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Two methods are'used to obtain high-temperature series for Ising systems with quenched ran-

domness. One is a direct averaging' of a linked-cluster expansion, the other combines the primi-

tive high-temperature expansion and the Edward replica trick. After a bond renormalization,

the second expansion is seen to be identical to the first term by term. The series are developed

for the case of a spin-glass model in which the bonds have a probability which is symmetrically

distributed about zero. Specifically, series for the free energy and appropriately chosen suscepti-

bility are given to 11th and 10th orders, respectively, for a hypercubic lattice in any dimension

and for any symmetrical bond distribution.

I. INTRODUCTION B. Series

A. Problem

In this paper, we build upon. the work of Fisch, '

and also that of Fisch and Harris, 2 and of Cherry and
Domb' to develop high-temperature series for Ising
systems with quenched randomness. These authors
studied the case in which the probability distribution
for a single nearest-neighbor bond P(J) is given by a
pair of 5 functions at J equal to +~ J~~. Here we ex-
tend these calculations to a general distribution, sym-
metrical about zero coupling, i.e., a P(J) which
obeys

As one might expect, the natural variables to use
in the series are the ones which fully describe the
average properties of two Ising spins o-; and o-, cou-
pled together with a Hamiltonian J;,o-;o-, . These two
spins alone would have an average free energy
ln4+ Wo, where Wo is the average

Wo = (In cosh PJ~~),„=J~i 1J P (J) ln cosh PJ
(1.3)

Here P is, of course, the inverse temperature in ener-
gy units. In addition, the correlation between the two
spins is given by

Edwards and Anderson4 (EA) pointed out that a

system with this kind of randomness might be an ap-

propriate model for a spin-glass, with a possible order
parameter being ((o.;)')„.Here cr; is an Ising vari-

able at site i, ( ) is a statistical average and ( ),„
is

an average over the quenched randomness in the
nearest-neighbor interactions J&. Despite some sug-
gestive calculations, ' " ' one cannot be quite sure
of the nature of the phase transition in this system,
namely its lower critical dimension and the kinds of
universality classes produced. To help elucidate these
questions, we have developed series expansions for
the average free energy and for the susceptibility,

XEA, connected with the EA order parameter, which

ts

=X(( ) )- .

tanhP Jg = ((r; aj)p. (1.4)

(The subscript "0" is a reminder that we are working
in a system with only two spins. ) Then the key
quantities in the expansion are the moments

W- = ((~i~i) 0 &-

dJ P(J)(tanhPJ) (1.5)

By virtue of the symmetry (1.1), the W vanish un-
less m is even.

One can then use the variables defined by Eqs.
(1.3) and (1.5) to describe high-temperature series
expansions to a given order in the (J~,)~. (Note that
W has a leading order J .) In pirticular in a hyper-
cubic lattice with % sites and dimensionality d the
high-temperature series for the average free energy
has the form
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F/N =In2+dWO the results presented here.

+ g c.', ,...(,") W', 'W4'+66,
q, m2, m4, m6

(1.6a)

while the susceptibility series is

=1+ X a', , (q~)

q, m2, m.4, m6

X e', 2W448, ' (1.6b)

Here the sums over the m's are sums over nonnega-
tive integers and the sum over q starts from 1. Each
term has an order which is given by 2 g&m, j. Tables

I and II list the principal computational results of this

paper, the nonvanishing coefficients e' and a' to
respectively 11th and 10th orders.

%hen these results are specialized to the case of
the double 6 function used by previous authors' ' we
discover that they agree for all dimensionalities with
the 10th order results previously published. Howev-

er, as we shall describe below, we made extensive
use of the unpublished results of Fisch' in obtaining
the susceptibility series. There is a disagreement in
11th order in the free energy with the results reported
in Ref. 3, but the authors of Ref. 3 now agree with

C. Calculational methodology

The remainder of this paper will be devoted to
describing how we obtained the series given in Eqs.
(1.6) and Tables I and II. We in fact, employed two
different calculational devices, which are separately
described in Secs. II and III. In Sec. II, the replica
tricks is combined with primitive high-temperature
expansions as a description of the special case in
which P(J) is a Gaussian probability distribution. In
Sec. III, a general P(J) is treated via a linked cluster
expansion of the impure system.

One of the goals of these two parallel calculations
is to make a detailed connection between the replica
calculation and the more direct evaluation of the pro-
perties of an impure system. From the beginning, we
can see a general similarity between the two calcula-
tions. They both involve the same general kind of
work, i.e., an expansion in skeleton graphs g. As
usual, 9 each term is a product of two factors: a lattice
constant (g) describing how many graphs of a given
type may be fit onto the lattice and a statistical factor
,f, describing the weight of one particular graph. In
both calculations, one shows that the contribution of
disconnected or articulated graphs vanish.

