb single-hop term

Formally, the third term of Eq. (2.26) constitutes
the contributions in Hc,„„b.Eq. (2.22) that are bil-
inear in the number operators, but excluding the
single-center Coulomb repulsion (2nd term of
HHubbard) and the Sr S, terms of HHeisenberir. The
result is

The fourth term of Eq. (2.26) is

H„„=X QI„(fg)
f graf &r

x Cg —rr Cf —&r~g rr + H.c. (3.27)

Hn=-,' X $ N(fo, grr')nr„n,
„

f,g &f rr, &r'

(3;21)
where H.c. denotes Hermitian conjugate and

I„(fg)= (g, rr;g, —rr
i V„i g, rr; f, —0 ) (3.28)

with

W(.f~,g ~') = (f~;g ~'I V. I f~;g~').(3.23)

denoting the average repulsion between electrons in
states l frr) and ig ). Arrlso, we haveJ„„(fg) = J(.fg). (3.24)

Here, we have

hf(f rr, g rr') = W(f a, g rr') -J;„,(fg), (3.22)—
The first term of Hq, h describes two electrons ini-

tially on centers f and g with opposite spin. The elec-
tron on f is transferred to g. The second term is the
time-reversed process. H~,h arises when

f( ) = f(P) =f(y), .f(8) ~.f( ),.
a. (fr) W rr(u)

plus the three other sets of terms obtained by per-
muting rr, P, y, and Fr.
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E. Double-hop term

The third-from-last term of Eq. (2.26) describes a

pair of opposite spin on the same center, both scat-
tered to a vacant center. Formally, we have

JJCdh $ Jdh(fg)cflcgtcrlcgl
.f,~ &.f

(3.29)

Here, Jdh(fg) = J(fg) and the subscript dh is insert-
ed only to distinguish effects of the double hops from
those of simple exchange.

Hcdh is obtained from f(~) =f (P), f(y) =f(&),
withf(a) Nf(, y) and , o (a) & o.(P).

If the band indices of,f and g are the same, then
U(f) is independent of the site index so that Eq.
(4.1a) simplifies to

U(n) ~ J(ni;nj) (4.lb)

Here, n is the band index and i and j denote any pair
of sites.

Similarly, let

P t ( r, r ') = P f„(r )P„,( r ') h ( r, r ')

g2 ( r, r ') = P~„(r ) P f„(r ') h ( r, r ')

to obtain

F. Spin-orbit coupling
&(j~;g~) —J(jg:~) (4.2a)

The next-to-last term of Eq. (2.26) can be obtained
from Eqs. (2.20) and (2.21) yielding

A similar inequality relating 8'and J follows from
the choice

with

y(l~lg~) = (f~lb, lg~),
b(r, p) = (fj4m'c ) V V(r) x p

(3.30)

(3.31)

(3.32)

@,( r, r ') = nfl ( r ) yg l ( r ') h ( r, r ')

d g ( r, r ') = yg l ( r ) y i i ( r ') h ( r, r ')

yielding

@'(fI;g l) II'(fl;g I) ~ J'(fg) (4.2b)

For o. A o', the element Y(f a. l go.') is defined by
Finally, let

&(fl I g1) = (fj I
h. I g 1) + I (f l I &g I g 1)

&(ftlgl) =(ftl&. lgl) -i(f1lh, lgl)

(3.33a)

(3.33b)

and with the scalar products in Eqs. (3.33) denoting a

spatial integration only.
The last term in Eq. (2.26) is the spin-field interac-

tion already defined in Eq. (2.20).

IV. SIZE OF ENERGY PARAMETERS

A. Inequalities

The Schwarz inequality

to obtain

&(f~;g —~) U(f) —II „(fg)I' (4.3)

Two more inequalities between parameters arises
from the demand that appropriately chosen Coulomb
self-energies be positive. Let the charge density p(r )
be

p(r ) =
I nfl(r ) I'- I eg l(r ) I'

The inequality

U(f) + U(g) ~2&(fg) (4.4a)

can be applied to yield several inequalities connecting
the energy parameters.

First, let

follows.
If f and g correspond to the same band, then we

have

with

d )(r, r') =nfl(r)nfl(r')h(r, r')

d 2 ( r, r ') = yg l ( r )y„l ( r ') h ( r, r ')

U(n) ~2 W(ni;nj ) (4.4b)

for any pair i and j.
The remaining inequality can be obtained from the

choice

p(r) =y„(r)y„(r)y„(r),
to obtain

U(f) U(g) —
I J(fg) I' (4.1a)

yielding

g J„„(fg)—2J(fg) (4.5)
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B. Relative size of the energy parameters

Watson has calculated wave functions for a free
cobalt ion (no 4s electrons present). From the
results, Freeman and Watson ' have computed the
Coulomb integrals U, O', J, and I, except that the
Wannier states are replaced by atomic states. For W,

J, and 1, the separation
~

1
~

= 2.51 A (nearest-
neighbor distance of metallic cobalt) was used. A

summary is given by Herring' and by Freeman, Nes-
bet, and Watson. 22

The results imply that the parameters are ordered
(in decreasing size) as U, W(I), 1(l), and J(l).
The intra-atomic exchange is comparable to 1(l).

