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Low-temperature renormalization-group study of the random-axis model
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Momentum-shell recursion relations valid for low temperatures and small anisotropy are

generated for the random-axis model of amorphous magnetisrn. The fixed-point structure of
these relations suggests that ferromagnetism is absent below four dimensions. The critical

behavior along the ferromagnetic —spin-glass phase boundary above four dimensions is explored,
and, at least to first order in e = d —4, the exponents, hyperscaling law, and behavior of the

longitudinal susceptibility are identical to a nonrandom model in two dimensions less. We also

present an attempt at a Mermin-Wagner proof of the absence of ferromagnetism below four di-

mensions, utilizing the replica method.

I. INTRODUCTION

The random-axis model was introduced by Harris,
Plischke, and Zuckermann' to describe the magnetic
properties of amorphous alloys containing rare-earth
elements with asymmetric charge distributions (e.g. ,
Tb or Dy). The asymmetry leads to a local easy axis
of magnetization when the rare-earth ion interacts
with the crystal field. Given the amorphous nature
of the system one would expect this local easy axis to
vary randomly from site to site. Harris et af. pro-
posed the following Hamiltonian to incorporate the
random-axis of magnetization:

Z =—J $ s; sj Dg(x s)—' (].i)
(i J) i

where s is an n-component unit spin. The nearest-
neighbor coupling J is assumed to be uniform and
the randomness is introduced in the second term,
where x; is a random direction of site i. The direc-
tions x; are assumed to be uncorrelated from site to
site, and distributed uniformly over a unit sphere.
Fluctuations in the anisotropy strength D are ignored.
Numerical simulations2 support the assumption of no
correlations and a uniform distribution.

Previous work on this model has involved mean-
field theory, numerical simulations, and
renormalization-group calculations. A mean-field cal-
culation by Harris and Zobin' predicts a phase di-
agram with both spin-glass and ferromagnetic states,
depending on the degree of disorder. However, the
classical zero-temperature mean-field analysis of Cal-
len, Liu, and Cullen4 indicates that the spin-glass
state is metastable and the ground state is ferromag-
netic for any value of anistropy. Patterson et al. '
have also found only a ferromagnetic ground state by
analyzing a local-mean-field approximation.

Monte Carlo calculations by Harris and Zobin6
showed that the ferromagnetic state has lower energy

than the spin-glass state for all ratios of D/J, but the
difference in energy is comparable to round-off er-
rors. Chi and Alben' have also numerically simulat-
ed the model and found that the spin-glass state is
metastable, while the ground state is ferromagnetic
even at large anisotropy.

The critical properties of-the paramagnetic to fer-
romagnetic transition have been investigated within a
4 —~ expansion by Aharony. ' Using
renormalization-group techniques, he generated re-
cursion relations and discovered that all flows from
physically realizable initial Hamiltonians were "to
infinity, " or, more precisely, out of the range of vali-
dity of the e expansion. Chen and Lubensky9 as-
sumed there is no magnetization for suSciently large
anisotropy, and derived an effective free energy of
the same form as the random-bond Ising spin-glass.
They speculated that the runaway seen by Aharony
leads to the spin-glass fixed point studied by Harris,
Lubensky, and Chen. '

This paper presents the details of a study of this
problem using a low-temperature renormalization
group and an expansion in powers of e = d —4. The
results were summarized in a recent Letter by Pel-
covits, Pytte and Rudnick, "who found that in a
quenched system, random anisotropy with an isotro-
pic distribution of axes destroys ferromagnetism in
fewer than four dimensions. The low-temperature
phase may instead be an Edwards-Anderson (EA)
spin-glass. ' In more than four dimensions, either
ferromagnetic or spin-glass ordering is found,
depending on the degree of disorder.

A schematic phase diagram above four dimensions
which summarizes our conclusions is shown in Fig.
1, where we plot D' vs T (the results are indepen-
dent of the sign of D). The a = d —4 expansion lo-
cates a fixed point at T"=0, D ' = 0 (a) that governs
the behavior at the phase boundary separating the
ferromagnetic state from a low-temperature large-
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ing momentum-shell recursion relations, following an
adaption of the method used by Nelson and Pelcov-
its. 0 Because the approach is based on spin-wave
ideas, ' we can only treat small values of the tem-
perature and anisotropy, i.e. , r/J, D/J « 1.