As the next step, the statistical factors f, are com-

TABLE I. Coefticients cp p are listed with W2 W4 in the first column and (q) labeling the
P2 P4 d

2 4

columns.

(d) (5d)

W24

w'
W27

W10
2

W11
2

W26 W4

W2 W4

W,' W4

W27 W42

W24 W4'

W44

W23 W44

1

2

4
7

2

24

50

108

—18

72

4

16

24

584

-1344
7656
—18

-576
1368
—72

144
—36

96

-324

1600

-8656
81792

-1152
4416

—23808

142080
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TABLE 11. Coeicients a~q ~ of Eq. (1.6b).
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m4 m6 a m2 m6 m2 m6

1

1

1

1

1

1

1

1

1

1

20

20
—48

12

80

-192
4

12

48

-732
16

12

48

228

24

48

228
—2088

44

228

240

360
-116

60

696

1392

-176
120

2628

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3
'4

6

7

9

10.

1

1

1

2

2

2

2

3

3

3

3

4

4

4

5

5

5.

5

6

6

6

6

7

7

7

2

3

4

3

3

2

3

4

1

2

3

1

2

3

1

2

2

-2116 2 - 8

6 360 2' 8

-1 064 '2 9
-12' 580 2 '10

240 , 3 1

-576 3 1

144 3 2.
-5 472 3 2.

:24 3 3
' -"144: 3 3

1 728 3 3
. 216 '

3 '' 4
' 144 3' '4

1 728 3 4
—4 176 3 4

1 056 3 5

1 728 . 3 5

1 440 3 S

10 512 3 5

3 456 : 3 6

12 52S 3 6

42 336. 3 6

10 680 3 7

, 2 880 3 7

89 208 3 7

6 360 3 8

457 344 3 8

-6 112 3 9
-634 320 3 10

'—6 912' 4 2

1 728 4 3

192 4 4

1 728 4 4

35 712 4 4

3 072 4 5

1 728 4 5

35 712 4 5

28 608 4 6

3

4

3-
4

2

3

1

2

3

1

1

2

1

2

4

3

2

3

1

2

35 712

419 328

201 792

5 760

446 400

1 199 616

4 489 344

6 679 424

31 697 536

23 040

1 920

23 040

48 000

23 040

714 240

704 640

714 240

7 977 600

13 121 280

77 466 240

683 297 920

23 040

345 600

829 440

345 600

17 418 240

14 929 920

280 972 800

3 875 535 360

322 560

15 805 440

5 806 080

447 068 160

9 627 12S 760

5 160 960

330 301 440

12 071 485 440

92 897 280

7 524 679 679

1 857 945 600

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

8

8

8

9

9

10

6

6

7

7

7

8

8

. 9

10

4

5

5

6

6

6

7

7

8

8

9

10

6

6

7

7

8

8

9

10

7

8

8

9

10

8

9

10

9

10

10

1

2

3

1

2

puted for each skeleton diagram as a sum over loops
which cover the skeleton diagram. Although at first
sight these loop expansions look very different in the
two methods, after a simple bond renormalization
they are seen to be exactly the same. In this way, we
see the term' by term identity of the two expansion
methods.

II. REPLICA METHOD

A. General method

In dealing with quenched impurities, one must suc-
cessively calculate two averages; first, the statistical
average ( ) and then the impurity average.



4634 RUTH V. DITZIAN AND LEO P. KADANOFF 19

Edward's replica trick is a device for simplifying the
calculation by introducing a new system in which
both averages can be performed at the same time. If
the original system has a Hamiltonian, H {a.;,J„),a;
being the statistical variables and J& being the
quenched random variables, then the new system
contains n replicas of the origirial one, with new sta-
tistical variables a.P (a =1,2, . . ..n) and has a Hamil-
tonian of the form

H„„„,= X H{ ™,J,,)+H'{Jjj
a 1

in the original system. Here Xl X2 Xq are dif-
ferent functions of the a' s. Expression (2.5a) is the
most general form of an average that we might wish
to compute in the impure system.

To obtain a replica expression for A, we follow the
methods of Edwards and assign each of the terms in
the product (2.5a) to a different replica. Thus we pro-
duce a list of different replicas 0.1, ~2, . .., ak, ..., nq.

Then we replace Xk(a) by Xq(o. "). After a few lines
of calculation, we can show that the average (2.5a) can
be correctly calculated in the replica system as

n

= X(H. +H') . (2.1)

I —pH
lim TrJ Tr e rePl'ca

n -0 Z(n) i&

In Eq. (2.1), H'{Jj{describes the probability distribu-
tion for the bonds. In particular, H' is defined so
that any function of the bonds G(J) has an average

(G (J)),„=Tr je i'" ljl G (J) (2.2)

In Eq. (2.2), Trj stands for an integral over all possi-
ble values of all of the J&'s.