For a set of six hydrogen atoms at the vertices of a

regular polygon, Mattheiss" obtains the same order-
ing for U, W, I, and J.

From their definitions, U, W, and J are positive.
The sign of I is determined by the detailed character
of the states. Mattheiss' obtains a positive value
with free-atom states and a negative value with Wan-
nier states. Freeman and %'atson ' also obtain
l(T) )0 with free-atom functions. If their functions
are orthogonalized, it is easy to show that 1(1) be-
comes negative.

The parameter Tf„canbe estimated from Eq.
(3.12) for the case where f and g correspond to
neighboring sites and identical bands. Assume that
the second term of Eq. (3.12) is small, and that l

corresponding to nearest neighbors provides the
dominant d„(l).Then, Eq. (3.13) yields a band en-
ergy at k =0 that is 12m„„(l)above the band energy
at the [111]zone edge for a face-centered-cubic (fcc)
lattice.

A bandwidth of 0.55 eV in the [111]direction for
the highest 3d band of majority spin (A3l band) is ob-
tained from the photoemission experiments of East-
man, Himpsel, and Knapp. Hence, we have

Tfg t
—0.046 eV for A3 l

when f and g correspond to
nearest neighbors. This indicates that Tf, is com-
parable to J(1) using estimates of the latter from
Ref. 21.

V. SINGLE-ORBITAL HALF-FILLED BAND

A special case of the model of Eq. (2.26) (the
single-orbital half-filled band) is of interest in its own
right, although it needs generalization before it can
apply to a ferromagnetic metal. It may be remarked
that the hypothetical spin-aligned hydrogen crystal
may be well described by this special case, provided
the electron-phonon interaction is added to Eq.
(2.26).

Henceforth, band indices will be suppressed; the
center indices, f and g will be replaced by site indices i

and j. Spin-orbit coupling will be omitted.

A. State of magnetic saturation

The state
~ riro& that is a Slater deteminant of Wan-

nier states with one electron of spin up on each site is
an eigenstate of H, d, ] with eigenvalue

EO EO Hubbard + EO Heisenberg + EON + EOZ (5.1)

The terms denote the contributions from the Hub-
bard, Heisenberg, number-operator, and the Zeeman
Hamiltonians, respectively:

~0 Hubbard g TJJ t

J
1

~0 Heisenberg 4 X J (iJ )
i,jWi

(5.2)

(5.3)

(5.4)

1

Eoz = —,RPB& (s.s)

Letting the total spin S, and total square spin S2 be
defined by

+ Sxy, z
xyz, ~ J

J

S' =S„'+S,'+ S,'

it follows that ~riro& has $, and S well defined with
values of

2
Wand (—rV)(I + —,iV), respectively.

1 1 1

B. Single reversed spin: basic equations
/

Letting E be the energy of any one of the N' sta-
tionary states of the model that have S, well defined
at value ( 2 N) —I, then

E «EO (s.6)

ly& =QDJlij& (5.7)

if the constants D& satisfy

H, d,]D = ED

Here, D is the one-column vector of elements D„",
while H, d, [ is the matrix of order N representing
H, d, i in the vector space for the representation ~ij &.

is the condition for stability of
~ riro& against spin re-

versal.
A basis for the vector space of these states is the

set of N' states

I ij& CJ /C;t lriJ0&

For i =j, the state has one electron per site; the re-
versed spin is at i. For i W j, ~ji) is the state with i

vacant, j doubly occupied (ionic configuration).
The rV' solutions of H~nde, ~rir& = E[rlr& are of the

form
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A straightforward calculation for

Hmodel HHubbard + HHeisenberg + ~H

+ HCsh + HCdh + Hg

while fori &j,

(Hc,hD) lj = l l 4i ) D;; —
1 t (ji ) Djj + 2 x I l (jl) D;,

(5.20)
yields the following results for the six terms: First,
we have

Finally, the Coulomb double-. hop Hamiltonian has
the representation

HHubbard Hssh + HU

- The single-hop Hamiltonian is-

(HsshD) lj Eo HubbardDiJ g Tii'fDjl
I

(5.9)
(HcdhD) ij

= —(1 —Srj) Jdi (jl) Djr

and the Zeeman term is

~H = —
2 g p.a8(N 2)1—1

(5.21)

(5.22)

+ $ TjiiD;(
I

(s.io)

(HUD), j = LH1 —8„)D,j" (5.11)

For the Heisenberg Hamiltonian, the result is
C

(HHejsenbergD) JJ Eo HeisenbergDJJ g J(ll) Dll
I&j

1

(HHeisenbergD) lj
= ~EO Heisenberg 2 J(lJ) jDlj (s.i3)

and the single-site repulsion term HU is given by

~here 1 is the identity matrix.
Imposing periodic boundary conditions, the re-

quirement

Dij = Dlj (5.23a)

Dj=D;(

if Rl —Rj =N, a, for t =1, 2, or 3.