Amorphous magnetic alloys made by sputtering are
quenched (versus annealed) random systems, where
the impurities are fixed and cannot immediately reach
thermal equilibrium with the host system. Computa-
tion of a thermodynamic quantity in a quenched sys-
tem requires first a calculation of the quantity for a
fixed configuration of impurities, followed by a
configurational averaging. " Thus in the quenched
random-axis model, the magnetization is given by

Fe rrorna g net ic

(2.1)

FIG. 1. Schematic phase diagram and renormalization-

group flows for the random-axis model above four dimen-

sions. Point A is the Gaussian fixed point, while point 8 is a

fixed point located at D = O(d —4), T =0. Point C is a

multicritical point.

anisotropy state. An exact n = ~ solution" explicitly
demonstrates that the latter state is an EA spin-glass.
The ferromagnetic-paramagnetic transition has been
studied by an expansion in powers of ~ =6 —d. '

The exponents for the ferromagnetic —spin-glass
transition coincide at least to first order in ~ = d —4
with the exponents for nonrandom n-vector
modelsis, is, i9 in two fewer dimensions. As d ap-
proaches four, this phase boundary drops to D =0,
and the ferromagnetic phase disappears.

This paper is organized as follows: in Sec. II we
construct momentum-shell recursion relations for the
random-axis model in d dimensions valid for low

temperatures and small values of the anisotropy. In
Sec. III we use these recursion equations to calculate
the critical exponents and hyperscaling relation along
the ferromagnetic —spin-glass phase boundary, and to
derive the asymptotic behavior of the longitudinal
susceptibility in the ferromagnetic phase. We oQ'er

some concluding remarks in Sec. IV.
In the Appendix we present an attempt at a

Mermin-Wagner' " type proof of the absence of fer-
romagnetism below four dimensions in this model.
However, our demonstration utilizes the replica trick,
and thus cannot be considered an ironclad proof.

Ideally we would like to integrate over the random
parameters first and remain with an efII'ective transla-
tionally invariant system. This integration is, in. gen-
eral, very difticult because of the Z ' factor in Eq.
(2.1), which is a function of the axis configuration.
Usually replicas are introduced to accomplish this in-
tegration. 2~ (The replica method will be described in
the Appendix. ) Recursion relations, however, are
straightforward to generate, 2' without the use of the
replica trick. We characterize the system by the pro-
bability distribution of its couplings, and generate
renormalization-group equations for the distribu-
tion. '" This procedure does indeed correspond to the
quenched problem and is usually implemented by
developing recursion relations for the cumulants of
the distribution. Specifically, we will calculate the
new couplings after integrating out short-wavelength
degrees of freedom, and then construct equations
governing the renormalization of the cumulants.

The reduced Hamiltonian arising from the continu-
um version of Eq. (1.1) is

Z =—— = d'x — (B,s)' — (x s)'
k~T 2T " 2T

(2.2)

where s =1. Following Refs. 15 and 20, we write
s = (o, Fr) and assume that the mean magnetization
is along the cr direction with small fluctuations about
this direction, i.e., (m ) « 1. Using the fixed-length
constraint

II. MOMENTUM-SHELL RECURSION RELATIONS (2.3)

We implement the Migdal-Polyakov low-
temperature renormalization group' ' by construct-

we integrate out o-, and expand Z in powers of m.

We then obtain
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ta

d"x — (8 lr)2 — (H. 8 n )2+ ' (nonrandom terms)
~J 2T " 2T

n —1 n-1

X (x; —x~)lr; +2 Xxjxjstl lfj +'2 X xtx~rr; —x~1T Xxl1ll+
2T j j)J

(2.4)

(x;2 —x2), =0, (x,x ), =0 (2.5)

where ( ), denotes angular averaging. Physically,
this statement means that the system is macroscopi-
cally isotropic. Additionally, we note the presence of
the term linear in m, which corresponds to a
transverse random-field with zero mean, and links
this problem to the random field mode-l, where it has
also been shown that the lower critical dimensionality
is 4. Indeed, we shall see that this term plays the
most impo'rtant role in the theory.

For compact notation we define

~here x; is the i th component of x, and x is the
component of x along the o- direction.