The statistical mechanics of the quenched system
can be directly derived from that of the replica sys-
tem, in the limit as the number of replicas n, goes to
zero. To define this connection, let us use the nota-
tion Z(n) to describe the partition function generat-
ed by the replica Hamiltonian of Eq. (2.1), i.e. ,

—pH
Z(n) =TrjTr e

I
(2.3)

where Tr represents a sum over all the n statistical
I

variables which lie at the different lattice sites I. Ed-
wards has shown that the average free energy is then
given by (f),„,where he has

—P (f)„=(F),„=lim (2.4)

(2.5a)

We'shall use Eq. (2.4) in generating a high-
temperature series expansion for F. At low tempera-
tures, there are problems'0 in using Eq. (2.4). Re-
cent work" has shown that these difficulties arise
from a natural breaking of the symmetry among re-
plicas. This is not expected at temperatures above
the critical. Our work will support this expectation by
giving a term by term equivalence between the ex-
pansion of the replica system (as given in this sec-
tion) and the direct linked cluster expansions
described in Sec. III.

Correlation functions for the replica system are
also directly related to the impurity-averaged correla-
tions. To state this connection imagine that we were
interested in calculating some average of the form

x II X„(a"") (2.5b)

For our purposes, the most important application
of Eq. (2.5b) is to derive a replica expression for x«
in which Eqs. (2.5b) and (1.2) are combined to give

X« = lim g (a; a; aj(Tj )-(„)
n 0

(2.6)

for a different from p, where ( ) &„~is defined as the
expectation value with the weights in Eq. (2.5b).

B. Gaussian probability distribution

Following Edwards, note that the simplest applica-
tion of the replica method is to the case in which the
probability distribution for the quenched bonds is
Gaussian. In particular, if each bond is described by
an independent Gaussian distribution centered upon
zero, then H' in Eq. (2.1) is given by

.2

PH'= $ 2
——ln(2rrJ) )

Jg 2

(IJ) 1

(2.7)

PH, rr
= K $ n+ X cr—;

—a; Pa:j "crj~, (2.8)
(ij) a& p

where (ij ) indicates sum over nearest neighbors and
the effective four-spin constant K is

(2.9)

The effective Hamiltonian (2.8) can be treated by
the same methods usually applied to nonrandom sys-
tems. The difference from the usual Ising systems is
that we have here a four-spin interaction between

With this special form for H', the sum over the J's in
an expression like Eq. (2.3) can be performed at once
with the result

—pH
Z(n) =Tr e

0'
I

where the effective spin Hamiltonian is given by
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each pair of replicas on every bond of the lattice.
This system has previously been treated by mean
field theory' "and renormalization methods. '" We
next turn to the generation of high-temperature
series for this model.

C. Free-energy expansion

We employ the primitive method of series expan-
sion for the partition function arising from the Ham-
iltonian (2.8). (Since neither disconnected nor arti-
culated graphs give a contribution as n 0 this ap-
proach is quite tractable. ) The method employs the
identity

e —"=cosh K (1 + tanh K)

to ~rite the partition function as

-K n
1

Z(~) =Tr .ge' g (coshK)
(ij) tr (P

(2.10)

x(1+(r; (rj o;~(rg~tanhK)

(2.11)

a
~ ~ j

2 I
0 0 0 0

P 7

0 0 0
6 e 5 I

(c)

(e)

FIG. 1, Replica diagrams. (a) basic bond. (b) simple
giaph. (c) same graph written as loops. (d) skeleton di-
agram for (c), (e), (f), and (g) which are additional loop
coverings of this skeleton diagram.

Therefore all graphs possess an even number of
bonds between each pair of sites. Since the trace
over odd spins vanishes, each a-; or site i and replica
0. must appear with an even power. Graphs will

therefore contribute only when all vertices are even
in each replica. For example in Fig. 1(b) all vertices
including 2 and 5 are even in all replicas. This causes
all graphs to be composed of loops, where a loop is a
closed path in one replica.

From this formula a diagrammatic expansion is

formed by taking the trace over all possible products
of I factors a;"aj a; "oj~ in Eq. (2.11). Each pair of
replicas (a, P) can be picked only once over a bond
(ij ). Each such product can be represented graphi-
cally by a double line (see Fig. 1) corresponding to
the basic factor o-; o-j"o-; "a-j~.