(S.2,3b)

must be met whenever Rl —Rl = W,a, for t =1, 2, or
3. Here, a, is one of a trio of basis vectors of the'lat-
tice, while N, is the number of- sites in the crystal in
the direction a, .

Similarly, we have

the last relation valid for i & j. The notation

EO Heisenberg =.E0 Heisenberg +
A&0

(5.14)

C. Single reversed spin:
reduction of the equations

To simplify the eigenvalue problem, Eq. (5.8), let
has been used. In Eq. (5.14), J(h) is the exchange
J(ij) for two sites i and j separated by the translation
vector h. A similar notation will be used for the en-

ergy parameters Tj, N(i o ,j a'), I "(ij), etc.
The number operator Hamiltonian has the

representation

Rj = —(R;+Rj) (5.24)

lij = Ri —Rj (5.25)

define the center of mass and relative coordinates.
A convenient basis for the one-column vector D is

the N' one-column vectors D(Q, q) defined by

with

(~H D)Jj
= EON Djj (5.15)

Dj(Q. q) =exp(iQ Rj+iq lj) (5.26)

EON E0N + $ O( Jl) (5.16)
The wave vector Q runs over N nonequivalent wave
vectors in the zone of the form

Iwj

O(jl) =N(jj;It) —N(j t;It) (5.17)

3

Q = $ nrbr/Nr (5.27)

For i &j, we have

(~HD) J= (EON —N(j f;I I) + g 04'l)]DJ (5.18)

where b, solves a, b, =2+5„andwhere n, is an in-
teger.

The boundary condition Eq. (5.23) is obeyed if q is

any one of N nonequivalent wave vectors in the zone
of the form

For the Coulomb single-hop Hami1tonian, we have

3

q= Xm, b, /N,
s 1

(5.28)

(Heal D)jj = g [Ii(jl) Djl —I l (j I) Dij) (5.19) with m, integral if n, is even, and m, half integral if
n, is odd.
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Since J(ij), N(ij ), etc. depend on lp but not on

R~z, Bloch's theorem can be applied to Eq. (5.8); a
complete set of solutions exist in the form (~H)pp ——Epg+ X 0(h)

h&0
(5.40)

ss

For HINDI, the representation is the diagonal matrix

Ds=(N) ' e 'do(l, q) (5.29) and

The remaining problem is to find do(I,J), a one-
column vector of N components which is indepen-
dent of K&. The subscript Q on do(irj) will be omit-

ted henceforth.
The boundary conditions are comprised by

(~H) —, , =Epg —N(0t;lt)+ $ 0(h), (5.41)
h &0, l

for 1~0.
The Coulomb single-hop Hamiltonian is

d(l+N, a, ) =+d(1) (5.30)

The upper and lo~er signs apply when n, is even or
odd, respectively. Clearly, d(l) is a linear combina-
tion of the Nexponentials exp(iq 1).

The eigenvalue problem for. d(l) is

(Hc,h) p-„=It( h; —Q) —Il( h;Q )

for h &0. Also, we have

(2Ec.h) i h =»t(1-h'Q)

(5.42)

(5.43)

H, d, ld = Ed (5.31)

P

+ ~H + Hcsh + HCdh+ HZ

Here, we have
ss

HHubbard Hssh + HU

(5.32)

(5.33)

with the simple single-hop Hamiltonian defined by

%ssh)i h ~P Hnbbsrd8( h;1)

—Tl(h —1;Q) + Tt(l —h;Q)

(5.34)

obtained by combining Eqs. (5.29) and (5.8); dis the
N-component vector d(l). The matrix H, d, i

represents H, d, l in the subspace of the vectors d
with fixed Q.

After some computation, the result for H, d, l is
P

Hmodel HHubbard + HHeisenberg

for 1WO, h ~0, 1&h. The diagonal elements van-
ish.

The nonzero elements of H«h are

(ÃCdh) j-i Jdh( I )

for 1AO. Finally, we have

(e,)-, -„=-8(I;h)(-,'
g~,a)(N -2) .

(5.44)

(5.45)

D. Single reversed spin: perturbation theory

If Q=O, Eq. (5.31) is solved by

The last term of Eqs. (5.40) and (5.41) is second
order in the overlap, from Appendix A and Eq.
(5.17). Also, Tt(0) —Tl(0) —gNaB is second order
in the overlap for the same reason. Since H, d, l is
derived by keeping only those terms first order in the
overlap, these second-order overlap terms will be
dropped, henceforth.

The notation

(h.Q) g (h)er'(o hi2) (5.35)
e(I) =8(T),
E =Ep+gpg9

(5.46a)

(5.46b)
is used for any parameter A (h).