We observe two important features of Eq. (2.4).
First, upon averaging over the random directions, the
theory is massless. This can be shown to all orders, "
and is easily seen at lowest order since

Z+ —
I dxT~

X+—
~ dx I ——~ ——~4+h

T,J, 2 8 (2.11)

where Ed = 2 "+'lr d 2/1'(d/2) and the graphs have
been evaluated in d dimensions. The graphs entering
Eq. (2.10) are shown in Fig. 2. The graph propor-
tional to D' arises from the contraction of (n B„lr)'
with two terms linear in 2, and thus the integrand is
proportional to 1/q4, where q is the momentum car-
ried by the internal line. This double propagator
graphically illustrates why the lower critical dimen-
sionality is 4 instead of 2.

To determine the spin-rescaling factor g, we add a
magnetic field h to k,

A;=—x. —x

aij xi' t j +J
xjx (2.6)

We generate a recursion relation for h/Thy consider-
ing the renormalization of (h/2 T) lr ', obtaining after
averaging over the randomness,

The angular averages of the above quantities are all

zero. The following averages are also zero:

(A;B,j), = (A;8; ), = (B,JB; ), =0

%e also note that

D2 (A;2), =4k

(BIJBkl) c /1'(gljgjl + gllgjk)

D2(8; Bj ), =hgj

where

5 = D2/n (n +2)

(2.7)

(2.g)

(2.9)
(b)

+ O(T, D4) (2.10)

and the quantities in angular brackets are both at the
same site, since axes at different sites are uncorrelat-
cd.

%e arrive at a recursion relation for T by consider-
ing the renormalization of (B„K)2. This procedure
yields, after averaging over the axes,

t

T' T,
= f'b —+lnb Kd+lnb Itdb,

FIG. 2. Graphs entering Eq. (2.10). Slashes denote
derivatives. (a) Graph also appearing in nonrandom system.

(b) Graph proportional to D2, formed by contracting a

four-point coupling term with two random transverse-Beld

terms and averaging. The wavy lines denote 8j [see Eq.
(2.6)], while the open circle joining them corresponds to an-

gular averaging.
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g2b
—d

h'
2T'

+— Kd lnb +— (n —2)
'

Ed lnb
1 D' (A ). 1 D' (BJ).
2 T 1+h 2 T 1+h

l D2 Kglnb
[(n —1) (8,2 ), +2 (8 ),] (2.12)

The graphs corresponding to the last five terms in the
right-hand side of the above equation appear in Figs.
3(a) —3(e), respectively. The first two terms in the
right-hand side appear even when D =0.'0

Combining terms in Eq. (2.12), we find

of the probability distribution of x. First, consider
the renormalization of (D/T) 8, rr;, which yields the
equation

1

D' , D D D2
, 8; '=f 8; — —A;8; — BJB;T'" T" T '" T

h'
2b d h + h (n —1)(d, + T) & 1 bT' T 2T (1+h)2 D+ 8; (B&2 +28i 8, ) (2.16)

+ hO(h T TA) (2.13)

h'/T'=~h/T . (2.14)

Combining Eqs. (2.13) and (2.14), we then obtain
for the spin-rescaling factor as h 0,

$ = b [1 — (n —1) (T +—b )Ed ln b + 0 (T2, 62, Tb,)]

13y rotational symmetry (which is preserved in the
configurationally averaged system) the magnetic field
renormalizes trivially as

for a fixed configuration of random-axes. The graphs
. entering Eq. (2.16) appear in Fig. 4(a).

Power-counting arguments indicate that cumulants
involving D to a power greater than 2 are irrelevant
below three dimensions. Though at the moment we
have not established an ~ expansion about any partic-
ular dimension, we will disregard all but the cumu-

(2.15) (a)

To complete the renormalization-group transforma-
tion, we derive recursion equations for the cumulants

(b)

(a) (c)

(c)

(e)

FIG, 3. Graphs entering Eq. (2.12). Wavy lines denote
the random couplings 3;, B;, B&&.

FIG. 4. (a) Graphs contributing to Eq. (2, 16). (b) The
two relevant classes of graphs found by squaring Eq. (2.16)
and averaging. (c) Graph corresponding to higher-order ir-

relevant cumulant and thus not contributing to Eq. (2.17).
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lant proportional to D'. %e shall finally see that 4 is
the critical dimensionality, above which we will find a
nontrivial fixed point.