This diagram expansion then leads to an, expression
for F, which arises from the n 0 limit of Eq.
(2.11), in the form of a series in tanh K

(F),„=JV In2 + Nd (K + ln cosh K) + X (g)f, , (2.12a)

f» = g CI» tanh'K
I

(2.12b)

Here N is the number of sites and Nd the number of
nearest-neighbor bonds in the hypercubic lattice. The
sum in Eq. (2.12a) is over the skeleton diagrams g.
A skeleton diagram is one formed from an original
diagram —like those in Fig. 1 —by reducing all multi-
ple bonds to single ones. The symbol (g) stands for
the lattice constant for graph g, that is in how many
ways it can be realized on the lattice.

Most lattice constants needed were calculated by
Fisher and Gaunt' who kindly sent us their original
list. Using the method described in that paper we
calculated the three lattice constants that we need
while they did not. All lattice constants needed for
the free energy calculation are listed in colum'n 2 of
Table III.

The contribution of any skeleton diagram is a pro-
duct of two factors: the lattice constant (g) and a sta-
tistical factor f». The latter is, in turn, expressed in a
power series in tanh K, as shown in Eq. (2.12).

To calculate the coefficients Ci, one needs all cov-
erings of the skeleton graph g with 211ines such that
each bond is covered at- least twice and all vertices are
even in all replicas. Then one calculates the com-
binatorial expression in n which reflects the number
of different ways of distributing the loops of the
graph among the n replicas.

These combinatorial expressions divided by n, and
then with n sent to zero, are added up for all cover-
ings of skeleton graphs g with 2/lines to form C&, .

Normally the primitive expansion method is en-
cumbered by disconnected and articulated graphs.
The n 0 limit here gets rid of these automatically.
When a graph can be split into two subgraphs that
have at most one vertex in common they share no
bond or loop. Since the replica indices can then be
independently picked for the two subgraphs, the
weight of the graph must vanish as n 0 at least as
fast as n'. Thus, these graphs can make no contribu-
tion to a free energy calculated from Eq. (2.4). For
this reason, Table III includes neither disconnected
nor articulated diagrams.

Let us work through a simple diagram, i.e., the
skeleton diagram given in Fig. 1(d). There is only
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TABLE III. Free-energy skeleton graphs, their lattice constants and statistical factors f~.

No. Graph Lattice Constant f
g

W0"

-'W' 'W4
2 2 7 4

2(2)+ 16( )
1 6——W
2 2

2( )+ 12( )

+8V/ W -3W W
2 4 2

O 7( + )86 ) + 648 (4) ——W
8

2 2

24 (3) 2W -3W2 W4
8 6 2

12 ( ) + 288 ( ) + 768 ( )
d

'

d d 9 3 8
2W2 —

2W2 W

8( ) -4 W '- 18W2 W4
8

+18W2 W4
7 2

20 (3)+ 32 (4) W
- 2

10 28
2

+ 2328 (3)+23136 (4)
d d d

+ 47616 ( )5

10- —W
2 2

4 ( ) + 312 (3)+ 1728 (4) 2W 10
2

12 2 ( 2) + 252 (3)+ 1152 (4)
d d d

2
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TABLE Ill. (cont'd. )

No, Graph Latti|:e Constant

13 24 (3) -4W - 18W W

14 12 (3)+ 32 (4)
d d -17 V/2 + 30 W2 W4

10 9

15 6( ) -sw"
2

16 2( )+ 48( )+ -SV/ + 12 W W
2 2 4

4(2)+ 72(3)+ 192( } -SW + 12 W V/
10 9

48 ( 2) + 3744 ( 3
}+32448 ( 4)

d d d

+51840( )

2W
11

2

14 (2) + 1392 (3)+ 10656 ( )
d d d

+ 15360 ( )

2W
2

20 12( ) SW"
2 .

21 96( } 3S4( ) -SW

22 96(3) + 384(4) -SV/
2

23 192 ( ) + 76S ( ) -SW2
11
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TA BLE III. (cont'd. )

Graph Lattice Constant f
g

24 48 ( ) + 192 ( ) -4W

612( ) +5856( )

+ 3840( )

2W
"

2

26 4(2)+ 168(3) + 768(4)
d d d

-4W2
ll

one way it can be covered so that two lines appear on
each bond of the skeleton graph, namely as shown in

Fig. 1(c). Since all seven lines are covered twice this

graph is proportional to (tanhK). Since (ap), (ay),
and (jay) all form bonds [see Fig. 1(b)] each index
must refer to a distinct replica. Thus there are
n (n —1) (n —2) ways of picking these replica indices.
To form C,g, one must divide this number by n [see
Eq. (2.4)] and take n to zero. The result is that for
this graph C7g =2.