In Eq. (5.33), H~ is the diagonal matrix

(e)-„-„=U[I —8(h)], (5.36)

A

(+Heisenberg) pp ~p Heisenberg +.Jp JQ

1

(CHeisenberg) i i ~P Heisenberg +JP

(5.37)

(5.38)

for 1 W 0. The notation

with B(h) equal to unity if h =0 and equal to zero
for the other N —1 translation vectors.

The Heisenberg Hamiltonian is the diagonal matrix

The boundary condition Eq. (5.30) extends the solu-
tion to translation vectors other than the N vectors
defining the crystal parallelpiped. This solution has
S' well defined with value (—,N)( —,N + I).

When Q AO, Eq. (5.31) cannot be solved exactly;
a perturbation theory is desirable, consistent with the
results of Sec. IV that indicate that U and W( l) are
the largest energy parameters. Hence, it is con-
venient to define one power of a perturbation param-
eter A. for each factor of J, T I„,or Jdh in the solu-
tion for Eand d(l). Thus,

A-= XA(h)e 'o'"
Q

h&0
(5.39)

d(1) = d (I) +d ' (I) +.
E(0) + E(l) +. . .

(5.47)

(5.48)

defines Ao for an energy parameter A (h). is the expansion of the solution in powers of A. . The
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with

H,de)=H +H'

- (0) A

H = Ep+ HU+ ~H + g p,g8

(5.49)

(5.50)

A A

Hamiltonian HU+~H is chosen as the unperturbed
Hamiltonian, except for an additive constant which is
the energy Fp of the saturated state.

Hence, we have

for the first-order spin-wave energies.
The remaining N —1 solutions of Eq. (5.55) for

d (I) are

d"'(I) =-d"'(1 h) -=I» =8(Th) (5.60)

where h distinguishes the solutions and runs over the
N —1 nonzero translation vectors. The correspond-
ing energies E(o) —= Eo(h) are given by

Here, we have

H = ~H —E0N

The perturbation in Eq. (5.49) is
ji

HHeisenberg + Hhop

(5.51)

(5.52)

E (h) =Eo+ U(h)

with excitation energy

U(h) = U —N)(h) +gpaB

N((h) = N(0t;ht)

(5.61)

(5.62a)

(5.62b)

with the total hopping Hamiltonian as
A A A

Hhop Hssh HCsh + HCdh (5.53a)

The solution for Di is D&o =Di(o (h), with

Dj (h) =N ' 5(1~&„'h)exp(iQ R&) (5.63)

Hhop Hhop ~0 Hubbard

Also, we have
I\

HHeisenberg = HHeisenberg EP Heisenberg

(5.53b)

(5.54)

An alternative choice is to take advantage of the
fact that HH„„„b„gis diagonal and add it to the right-
hand side of Eq. (5.51) while removing it from Eq.
(5.52). Then Heisenberg exchange is included in the
zero-order results; however, there is no gain in the
speed of convergence of the perturbation theory since
H„hand Hc,h cannot be handled exactly and includes
transitions as strong or stronger than those of
Heisenberg exchange.

For fixed Q, the unperturbed eigenvalue equation

H"'d~'& = E"'d"' (5.55)

has N solutions; the lowest-energy solution is nonde-
generate and is given by

d(o) d(o) ( I.0) 0) 5(1

with energy E(o) =E(o)(0) given by

E'"(0) =Eo+g p,aB

(5.56)

(5.57)

independent of Q.
The corresponding solution for the constants DJ of

Eqs. (5.7) and (5.8) is

describing an ionic state with fixed separation h
between vacant and doubly occupied sites. The
center of mass R J of the pair propagates-with wave
vector Q; all other sites have one electron of up spin.

By varying Q and h, a total of N(N —1) ionic
states are obtained in addition to the N spin-wave
states. Together they comprise a basis of N' states.

The zero-order excitation energy U(h) given by
Eq. (5.62) is

U —W((h)+(2)J))(h) +gpaB

with W)(h) = W(0t;ht). It represents the cost to re-
verse an up spin on a singly occupied site, and
transfer it to a site displaced by h; energy U is gained
by the double occupation; but W((h) is lost. The
ionic states of lowest energy are those of largest W;
i.e., smallest ) h ); the degeneracy will be the coordi-
nation number for the lattice, if the field is zero. As
) h ) increases, U(h) increases; for large ) h ),
U(h) Uand a quasicontinuum of ionic states is
realized (Stoner modes).

The ionic states Eq. (5.63) have S' with value

(2 N)(-N —1); from general symmetry arguments it
1 1

can be shown that this remains true for the exact
solution of Eq. (5.31).

A schematic picture of the zero-order energies of
the spin waves and ionic states is given in Fig. 1.

D(0) g N
—&12e' J

IJ IJ (S.S8)
VI. PERTURBED SPIN-%A VE ENERGIES

describing simple spin waves. Double occupation of
any site is precluded by the h,j- factor. .