The recursion relation for the cumulant b defined
by Eq. (2.9) is derived by squaring Eq. (2.16) and
averaging over the random-axes. This procedure
yields the recursion relation

1/v = zg ~ ~ + 0 (e') (3.1)

The determination of q illustrates the mechanism of
the "dangerous irrelevant variable, " ' namely, the
temperature, prevalent in this model. Consider the
behavior of the connected correlation function
G, (x,x'),

i 1

2
g'b ~ —+ Kglnb

T2 T T2
(2.17)

G, (x,x') = ((s(x) ~ s (x'))), —((s(x)) (s(x'))),

(3.2)

and is illustrated diagrammatically in Fig. 4(b). A di-

agram, which does not enter Eq. (2.17) because of
the irrelevancy of higher-order cumulants, is shown
in Fig. 4(c).

Combining Eqs. (2.10), (2.15), and (2.17), we

derive diN'erential recursion relations for T and 6 by
taking the limit b 1,

dT
dl

(d ——2) T + (n —2) (T + b ) TKq

which in Fourier space obeys the following scaling
law near the fixed point, Eq. (2.19),

G (k T pe) yd [tn -l)/(n—2)icG— (kl Ty T pe)

(3.3)

where we have used Eq. (2.15). The eigenvalue h. r
about the fixed point Eq. (2.19) is found to be

+O(T', T~', ST'), (2.18a)

dh
dl

=—(d —4)h, +5[(n -2)(T+b,) TlKg—

+0(AT' 6'T) (2.18b)

There are two fixed points for the above equations,

T'=6'=0

d —4
K~(n —2)

(2.19)

(2.20)

The flows generated by Eq. (2.18) are illustrated in

Fig. 5. Above four dimensions the ferromagnetic
state is stable, as Aharony's calculation also demon-
strated. The fixed point Eq. (2.19) controls a phase
boundary separating the ferromagnetic phase from
the large anisotropy region. Below four dimensions,
the aligned state is unstable to spin-wave Quctuations.
However, the recursion relations cannot rule out a
state with nonzero magnetization and large transverse
Auctuations. %hereas in a uniform syste~ we would
not expect such a state, it could exist in a random
system. Thus a rigorous proof of the absence of any
ferromagnetism below four dimensions would be
very helpful here (see the Appendix).

D

III. CRITICAL BEHAVIOR

%e now explore the critical behavior at the boun-
dary separating the ferromagnetic phase from the
large anisotropy region using the recursion relations
in Eq. (2.18). Linearizing Eq. (2.18b) about the
fixed point, Eq. (2.19), we determine the exponent v.
To first order in e d —4 we find

FIG. 5. Renormalization-group flows generated by Eq.
(2.18): (a) be)oa four dimensions and (b) above four di-

mensions. Point A is the fixed point Eq. (2.19).
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X-, =—2+ O(e')

Choosing kb =1, Eq. (3.3) becomes

G, (k, T, A") —k +"" ' " ''G, (1,Tk' b")

However, a direct calculation shows that
G, (1,T', d ') —T' for small T'. Thus the scaling
behavior of G, (k, T, /2, ') is given by

G, (k, T, 5') —k

where

2)=e/(n —2) +O(e')

(3.4)

(3.5)

(3.6)

(3.7)

Another example of the shifting of the e6'ective
dimensionality by 2 appears in the behavior of the
longitudinal susceptibility Xi. In a nonrandom iso-
tropic n-vector model, XL diverges between two and
four dimensions as the applied field h 0,
specifically

(3.13)

as can be shown from spin-wave ' and
renormalization-group calculations. "" %e now con-
sider the scaling behavior of XL = XL/T in the
random-axis model near the fixed point
h'= T'=b, "=0, namely,

XL(Th, d) —b XL(Tb ' ', hb', bb ' ")
Comparing these results for v and q with those ob-
tained in Refs. 15, 18, and 19, we see that, at least to
first order in a, the exponents here are identical to
those of the nonrandom n vector in two dimensions
less. %e have not established an exact correspon-
dence to all orders in e, but the same correspondence
has been shown exactly in the random-Geld prob-
lem. ' The non-Gaussian exponents along this phase
boundary suggest that the large anisotropy phase is
not a continuation of the paramagnetic phase dis-
cussed in Aharony's work. s Indeed, an exact n = ~
solution" suggests that the large anisotropy phase is
an EA spin glass. "

%e have also found that hyperscaling is violated
along this phase boundary as in the magnetic transi-
tion in the random-field model, again arising from
the presence of the dangerous irrelevant temperature
variable. The singular part of the averaged free ener-

gy near the fixed point, Eq. (2.19), obeys
xg(T, h, dL) —h (3.16)