Exactly this same mode of analysis serves to evalu-
ate all contributions to the skeleton graphs sho~n in
Table III. However, the analysis outlined so far is
somewhat time consuming because in higher order
many, many coverages of the skeleton graph need to
be considered. For example, Fig. 1(e) —1(g) list
three of the eight coverages needed to get the
eighth-order contribution to this graph. Fortunately
this labor can be considerably reduced by the method
of bond renormalization described in Sec. II D.

agram. Therefore, one can isolate each basic bond
and calculate the loop renormalizations for each bond
separately. The resulting renormalized bond will

have a value W, which depends only upon the
number of unpaired —i.e., distinct —replica indices
which appear on it. For example, Fig. 2 describes a
diagrammatic expansion of 8'2. Here u and P are
considered fixed and distinct. The first term has a
weight which is simply tanh K, reflecting the single
way u and P can be paired to form a basic four spin
factor on the bond. For the next term, v can be
picked in (n —2) ways so as to be distinct from n and
P. The only possible pairing is (uv)(Pv). Hence at
n =0 this term is —2(tanh K)2. The next term per-
mits the pair (vh) to be picked in —,(n —2)(n —3)
ways. Since v and A. appear symmetrically, there are
two distinct pairings, namely (uv)(vh. )(h.P) and
(ah) (Xv) (vP) so that this term has the value
+6(tanh K)'. In summary we have

W, =tanhK —2(tanhK)'+6(tanh K)'+ . (2.13a)

D. Bond renormalization A very similar renormalization may be applied to a
diagram containing a bond with four distinct lines as

Figures 1(e) —1(g) are all of eighth order in

tanh K. However Figs. 1(f) and 1(g) differ from Fig.
1(e) in that they contain two identical replica indices
(i.e., v) on a single bond. All diagrams in which
there appear such closed loops on a single bond can
be replaced by lower order diagrams in which the
basic bonds are renormalized.

The basic point in this replacement is that whenev- .

er a closed loop appears on a single bond, this loop
does not affect the evaluation of the rest of the di-

a

v +

a

+ ~ ~ ~V

FIG. 2. . Bond renormalization.

Ib)
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in Fig. 2(b) to give a renormalized four replica bond
as

W4 =3 (tanh K) 2 —12 (tanh K)3 + (2.13b)

W2 = X K'A 18(
I=m

Here BI are the renormalized moments

(2.14)

Notice that these 8 s are exactly the same as the
one-bond averages calculated in Eq. (1.5). This is
because we can see that

a~ A) Q
W = (a; " a.; a; ' a; )0 where ( )0 is as in
Eq. (1.5) the average in the replicated system with
only two sites i and j. Now using Eq. (2.5), the iden-
tity to Eq. (1.5) can be easily established. Hence by
using the bond renormalization, one is essentially
converting the series in tanh K into a series in the
8 s.

For the purpose of generating the series, one might
wish to see the 8"s expressed as po~er series in the
variable

K = ((PJ)'),„.
This is actually most conveniently done via Eq. (1.5)
which gives

relatively efficient tool for handling the coverages of
these skeleton diagrams.

Table III lists in its last column the evaluation of
each of the diagrims in a multinominal in the 8 s in-
cluding all terms up to order (tanh K)". Our deriva-
tion only applies to a Gaussian P(J). In the next
chapter, we show that the data in Table III is equally
correct for any symmetrical P(J). The diagrams in
Table III are summed up to give Table I which sum-
marizes the free-energy series.

Susceptibility series

The expression (2.6) for the Edwards-Anderson
susceptibility can be evaluated by applying the same
ideas. The basic diagrams contain two distinguished
points, at the i, j spin sites. The indices n and p
do not appear in closed loops but instead flow over
lattice bonds from one dot to the other. All other re-
plica indices occur in closed loops.

Figure 4 shows some of the low-order diagrams
and an evaluation of the statistical factor for each
graph through order K' . The graphs which do not
have closed loops have the trivial statistical factor

KI ((PJ)2I) (2.15) fg = ( W2) '

and A I are the coefficients of a power series expan-
sion of [tanh (x)'~2]2 in x. In the Gaussian case, we
have

(2I —I)!
2' '(I —1)! (2.16)

includes all contributions to the skeleton diagram up
to the order I =9. This renormalization is indeed a

Now return to the skeleton diagram in Fig. l. The
bond-renormalized forms of diagrams 1(c) and 1(e)
are shown in Figs. 3. The diagram in Fig. 3(a) in-
cludes the unrenormalized diagrams 1(f) and 1(g)
and five more (identical) eighth-order terms. The
net result is that Fig. 3(a) has the value 2 W2, Fig.
3(b) has the value —

—, W26 W4. Thence the sum of
these contributions

CIg (tanh K)' = 2 W2 —
2 Wq W4 +3

Graph Statistical Factor

-24W +12W W +12W W
4 3 2 2

+12W W -48W4 -120W4 W +20W4 W
4 6

226W -36W 6W -216W W
4

4 3 5+30 W W — 1428 W W +120W W W
2 4 2 4 6

where I is the number of bonds in the skeleton graph.
Similar, but more complicated, evaluations apply to
the other diagrams.