Applying first-order perturbation theory yields the
familiar result

The effects of the hopping terms will be examined
here; formally, the first-order states and the second-
and third-order energies will be obtained.

Perturbation theory yields thc result

E(' (0) =2 XJ(h) sin2(2 Q h) (5.59) d (1'0) = 2i sin 2—Q 1
. L(1)
U(l)

(6.1)
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L (T) = T (I ) + I (T), (6.2)

for the first-order spin-wave coefficients for d(l).
Here,

p+U

Ep+ U( h~) (h ) EXCITON

and

A =-(At+A i) (6.3)
Ep + U (ht)

STATES

for any energy parameter A„.
The admixture of ionic states onto the. simple

spin-waves is displayed in Eq. (6.1); inhibiting the
hopping is the single-site Coulomb repulsion U.

For the second-order energy, a computation yields

Et"(0) = —4 XL(h) sin11Q h
h

where

L(h) =L'(h)/U(h)

(6.4)

(6.5)

Eo
SPIN
V/AVES

The lowering of the spin-wave energy by Et21(0)

can be interpreted as follows: starting from magnetic
saturation, an electron at the top of the band is

placed at the bottom with spin reversed. A large
bandwidth li.e., ~

T(h)
~

large] yields a large reduc-
tion in energy. Since U inhibits the hopping
processes, a large Uenhances the stability of the sa-
turated state; however, stability cannot occur without
the exchange effects of J, since Et1'(0) is negative.

Double-hop effects first appear in third order. The
standard formula yields, after a lengthy computa-
tion, the result

(6.6)

The double-hop contribution is

The last term is. due to single hops only

E,'„"=4 $ X G(l, h)f(h, I, Q)
h&07WO, h

with

(6.10)

FIG. 1. Drawing (schematic) ot the zero-order energies
ot' the elementary excitations tor the special case ot' the

model, in zero external t'ield. The energies ot' the spin

waves and excitons are independent ot the wave vector Q
characterizing the propagation ot the reversed spin. For
fixed Q, the spin-wave state is nondegenerate and has the

energy Eo of the saturated magnetic state. Each length
~

h
~

defines an exciton level ot energy I;0+ U(h) = I:0
+ U(h) +(2)J(h). The relevant relations are Eqs. (5.57),

(5.61), (5.62), and (3.22).

Edj, =4 $ Jdt, (h) L (h)
h

&& sin'(-'Q ' h)

L(h) = L(h)/U(h)

(6.7)

(6.8)

G(h, l) =L(h)L(l)l(1 —h)

f(11, I, Q) =cos —,Q (11—I) —
—, cosQ h

——cosQ. I
2

(6.11)

(6.12)

Comparing Eqs. (6.7) and (5.59) shows that Edtsj

differs from the simple spin-wave energy only by the
factor 2L (h) in the sum on h. This result can be
interpreted by noting that the combination of single
hop, folio~ed by double hop, followed by single hop
is equivalent to a mutual spin flip of electrons of op-
posite spin on the pair of sites. Hence, it is to be ex-
pected that Ed~h' has the same sign and form as the
lowest-order exchange result E"'(0).

The middle term of Eq. (6.6) is defined by

The speed of convergence can be ascertained by
noting that the third-order spin wave energy Edh', Eq.
(6.7), is of identical form to E"', except for the addi-
tional factor 2L'(h)/U'(h). Estimates of T(h),
l(h), and Udiscussed in Sec. IV, indicate that
L (h) = L(h)/U(h) is small so that terms beyond
the second-order terms are likely not to be signifi-
cant. Similar remarks hold for the other two contri-
butions to the third-order energy in Eq. (6.6).

VII. STABILITY OF THE SATURATED STATE
Etta jsegsj ra 4Jo g L ( 11 ) sin'(

1 Q h)
- h

(6.9)
A. Criterion to second order

and is positive for Q near zero. From Eqs. (5.57), (5.59), and (6.4), the spin-wave
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energy is

E(0) = Eo+gpaB +2 XF(h) sin'T~Q h (7.1)

VIII. IONIC STATES

A. First-order energies

to second order in A. , with

F(h) =J(h) —L(h) (7.2)

Jo-Jo-2(L, -Lo), (7.3)

Then, for zero field, the stability condition, Eq.
(5.6) is that

Following the reasoning at the end of Sec. V, the
zero-order ionic states are linear combinations of the
s ( h ) states

~
h ) with identical

~
h ~. For the triclinic

or monoclinic lattices, s ( h ) = 2, corres ponding to
linear combinations of

~ h) and
~

—h).
In general, a partial diagonalization of the perturba-

tion matrix may be achieved from the two 1inear

corn binatiops

using the notation of Eq. (5.39). Stability must occur
if F(h) )0 for all h.