(3..14)

which can be derived from the scaling expression for
the free energy. The eigenvalues for T, 6, and h are
found from linearizing Eqs. (2.18a), (2.18b), and
(2.14), respectively. Choosing hb'= I, Eq. (3.14) be-
comes

X(, (T h, g) —h I X((Th'( )i, 1, gh I )

(3.15)

The divergence of XL between two and four dimen-
sions given by Eq. (3.13) would arise if XL, (0, 1,0) ~

were well behaved; However, a graphical expansion
shows that XL(T', I, 6') —6'/T' for small T', 5'.
Hence, the complete scaling behavior of XL is given
by

F(T, b.,) —b "F(Tb b„b'i")

where 4, measures the deviation from the fixed
point, namely,

(3.8)

(3.9)

which is equivalent to Eq. (3.13) if we let d d +2.
This result can also be established from spin-wave ar-
guments" and a direct calculation of XL (Ref. 14)
with the Nelson-Rudnick trajectory integral formal-
ism."

and v and h. r are given by Eqs. (3.1) and (3.4),
respectively. With the choice b.„b' "= I, Eq. (3.8)
becomes

(3.10)

The usual hyperscaling law d v =2 —e would result if
F(T, 1) approached a finite constant as T 0. How-

ever, a graphical expansion of F(T, 1) shows that it
diverges as I/Tas T 0, whereupon the scaling law

Eq. (3.10) becomes

F(T g ) g(d —2)vf(T') (3.1I)

(d —2) v=2 —a (3.12)

where f(0) is a finite constant. Thus we arrive at the
modified hyperscaling relation,

IV. CONCLUSIONS

The momentum-shell recursion relations construct-
ed in Sec. II indicated that 4 is the lower critical
dimensionality for ferromagnetic ordering in the
random-axis model. A similar conclusion for the
random-field model was established by Imry and
Ma. '5 Recently, Aharony has shown that fer-
romagnetism is absent below four dimensions in a
large class of systems including the random-axis
model and the random dipolar magnet.

Possible experimental realizations of the random-
axis model exist in the alloys DyCu, TbAg, Dywi,
and DyA1, ' which comprise a rare earth with an
asymmetric charge distribution and a nonmagnetic
host. The experimental situation in these systems is
still unclear; however, they may exhibit spin-glass
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behavior. The original example for the model was
TbFe2, which exhibits long-range order in three di-
mensions. "However, TbFe2 is ferrimagnetic, and a
realistic model would have to include iron-iron mag-
netic interactions and rare-earth —iron interactions,
whose eFects have not yet been studied.

As we noted earlier, the mean-field studies of the
model, excluding the work of Harris and Zobin, ' find
only a ferromagnetic state even at large anisotropy.
This result may not disagree with our phase diagram
of Fig. 1 slightly above four dimensions, which exhi-
bits a spin-glass phase. It has been suggested that the
spin-glass state in this model does not exist above six
dimensions. ' Within our theory, this suggestion is
very plausible, since the ferromagnetic-spin-glass
boundary located at D2 = O(d —4) could continue to
rise as the dimensionality, wiping out the spin-glass
phase at six dimensions. Also, if the exponents
along this boundary are indeed exactly equal to their
counterparts in the uniform system in two less di-,
mensions, they will become Gaussian at six dimen-
sions, and equal to the corresponding exponents
along the ferromagnetic-paramagnetic boundary. The
evidence for the existence of the spin-glass state in
this model would then be less compelling above six
dimensions. If the mean-field theory in this model
corresponds to infinite dimensionality as it does in
simple uniform systems, then its results could be un-
derstood in the context of our theory.
Note added in proof: Recent numerical work on this
model by M, C. Chi and T. Egami40 allowing
for collective spin reorientation suggests that ferro-
magnetism is unstable in the limit of large aniso-
tropy.

—h Xcose; (Al)

For the quenched system, the free energy is given by
2'

pF =Q—Jt df(lnz {Q,I0
(A2)

where
+2K

Z {y,) = g de, e-a~ (A3)

We now introduce the identity

inz= z I -0m

Bm

and replicate the system m times, writing

(A4)

(Z{f;j) =g g JI de; e a'+
i a 1

where

(AS)

out that state, a rigorous proof of the absence of fer-
romagnetism is needed. Following Schuster's analo-
gous proof for the random-field model, "we have
constructed a demonstration of the absence of fer-
romagnetism belo~ four dimensions, at the expense
of using the replica trick, "which makes the proof
less than ironclad.