For reasons which will be apparent below, we are
especially interested in skeleton diagrams which can
give a factor f, that includes a contribution propor-
tional to H'6 among its terms of 10th order or below.

- 12 W2 + 6 W2 W~ + 6 W2 W4 + 6 W2 Wg

- 24 W2W + 10 W2W4 W6
4

2 4

(b)

98W -96W W -66W W
8 7 6 2

+30W W
7

FIG. 3. Renormalized diagrams. F10. 4. Susceptibility graphs with W&.
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Figure 4 shows all diagrams in the Fisch list which
can contribute such a 8'6 term. In Sec. III, we shall
use these data in conjunction with the data of Fisch'
to generate the susceptibility series described in Table
II.

n, ). . T. he free energy is then given by

where the coefficients in the sum are

(3.5)

III. LINKED-CLUSTER EXPANSIONS

A. Setting up the free-energy expansion

To illustrate this method, corisider the free energy

(3.1)

By using Eq. (2.10), one can express the free energy
in terms of

T& = tanh(ljz/kT)

The alternative writing is

0.2)

{F),„=W ln2 + Wd Wp+ F, (3.3)

The basic approach in the linked-cluster method is
to expand a physical quantity, like the free energy, in
a series of terms each of which depends upon the
couplings in some small connected region of the lat-
tice. After this expansion is performed, the individu-
al terms in the expansion are each averaged over the
probability distribution of the couplings.

(3.6)

with n~ being the total number of loops and therefore
nonzero while the n are nonnegative integers and

Notice the structure of the expansion (3.5). On
each bond, we find a power of T&, T&, which be-
comes W of Eq. (1.5) after averaging. Then Eq.
(3.5) becomes an expansion in powers of W~, W2,

W3, .. . When the symmetry (1.1) holds the W van-
ish for odd m.

Each term in Eq. (3.5) can be represented as a
graph formed by loops in which n represents the
number of times the nth loop is covered. To make
further progress, we collect together all the different
terms in Eq. (3.5) which cover a given skeleton
graph.

To evaluate the contribution of a skeleton graph
we consider the graph to be a small system for which
the free energy can be calculated by applying Eq.
(3.5). The formula for the graph evaluation is then
identical to Eq. (3.5) except that only a limited
number of loops (with indices»» =1,2, . ., NL) need.
be taken into account. The net result is that the
value of a graph is given by

Wp is defined in Eq. (1.3) and the correlated part of
the free energy is given by

n e 1

(3.8)

Here the average over spin values can be formally
evaluated as

{F,),„={ln (1 + $P )),„
(3.4)

Now P represents a product of T& over closed loops
in the lattice just like the replica loops considered in
Sec. II. The sum over e is a sum over all such
closed loops.

To evaluate the sum in Eq. (3.4) it is convenient to
expand the logarithm in the form of a multinominal
expansion in which the loop product P is raised to
the power n . The list of all n 's is called a loop cov-

erage and is described by a vector n = (n~, n2,

The prime on the sum is intended to indicate that the
sum includes only those loop coverages which actual-
ly go over all bonds in the graph. If one or more
bonds is uncovered, the term is not included in Eq.
(3.8) because the contribution has already been in-
cluded in a lower order skeleton diagram. NL is the
number of loops in the coverage.

%e can thus conclude Sec. III A by writing our
result for the free-energy series as a sum over skele-
ton graphs of the form

(3.9)

As before, (g) is a lattice constant which describes in

how many ways a given skeleton graph may be fit
onto the lattice. Then f» is a statistical factor which
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describes how a given graph contributes. to the free
energy. We describe the evaluation of f, in Sec.
HI B.

Graph

8. Graph evaluation technique Topological Expression

The statistical factors f„must be evaluated
separately for each graph topology. To begin with,
consider the simple one-loop topology like that given
in Fig. 5(a); I'n this graph only one loop is possible,
that being a product of I T&'s —where l is the number
of bonds in the skeleton graph. From Eqs. .(3.4) or
(3.8), we can evaluate this graph as

Loops I 2 2

()2) (25)

FIG. 6. Tao-loop graph.