B. Stiffness constant

Expanding about Q = 0 yields

(h+)' =2 ' '(e'~[h) +e '~[ —h))

Then, we have

(h+) H') h )' =0

provided the angle p is defined by

(8.1)

(8.2)

(8.3)

3

E(0) = EO +g PBB + x D, Q,
' (7.4)

From the matrix elements of H', an equivalent de-
finition of p is

s=I

omitting terms cubic in Q or higher, and including
terms to second order in A. . The indices s =1,2, 3,
denote Cartesian components of Q. The stiffness
constants D, are defined by

tan2p=2[L(2h)/I'(h)] sinQ h

where

I (h) =21(2h) cosQ h —J „(h)

(8.4)

(8.5)

D, =-, QF(h)h2 (7.5)

For a cubic crystal, D] = D2 = D3 = D so that

D=-,' yF(h)lhl' (7.6)

C. Short-range interactions

Assuming that nearest-neighbor energy parameters
dominate those of more distant neighbors, Eq. (S.S9)
reduces to the result

The angle p will be chosen n& 2p~—m, so that

p( —h) = —p(h). In Eq. (8.1), h varies over the

—, (W —I) nonzero translation vectors in a selected

half parallepiped of the crystal.
The combinations Eq. (8.1) form the correct zero-

order states in the following circumstances: (i) when
s ( h ) = 2; (ii) when the single-hopping interactions
are short range [i.e., l(1) =0 = T(l) for

~
l

~
greater

than the nearest-neighbor distance]; (iii) in the limit
of strong magnetic field. [Orbital effects then pro-
duce —s(h) doublets of the form Eq. (8.1).]

In the remainder of this section, it will be assumed
that one of these three cases applies. Then standard
degenerate perturbation theory yields the first-order
energies

E ' (0) =16Jsin (—Qa) (7.7)
with

E,"'(h)=J, + (h), (8.6)

I

for a fcc lattice of cubic side a. Here, J is the
Heisenberg exchange parameter for nearest neigh-
bors, and Q is chosen along a crystal axis.

Similarly, Eq. (6.4) reduces to

o.(h) = [4L (2h) sin (Q h) +I (h)l'"

defining the resonance energy for oscillations
between

~ h) and
~

—h).
For Q =0, the value of o.(h) is

(8.7)

E'2~(0) = —32L sin'( —'Qa) (7.8) ciao( h ) = ~21 (2h ) Jdh( h ) ~; (8.8)

Hence, stability holds (up to second order in h, ) if
J ) 2L, for zero field.

As ( Q ) increases from zero, o.(h} increases if

o. , (h) = [2L (2h) —1(2h}I (h)]/oo(h) (8.9)
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is positive; if it is negative, a (h) decreases. Also,
1'0(h) is the value of 1'(h) when Q=O. An ex-
tremum is reached when

ENERGY

cos(Q h) --f(Zh)/G(h)

for a given direction, with

G(h) - [L2(2h) —l2(2h)l/Jdb(h)

(8.10)

(8.11)

EP + U {hI)

~Ql

K~(h])

,-„,~ LOWEST
EXC ITON

STYLITES

K {hi)

The extremum is,a maximum (minimum), if 0.)(h)
is positive (negative). The vaiue of a.(h) at the ex-
tremum is

u- (h) —2IL(2h) Ill +(-,' Jd),(h)G '(h)
I (8 12)

Figure 2 provides a schematic picture of the spin-
wave and ionic-state energies.

Ep

(~g )

Q~O

SP IN

WAVES

—(lg)
0

B. Exciton character of the ionic states

The extra electron on the doubly occupied site can
be vie~ed as bound to the vacant site. From Eqs,
(5.61) and (5.62), the zero-order energy is

U(h) = U —W(h) + (-, )J))(h) +g ps8 (8.13)

Letting I h+) be the actuai solutions for the ionic
(or exciton) states, then

) I h )(0) +
I h )(1) + (8.14)

denotes its expansion in powers of X. The result for
the first-. order contribution is

above that of the saturated state. The ground exci-
tonic state (nearest-neighbor h) has ionization ehergy
W(h) —(-, )J))(h). As I h I oo, the exciton levels

approach the energy Eo+ U +g)Ma8.

FIG. 2. Energies of the spin waves and the lowest exciton
level to first order, in zero external field (schematic). The
drawing applies to a fcc crystal with Q in the [111]direction.
The spin-wave energies are given by Eq. (5.59). The sketch
for the lowest pair of exciton levels is for the short-range in-
teraction case. Then Eqs. {8.1) and (8.6) give the correct
zero-order states and first-order energies. The splitting of
the pair is due to hopping processes.

1

with c.c. denoting complex conjugate. The energy
parameter K(h, l) is defined by

with

K(h, 1) =S(h+l)e""" +" ' ) (8.20)

S(l) =21(l) cos(2Q 1)—2iL(T) sinQ 1 . (8.21)

ln Eq. (8.18), the sum on l is over the half parallel-
plped.