We consider for simplicity the X- Y random-axis
model, but presumably the proof can be generalized
to higher n. Writing si and x; in terms of polar an-
gles 8; and Q; respectively, Eq. (1.1) becomes, in the
presence of a uniform applied field h,

& =—J g cos(8; —ej) —D Xcos'(8; —Q;)
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APPENDIX'. MERMIN-%AGNER "PROOF"

m

—J icos(8; —et )
a 1 (ij)

—D Xcos'(8;. —P;) —h Xcos 8&

(A6)
From Eqs. (A2) —(A6), we obtain for the free energy

where

pF= ' g-Jtde. .. '"- {.
gm

t

(A7)

m

H = X —J g cos(8; —ej ) —h Xcose; —Xg(8;)
a-1 (i,j) I I

(AS)
The ~=d —4 expansion suggested that four dimen-

sions is the lower critical dimensionality for fer-
romagnetism in the random-axis model. Ho~ever,
that calculation did not exclude the possibility of a
partially aligned state below four dimensions, where
M &0 but with large transverse fluctuations. To rule

and
t

p {g ) fe 27K

e ' =
i dQ, exp DP gcos2(8; —f )

a 1

(A9)
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Defining

I, a

we see from Eq. (A7) that

F =——— Z,~ ~ =——lim —lnZ, q,1 9 1 . 1

p Bm p~~m
(A10)

The choice, Eq. (A14), is necessary to obtain a useful
result. Dropping the factors U» in Eq. (A14) would
yield from Eq. (A12) the trivial inequality 1 &0. Us-
ing Eqs. (A13), (A14), and (A16), we evaluate Eq.
(A12) and obtain after summation over k and p, ,

m D2mmN' & k, TNM'(m) XX ~k'+ — m
(1 —8„,)

p, k kBT

i.e., the free energy of the original system is equal in
the limit m 0 to the free energy per degree of free-
dom of the system described by X .

Evaluating Eq. (A9), we obtain

g(tl, ) = Xcos2(ll; —8;e) +O(D')
16kgT p

(All)

The higher-order terms in D involve suf5cient
numbers of replica summations so as to not contri-
bute to our final result when m 0.

We use Bogoliubov's inequality in the form given
by Mermin" for classical systems,

(~~ ).& k, T[([c;~)).['i([c, [c",~.}}).,
(A12)

where ( ) denotes the statistical average in the
system described by &, [C;A ) is the Poisson brack-
et defined by

+ hM(m) (A17)

for a system with N spina. M(m) is defined from

m

M = lim M(m) = lim X g (cose, )m~ mm mg a

mN2 & ke TNM2(m) g [o.k2+ hM(m)] '

D2
+(m —1) ~k'+

8k' T

+ hM(m)

(A18)

and 0- is proportional to J and finite for the nearest-
neighbor interaction.

After explicitly summing over p, in Eq. (A17), we
find

Bc BA 0C 8A

98; 9L; 9L; 98;

(A13)

(A19)

Dividing both sides of Eq. (A19) by mN', we let
m 0 and N ~ and obtain the following inequality:

and L; is the angular momentum conjuga'te to 8; .
We choose the operators A and C as follows:

m —ik ~ R
A =A»(k) = X X U» sin8g e

a j
m

C = C»(k) = X $ U» LJ e
a j

(A14)

B B

(A15)

'B A,

Useful properties of U are

X U„=g„iJm, Ui
a

(A16)

where U is an orthogonal matrix which diagonalizes
an m x m matrix of the form

kg TM1&
(2~)d rrk2 y hM

D2 1

gk, T ( k'+hM)'

(A20)

where n is the volume per spin.
We let h 0 in Eq. (A20), and if D =0 we recover

the Hohenberg-M'ermin-Wagner result""" that
M=O for d ~2, except at T=O. Nonzero D
modifies this conclusion, forcing M =0 at d ~ 4 even
at zero temperature.

The above proof cannot be considered rigorous be-
cause of its use of the replica trick. Analytically con-
tinuing m 0 is risky in an inequality which might
change direction as m passes through one. However,
Eq. (A20) is consistent with our other calculations,
and we believe it is correct. A justification of the use
of replicas would be desirable. Alternatively. , we
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could avoid replicas completely by constructing an
inequality for an arbitrary configuration of random-
axes and then averaging over configurations. This
approach, however, would require a clever choice (as
yet undiscovered) of the operators A and C entering

Eq. (A12) to facilitate the configurational averaging.
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