(P )-

X
( 1)™l(~)i

m 1 m

A two-loop, or 8 graph, like that shown in Fig,
5(d) can be evaluated in much the same manner. As
a guide to more complex graphs, we- describe this
graph in -a topological fashion as shown in Fig. 6. Let
a topological vertex be a point where three or more
bonds come together. Let a branch denoted by a latin
index i be a line consisting of l; bonds which either

Topological
Type of Skeleton Graphs

forms a full loop (as in the one-loop diagram) or
connect two topological vertices. The skeleton di-
agram in question has two topological vertices and
three branches, labeled i =1,2, 3, which have respec-
tively I1=3, l2= 1, /3=3. The skeleton diagram ad-
mits three loops labeled respectively with u = (12),
u = (23), and n = (13) and has the statistical factor

fg = $ c(n) (K2'K3'P23" ).,
8

1 g, fl
1 3, tl 23

The prime on the sum is a reminder that we cannot
include the already-counted one-loop terms. Thence
two of the three n's must be nonzero. An evaluation
of the averages then gives

(3.11)
a)

LI

c)

d) I Il

e)

f) I I I I

h) I I/I

One Loop

Articulated

Oiseonneeted

Two - Looped

Three Looped (M)
I

with m, (n) being the number of:times the ith branch
is covered, i.e.,

m(n) = g n„. (3.12)
J&i

To depict the different loop coverages, we draw the
loops onto the topological diagram as shown in Fig.
1(c) and (e).

Higher order graphs are evaluated in exactly the
same manner as described here. This evaluation is
simplified by the fact that disconnected diagrams, like
those in Fig. 5(c), and articulated diagrams, like
those in Fig. 5(b) vanish.

To see how this happens consider a disconnected
diagram like that in Fig. 7. According to Eq. (3.4)
the total free energy which might result from such a
diagram 1s

fg= (ln(1+P. +Pb+P.b)

Four Loop

FIG; 5. Types of topological skeleton graphs.

—In(1+ P, ) —ln(1 —Pb) )„.(3.13)

The subtraction terms in E'q. (3.13) appear to elim-
inate the contributions from the already-calculated
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The factors ag ( rn ) described in the Appendix
give the statistical weight of a given branch coverage.
They depend only upon the topology of the graph.

o disconnected

groph

loops
C. Free-energy series

The data in Fig. 8 is sufficient to enable one to cal-
culate a free-energy series based upon all the star
graphs with 11 or fewer bonds which can be fit onto
hypercubic lattices. These graphs are shown in Table
III. To get an 11th-order series, we note that 8'2„is
of order K". In Table III, we list the graph, its lattice
constant and all contributions to the graph up to ord-
er K". For example, skeleton graph number 4 is of
the two-loop type with I~ =3, I2=1, I3=3. The
necessary branch coverages are then listed in Table
IV as are the contributions to fg [as given in Eq.
(3.14)]. Thus, as shown in Table III the total contri-
bution from this graph is

FIG. 7. Disconnected diagram.

single-loop terms. But for disconnected or articulated
diagrams P,I,

= P, Pb so that the argument of the first
logarithm in Eq. (3.13) factorizes and the entire
right-hand side cancels out.

Expressions like Eq. (3.11) give a useful but
cumbersome evaluation of the statistical factor for a
given graph. However, a better form can be obtained
if we use the concept of branch coverages, i.e., the
set of integers rn = (m~, m2, .. . , m~ ) which describe

B
how many times a given branch in the diagram has
been covered. For a general skeleton graph contain-
ing WB branches which respectively contain a number
of bonds I~, I2, ..., l~, one can write the statisticalB'
factor as

fg = 2 W2 —
2 W2 W4 —3 W2 W4 + 8 W2 W4

(3.15)

For comparison one can look at the result of Fisch
for this graph in the case of a double delta-function
distribution

P(J) = —,8[1—kT(K)' ']+-,'8[J+kT(K)' ']

NB

f, =$,(m), g(W ) ' .
m i=1

(3.16)
(3.14)

for which

W2
——[tanh(K) '~ ] (3.17)The sum over m's include all values of m; from 1 to

a (m)
g

branch coverages
higher than two

topological
form of graph

topo log ica I

form of graph
a (m)
9

branch coverages
higher than two

-1/2

one n equals 4
1/4n=4

two n's equal 4
sing le loop

Graphs 2, 3, 5, 10

3B
one n equals 6

Graphs 8, 13, 24, 26

-3/2one n equals 4
n or n or

n4 or n5 equals 4two n's equal 4

3C
one n equals 6

two loop
Graphs 15, 16, 17, 21, 22, 23

one n equals 8
Graphs 4, 6, 7, 9, 11

12, 18, 19, 25

12 34
-17

one n equals 4

4 loop

Graph 20

3A

Graph 14

FIG. 8. Evaluation of topological constants for all free-energy graphs to the 11th order.
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TABLE IV. Calculation of fg for skeleton graph number D. Susceptibility series

branch coverages

m =m~, m2, m3

2,2,2

2,4,2

4,2,2

2,2,4

4,4,2

2,4,4

2,6,2

2,8,2

2, 10,2

contribution of, fg

2 W27

——W
3

2 2 4

—W24 W43

—
2 W2W44 3

4W2 W4

4W2 W4

0

The same general mode of analysis would enable
us to obtain a series for the Edwards-Anderson sus-
ceptibility XEA in the form (1.6b). Through order K'
only terms involving W2, W4, and W6 appear.