Finally the last term in Eq. (8.15) is the admixture
of "antisymmetric states"

I 1 )'" onto I h+) "',
I h+) (') =

I h+)g„+I h+)++ I h+) . (8.15)
Ih+& = XK+(h, l)IT)(0), (8.22)

The first term is the admixture of the sp'in wave
onto the ionic state

I h+), = K+(h) I0&,

Kp( h) =23 2L (h) (sin
2 Q h) sinp

K (h) =23 ~L(h)(sin
2 Q h) cosP

(8.16)

(8.17a)

(8.17b)

The second term in Eq. (8,15) is the admixture of
"symmetric" states IT+)(0) onto I

h+)(0) and is given
by

1 K(h, —1) —K(h, l)
2 W(h) —W(l)

(8.23)

C. Second-order energy

The admixture of IT+)( ' and I
l )') onto I h+)' '

varies as I fV(h) —W(T) I
'. For nearest neighbor h

and large I l I, this approaches I W'(h)
I

' showing the
smail admixture of such.

I l).

Ih+&. = X K+(h. i)Ii.&"' .
lWO, h

K+ h 1
1 K(h, 1) +K(h, —T)

W(h) —W( 1)

(8.18)

(8.19)

Standard perturbation theory gives the result

E+() (h) =E+() (h, 0)+2 X E+'(h, l)
l&0, h

(8.24)
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for the second-order energy of the ionic states. Here,
we have

zone edge is reached if

U ( W+(—)J —24L
L2 hE+2~ (h, 0) =8 sin'(T~Q h) sin p
U(h)

8L hE'2 (h, 0) = sin'( —Q h) cos P
U(h)

and

(2) —— 1 iK(h, 1) + K(—h, 1) i

lP'( I ) —11'(h )

(8.25a)

(8.25b)

(8.26)

This requires a large stiffness constant and that U
be not too much larger than -W.

IX. COMPARISON WITH OTHER WORK

A. Ruijgrok

with the sum in Eq. (8.24) taken over the half paral-
lelpiped.

The energy denominators in Eqs. (8.25) and (8.26)
indicate that [EP~ (h, l) [ will exceed ~E+ (h, 0) ~.

For small
~ Q ~, E+o'(h, 1) wil[ be negative, while

E+ (h, 0) is always positive. Hence, it is to be ex-
pected that E+t (h) is a parabolic function of Q with
a maximum at Q =0.

D. Short-range interactions

E. Entry of spin waves into
the exciton modes

Consider a fcc lattice, with Q along the [111]direc-
tion and only short-range interactions present. To
second order in A. , the spin-wave energy is a max-
imum at the zone edge, with value

E(0) = Eo+g paB +12(J—2L) (8.27)

1S

The ground-state exciton energy at the zone edge

E (h) =Ep+ U —W' —(q)J +g paB (8.28)

to first order in A. , using Jd~ =J.
The spin waves enter the exciton region before the

If simple hopping parameters involving separations
greater than nearest neighbors are discarded, Eq.
(8.4) yields P= —n and Eq. (8.1) represents simple

symmetric and antisymmetric combinations of
~ h)

and
~

—h), The resonance energy o.(h) is Jdz(h).
The resonance effect can be viewed as a pair of

electrons jumping simultaneously back and forth
from one site to a site displaced by h, with period,
27r k/Jdq(h), analogous to the jumping back and forth
of the electron in the ionized hydrogen molecule.

The symmetric state
~ h+) t ~ has energy 2Jdt, above

the antisymmetric state
~

h ) to~. The lower energy of
Et'~ (h) is due to the fact that

~
h ) corresponds to a

smaller probability for the electron pair to be close
together; there is a resultant reduction in the
Coulomb repulsion between the pair.

Ruijgrok's study is closest to that of Secs. II and
III. He specializes to a one-band model at the outset
and gives a complete derivation of all two-site in-
teractions obtainable from the Coulomb repulsion.

The reduced Hamiltonian [his Eq. (3.8)] is
equivalent to the model Hamiltonian Eq. (2.26) here,
except that intra-atomic exchange is absent in his
one-band model, and he uses a paramagnetic basis.

A molecular-field approximation is made on the re-
duced Hamiltonian, replacing terms quartic in crea-
tion and absorption Wannier operators by quadratic
terms. The result is a simplification of the reduced
Hamiltonian corresponding to noninteracting elec-
trons with spin-dependent energies. Thus, many-
electron effects are not present, but the scheme can
serve as a first-principles derivation of spin-split
bands, alternative to the LEA.

At the end of the paper, a different simplification
of the reduced Hamiltonian is given. The parameters
U, I, Jd&, and W are set to zero and spin waves are
found from the Heisenberg Hamiltonian and the sim-
ple hopping terms. However, the dropping of U
prevents the spin-wave energies from having the
correct dependence on the hopping effects (second
order in X terms in the present study).