Fisch and Harris have calculated all graphs in this
susceptibility series for the distribution (3.1). As ex-
plained in Sec. IIIC, if only W2 and W4 were in-

volved, we could simply write down the form of the
coefficients a~ via a small reinterpretation of the data
presented by Fisch. However four of the skeleton
graphs analyzed by Fisch lead to contributions involv-

ing W'6. In Fig. 4, we calculated these four graphs.
Thus by using these results and borrowing the results
of Fisch and Harris, we can realize a 10th order sus-

ceptibility series of the form (1.6b) for a general dis-

tribution.

and

W4 ——W22 . (3.18)

Fisch's result for this diagram is

3
fg =2W2 ——W2 —3 W2 (3.19)

P2 P4 rI

(3.20)

This form of F does not include terms of the form
P6 because these terms cannot contribute at any

order lower than K' . Table I lists the coefficients

cp p required up through. the 1 1 th order.

The series for the case of the double-delta distribu-
tion given in Eq. (3.18) is obtained by setting
W4= W2. The first ten terms are identical to Fisch
and Harris, apart from an unexplained factor of 2 in

their series already noted by Cheery and Domb. The
11th term is new.

which, of course, checks the correctness of our
result, except for the last term. In fact, we could
have obtained the first three terms in Eq. (3.15) by
using Fisch's'result, (3.19), and then recognizing that

each term must have the structure W2' W42 where q~

and qq must add up to the number of bonds (i.e. , 7).
Not only does this kind of comparison serve. as a

very detailed check of our work, but it will enable us
to infer the form of the susceptibility series for a gen-
eral P(J), based upon Fisch's calculation, which was
restricted to the form (3.16).

The data in Table III permits us to calculate 11th-
order free-energy series in the form

E. Preliminary analysis

We have looked at the series generated by the
Gaussian distribution. Apparently the susceptibility
series behaves in a very similar way to that of the
double delta analyzed by Fisch and Harris. The
derived indices and even the 8-value are very much
the same as in this earlier work. However, to our
surprise the specific-heat series shows some signs of
interesting critical behavior for the Gaussian distribu-
tion but not for the double delta. More definitive
analysis will appear in a future publication,
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APPENDIX: EXAMPLE OF EVALUATION
OF THE TOPOLOGICAL FACTOR ag(rrt)

USING BRANCH COVERAGE

Generally, a given branch coverage can be realized
via several loop coverages. Correspondingly, the fac-
tors a~(m) are computed [via Eq. (3.8)) as a sum
over the weights for those loop coverages which real-
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TABLE V. values of v; .

branch loop index

index (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

1

1

1

1

1

1

0

0

0
1

0

0

1

1

0

0

1

0

1

0

ize the branch coverage m. In symbols, we have

a, (m) =($) C(n) g5 („). (Al)

Here m;(n) is the branch coverage expressed as a

function of the loop coverage. In general, m;(n) is

the sum of all n 's which describe loops which cover
the branch i. In symbols, we have

m;(n) =gv; n (A2)

with

1

1 if loop o. goes over branch a
0 otherwise (A3)

In this way, the graph evaluation has been reduced
to the topological problem of finding the coefficients
ag(m). However, before we attack this problem, we
should notice an extra simplification which applies to
the spin-glass case: The graph vanishes unless all the
m's are even.

Equations (Al), (A2), and (A3) give all the infor-
mation needed to calculate the statistical factor for
each skeleton graph. Let us describe in some detail
how the topological weight factors ag(m) may be cal-
culated as a function of the graph topology and the
coverage m.

Consider, for example, the evaluation of the topo-
logical factors for the graph labeled 3A in Fig. 8.
This graph has four branches labeled with i = 1, 2, 3, 4
in the figure and can be covered by seven loops,
which we label by a =0 (being the loop which covers
all the branches) and n = (ij ) (being the loop which
covers branches i and j). Then the v; defined by Eqs.
(A3) are given in Table V.

In our example, we calculate the loop indices which
correspond to the branch coverage: m = (4, 2, 2, 2).
Then one can write a small computer program to
solve Eq. (A2) for the m's given the n's. The solu-
tion is not unique; all solutions are given in Table VI.
This table also gives the weights C(m), correspond-
ing to the four possible loop coverages. The sum of
these weights is 30, which is the topological factor
ag (m ) listed in Fig. 8.

TABLE VI. Loop coverings corresponding to rn = (4, 2, 2, 2).

solution

number (1,2) (1,3)

values of m

(1,4) (2,3) (2,4) (3,4) weight C(m)

12

0 12

12
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