B. Chen and Bailyn

Nearest to the special case af the model considered
in Secs. V to VIII is the one-band model of Chen and
Bailyn. " A one-dimensional lattice has a half-filled
band; the electrons interact via nearest-neighbor
two-site Wannier integrals. Their model is identical
to the special case of this study if the latter is special-
ized to one dimension and if only nearest-neighbor
interactions are included for all energy parameters.

Analytic results are found for the spin-wave ener-
gies when I, Jdb, and J' —= W —( 2

J) all vanish and

with the additional assumption U » I Tl and
U » J [see their Eq. (5.10)]. Their results are
similar to Eqs. (5.59) and (6.4) of the present study,
when the latter results are applied to their conditions.
An exact correspondence with their results is ob-
tained if the modification in the perturbation theory
discussed after Eq. (5.54) is used.
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Chen and Bailyn also obtain numerical results for
the spin-wave energies for nonzero I, Jdh, and J. The
double-hop processes increase the energy (their Fig.
12) in harmony with the analytic result Eq. (6.6).
Single hops due to Coulomb repulsion decrease the
energy (their Fig. 13), agreeing with Eq. (6.4). The
energies increase with 8 in their numerical results
(Fig. 11), which is consistent with Eq. (6.4) of the
present work.

For the ionic states, they find simple symmetric
and antisymmetric combinations of electron-hole
states whose translation vectors differ in sign. This
agrees with the short-range interaction result of Sec.
VIII D. They find that Jdh serves to split the energies
of the symmetric and antisymmetric states, agreeing
with the explicit analytic results in Eqs. (8.5), (8.6),
and (8.7) of the present study. In addition, the latter
equations show that longer-range effects of the
Coulomb single hops [characterized by 1(2 h)] also
contribute to the splitting.

In a later paper, Chen and Bailyn' generalize their
work to include long-range interactions, with I and
Jdh set to zero. Some of the new features found
parallel the results in the present paper, such as the
existence of a set of discrete exciton levels above the
ground exciton level.

it is shown in Secs. V —VIII that finding the elemen-
tary excitations can be reduced to Rayleigh-
Schrodinger perturbation theory. The perturbation
parameter A. is proportional to the strength of the ex-
change and/or hopping parameters.

Explicit analytic results are obtained for the spin-

wave energies (up to third order) and the ionic-state
or exciton energies (up to second order) in Secs. Vll
and VIII. These results generalize those of other stu-

dies (Sec. IX) to three dimensions and long-range in-

teractions. Analytic results of this study complement
numerical results of Chen and Bailyn24 when the
former are applied to one dimension.

To complete the bridge connecting the model Ham-

iltonian approach to LEA band theory, work is neces-
sary in two directions:

(i) Special cases of the model such as that exam-
ined in Secs. V —VIII need to include intra-atomic ex-
change and arbitrary filling of the band.

(ii) The optimum choice for the local self-
consistent potential [Eq. (2.11)] needs to be con-
sidered such that the 3-center and 4-center terms
[Eq. (2.25)] and the terms of higher order in k have

the smallest possible effect for the property to be cal-

culated.

C. paul

Prior to the work of Chen and Bailyn, Paul" had
considered the same one-dimensional model and had
obtained some results similar to theirs. He also ob-
tains some general results for arbitrary number of re-
versed spins.

For one reversed spin, his difference equations
[Eq. (13)] are equivalent to Eq. (5.8) if the latter is
applied to one dimension. His result for the spin-
wave energy [Eq. (32)] is similar to Eq. (7.1).

X. CONCLUSION

A model Hamiltonian [Eq. (2.26)] has been
derived that contains all two-site interactions arising
from the Coulomb repulsion between electron pairs;
it generalizes many earlier models in the inclusion
of intra-atomic exchange. The parameters of the
model are expressed as matrix elements of spin-split
band states derived from the LEA, enabling inequali-
ties between parameters to be found, as listed in Sec.
IV.

A special case of the model (half-filled single
band) is considered. Consistent with the inequalities,

APPENDIX

P (fg) —= &(ft;g ]) —II'(f t;g l) (Al)

Each term on the right-hand side is first order in the
overlap.

The set of spatial wave functions pd (r), (with the
center index d varying) forms a complete set of spa-
tial functions for either choice of the spin 0-.

The spatial function p~l(r ) can then be expanded
in the set of states pdl(r). Letting bd denote the ex-
pansion coefficients, one can write

y„(r)=$ by d(tr) (A2)

While bf is zero order in the overlap, all the other
bd are first order. Insertation of Eq. (A2) into Eq.
(Al) readily yields the result that P(fg) is second
order.

It is desired to verify the statement made at the
end of Sec. III C concerning two integrals that differ
only in that a spin index iri a wave function of one
differs from the spin index in the corresponding wave
function of the other.

To show that the order of overlap of the difference
is one order higher than that of the integrals them-
selves, it is sufficient to cite an example. Consider
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